

Phase-Aligned Clock Multiplier

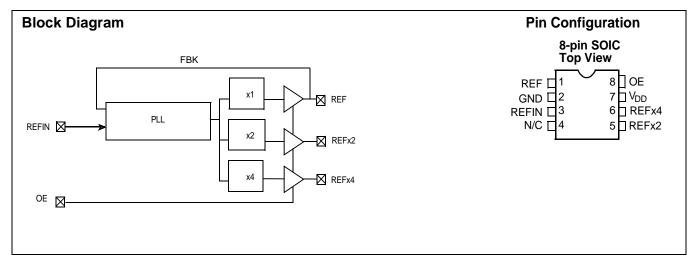
Features	Benefits
3-multiplier configuration	1x, 2x, 4x Ref
Single phase-locked loop architecture	10 MHz to 166.67 MHz operating range (reference input from 10 MHz to 41.67 MHz)
Phase Alignment	All outputs will have a consistent phase relationship with each other and the reference input
Low jitter, high accuracy outputs	Meets critical timing requirements
Output enable pin	Enables design flexibility and lower power consumption
3.3V operation	Supports industry standard design platforms
5V Tolerant input	Allows flexibility on Reference input
Sophisticated internal loop filter	Alleviates the need for external components
8-pin 150-mil SOIC package	Industry standard packaging saves on board space
Commercial and Industrial Temperature available	Suitable for wide spectrum of applications

Selector Guide

Part Number	Outputs	Input Frequency Range	Output Frequency Range	Specifics
CY2303SC	3	10 MHz-41.67 MHz	10 MHz-166.67 MHz	Commercial Temperature
CY2303SI	3	10 MHz-41.67 MHz	10 MHz-166.67 MHz	Industrial Temperature

Functional Description

The CY2303 is a 3 output 3.3V phase-aligned system clock designed to distribute high-speed clocks in PC, workstation, datacom, telecom, and other high-performance applications.


The part allows user to obtain 1x, 2x, and 4x Ref output frequencies on respective output pins.

The CY2303 has an on-chip PLL which locks to an input clock presented on the REFIN pin. The PLL feedback is internally

connected to the REF output. The input-to-output skew is guaranteed to be less than ±200 ps, and output-to-output skew is guaranteed to be less than 200 ps.

Multiple CY2303 devices can accept the same input clock and distribute it in a system. In this case, the skew between the outputs of two devices is guaranteed to be less than 400 ps.

The CY2303 is available in commercial and industrial temperature ranges.

Pin Description

Pin	Signal ^[1]	Description
1	REF	REF output (1x Reference input)
2	GND	Ground
3	REFIN	Input reference frequency, 5V tolerant input
4	N/C	No Connect
5	REFx2	2x Reference input
6	REFx4	4x Reference input
7	VDD	3.3V Supply
8	OE	Output Enable (weak pull-up)

Maximum Ratings

Supply Voltage to Ground Potential.....-0.5V to +7.0V DC Input Voltage (Except Ref).....-0.5V to $V_{\mbox{\scriptsize DD}}$ + 0.5V DC Input Voltage REFIN.....-0.5 to 7V

Storage Temperature65°C to +150°C	;
Junction Temperature	;
Static Discharge Voltage (per MIL-STD-883, Method 3015)>2000V	,
(per MIL-01D-000, Method 0010)2000 v	

Operating Conditions for CY2303SC Commercial Temperature Devices

Parameter	Description	Min.	Max.	Unit
V_{DD}	Supply Voltage	3.0	3.6	V
T _A	Operating Temperature (Ambient Temperature)	0	70	°C
C _L	Load Capacitance, Fout < 133.33 MHz		18	pF
	Load Capacitance, 133.33 MHz < Fout < 166.67 MHz		12	pF
C _{IN}	Input Capacitance		7	pF

Electrical Characteristics for CY2303SC Commercial Temperature Devices

Parameter	Description	Test Conditions	Min.	Max.	Unit
V _{IL}	Input LOW Voltage			0.8	V
V _{IH}	Input HIGH Voltage		2.0		V
I _{IL}	Input LOW Current	$V_{IN} = 0V$		100	μΑ
I _{IH}	Input HIGH Current	$V_{IN} = V_{DD}$		50	μΑ
V _{OL}	Output LOW Voltage ^[2]	I _{OL} = 8 mA		0.4	V
V _{OH}	Output HIGH Voltage ^[2]	$I_{OH} = -8 \text{ mA}$	2.4		V
I _{DD}	Supply Current	Unloaded outputs, REFIN = 41.67 MHz		45	mA
		Unloaded outputs, REFIN = 25 MHz		32	mA
1		Unloaded outputs, REFIN = 10 MHz		18	mA

Notes:

Weak pull-down on all outputs.
 Parameter is guaranteed by design and characterization. It is not 100% tested in production.

Switching Characteristics for CY2303SC Commercial Temperature Devices

Parameter	Name	Test Conditions	Min.	Тур.	Max.	Unit
1/t ₁	Output Frequency	18-pF load	10		133.33	MHz
		12-pF load			166.67	MHz
	Duty Cycle ^[3] = $t_2 \div t_1$	Measured at V _{DD} /2	40	50	60	%
t ₃	Rise Time ^[3]	Measured between 0.8V and 2.0V			1.20	ns
t ₄	Fall Time ^[3]	Measured between 0.8V and 2.0V			1.20	ns
t ₅	Output to Output Skew on rising edges ^[3]	All outputs equally loaded Measured at V _{DD} /2			200	ps
t ₆	Delay, REFIN Rising Edge to REF Rising Edge ^[3]	Measured at V _{DD} /2 from REFIN to any output			±200	ps
t ₇	Device to Device Skew ^[3]	Measured at V _{DD} /2 on the REF pin of the device (pin 1)			400	ps
t _J	Period Jitter ^[3]	Measured at Fout < 133.33 MHz, loaded outputs, 18-pF load			±175	ps
t _{LOCK}	PLL Lock Time ^[3]	Stable power supply, valid clocks presented on REFIN			1.0	ms

Operating Conditions for CY2303SI Industrial Temperature Devices

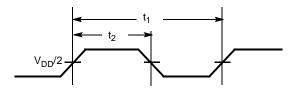
Parameter	Description	Min.	Max.	Unit
V_{DD}	Supply Voltage	3.0	3.6	V
T _A	Operating Temperature (Ambient Temperature)	-40	85	°C
C _L	Load Capacitance, Fout <133.33 MHz		15	pF
	Load Capacitance, 133.33 MHz < Fout < 166.67 MHz,		10	pF
C _{IN}	Input Capacitance		7	pF

Electrical Characteristics for CY2303SI Industrial Temperature Devices

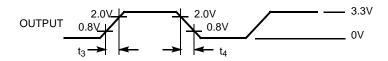
Parameter	Description	Test Conditions	Min.	Max.	Unit
V _{IL}	Input LOW Voltage			0.8	V
V _{IH}	Input HIGH Voltage		2.0		V
I _{IL}	Input LOW Current	V _{IN} = 0V		100	μΑ
I _{IH}	Input HIGH Current	$V_{IN} = V_{DD}$		50	μΑ
V _{OL}	Output LOW Voltage ^[2]	I _{OL} = 8 mA		0.4	V
V _{OH}	Output HIGH Voltage ^[2]	$I_{OH} = -8 \text{ mA}$	2.4		V
I _{DD}	Supply Current	Unloaded outputs, REFIN = 41.67 MHz		48	mA
		Unloaded outputs, REFIN = 25 MHz		35	mA
		Unloaded outputs, REFIN = 10 MHz		20	mA

Note:

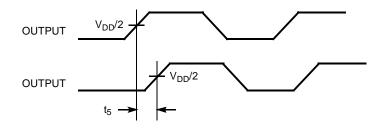
^{3.} All parameters are specified with loaded outputs.



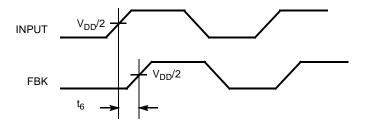
Switching Characteristics for CY2303SI Industrial Temperature Devices

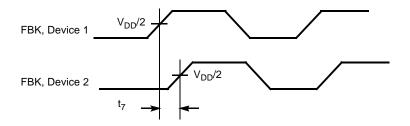

Parameter	Name	Test Conditions	Min.	Тур.	Max.	Unit
1/t ₁	Output Frequency	15-pF load	10		133.33	MHz
		10-pF load			166.67	MHz
	Duty Cycle ^[3] = $t_2 \div t_1$	Measured at V _{DD} /2	40	50	60	%
t ₃	Rise Time ^[3]	Measured between 0.8V and 2.0V			1.20	ns
t ₄	Fall Time ^[3]	Measured between 0.8V and 2.0V			1.20	ns
t ₅	Output to Output Skew on rising edges ^[3]	All outputs equally loaded Measured at V _{DD} /2			200	ps
t ₆	Delay, REFIN Rising Edge to REF Rising Edge ^[3]	Measured at V _{DD} /2 from REFIN to any output			±200	ps
t ₇	Device to Device Skew ^[3]	Measured at V _{DD} /2 on the REF pin of the device (pin 1)			400	ps
t _J	Period Jitter ^[3]	Measured at Fout < 133.33 MHz, loaded outputs, 15-pF load			±175	ps
t _{LOCK}	PLL Lock Time ^[3]	Stable power supply, valid clocks presented on REFIN			1.0	ms

Switching Waveforms


Duty Cycle Timing

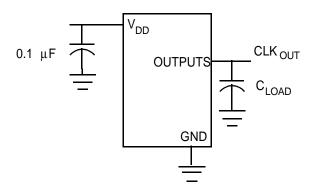
All Outputs Rise/Fall Time


Output-Output Skew



Switching Waveforms

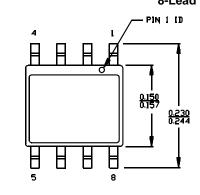
Input-Output Propagation Delay



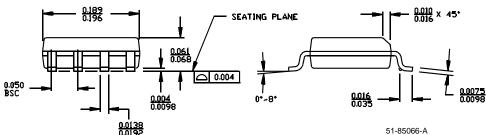
Device-Device Skew

Test Circuits

Test Circuit # 1


Ordering Information

Ordering Code	Package Name	Package Type	Operating Range
CY2303SC	S8	8-Pin 150-mil SOIC	Commercial
CY2303SI	S8	8-Pin 150-mil SOIC	Industrial



Package Diagram

8-Lead (150-Mil) SOIC S8

- 1. DIMENSIONS IN INCHES MIN. MAX.
- 2. PJN 1 1D IS OPTIONAL, ROUND ON SINGLE LEADFRAME RECTANGULAR ON MATRIX LEADFRAME

Document Title: CY2303 Phase-Aligned Clock Multiplier Document Number: 38-07249					
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change	
**	110514	01/07/02	SZV	Change from Spec number: 38-01036 to 38-07249	