

Phase-Aligned Clock Multiplier

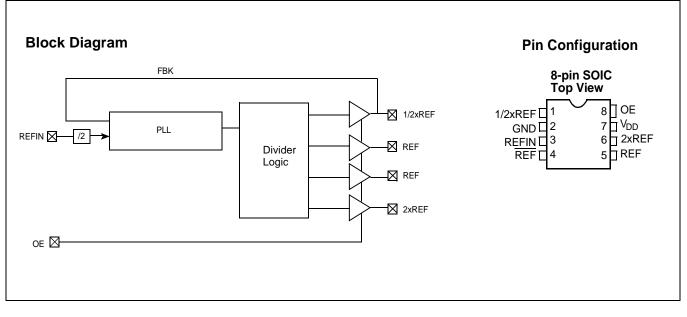
Features	Benefits
4-multiplier configuration	1/2x, 1x, 1x, 2x Ref
Single phase-locked loop architecture	10 MHz to 166.67 MHz operating range (reference input from 20 MHz to 83.33 MHz)
Phase Alignment	All outputs will have a consistent phase relationship with each other and the reference input
 Low jitter, high accuracy outputs 	Meets critical timing requirements
Output enable pin	Enables design flexibility and lower power consumption
3.3V operation	Supports industry standard design platforms
5V Tolerant input	Allows flexibility on Reference input
Internal loop filter	Alleviates the need for external components
8-pin 150-mil SOIC package	Industry standard packaging saves on board space
Commercial and Industrial Temperature available	Suitable for wide spectrum of applications

Selector Guide

Part Number	Outputs	Input Frequency Range	Output Frequency Range	Specifics
CY2300SC	4	20 MHz-83.33 MHz	10 MHz–166.67 MHz	Commercial Temperature
CY2300SI	4	20 MHz-83.33 MHz	10 MHz–166.6 7MHz	Industrial Temperature

Functional Description

The CY2300 is a 4-output 3.3V phase-aligned system clock designed to distribute high-speed clocks in PC, workstation, datacom, telecom, and other high-performance applications.


The part allows the user to obtain 1/2x, 1x, 1x and 2x REFIN output frequencies on respective output pins.

The part has an on-chip PLL which locks to an input clock presented on the REFIN pin. The input-to-output skew is guar-

anteed to be less than ± 200 ps, and output-to-output skew is guaranteed to be less than 200 ps.

Multiple CY2300 devices can accept the same input clock and distribute it in a system. In this case, the skew between the outputs of two devices is guaranteed to be less than 400 ps.

The CY2300 is available in commercial and industrial temperature ranges.

Cypress Semiconductor Corporation Document #: 38-07252 Rev. ** 3901 North First Street • San Jose

٠

CA 95134 • 408-943-2600 Revised September 27, 2001

Pin Description

Pin	Signal ^[1]	Description	
1	1/2xREF	Clock output, 1/2x Reference	
2	GND	Ground	
3	REFIN	Input Reference frequency, 5V tolerant input	
4	REF	Clock output Reference	
5	REF	Clock output Reference	
6	2xREF	Clock output, 2x Reference	
7	VDD	3.3V Supply	
8	OE	Output Enable (weak pull-up)	

Maximum Ratings

Supply Voltage to Ground Potential0.5V to +7.0V
DC Input Voltage (Except Ref)–0.5V to V_{DD} + 0.5V
DC Input Voltage REF0.5 to 7V

Storage Temperature65°C to +1	150°C
Junction Temperature 1	I50°C
Static Discharge Voltage (per MIL-STD-883, Method 3015)>2	2000V

Operating Conditions for CY2300SC Commercial Temperature Devices

Parameter	Description	Min.	Max.	Unit
V _{DD}	Supply Voltage	3.0	3.6	V
T _A	Operating Temperature (Ambient Temperature)		70	°C
CL	Load Capacitance, Fout < 133.33 MHz		18	pF
	Load Capacitance,133.33 MHz < Fout < 166.67 MHz		12	pF
C _{IN}	Input Capacitance		7	pF

Electrical Characteristics for CY2300SC Commercial Temperature Devices

Parameter	Description	Test Conditions	Min.	Max.	Unit
V _{IL}	Input LOW Voltage			0.8	V
V _{IH}	Input HIGH Voltage		2.0		V
I _{IL}	Input LOW Current	$V_{IN} = 0V$		100	μA
I _{IH}	Input HIGH Current	$V_{IN} = V_{DD}$		50	μA
V _{OL}	Output LOW Voltage ^[2]	I _{OL} = 8 mA		0.4	V
V _{OH}	Output HIGH Voltage ^[2]	I _{OH} = -8 mA	2.4		V
I _{DD}	Supply Current	Unloaded outputs, REFIN = 66 MHz		45	mA
		Unloaded outputs, REFIN = 33 MHz		32	mA
		Unloaded outputs, REFIN = 20 MHz		18	mA

Notes:

Weak pull-down on all outputs.
 Parameter is guaranteed by design and characterization. It is not 100% tested in production.

Switching Characteristics for CY2300SC Commercial Temperature Devices

Parameter	Name	Test Conditions	Min.	Тур.	Max.	Unit
1/t ₁	Output Frequency	18-pF load	10		133.33	MHz
		12-pF load			166.67	MHz
	Duty Cycle ^[3] = $t_2 \div t_1$	Measured at V _{DD} /2	40	50	60	%
t ₃	Rise Time ^[3]	Measured between 0.8V and 2.0V			1.20	ns
t ₄	Fall Time ^[3]	Measured between 0.8V and 2.0V			1.20	ns
t ₅	Output to Output Skew on rising edges ^[3]	All outputs equally loaded Measured at V _{DD} /2			200	ps
t ₆	Delay, REFIN Rising Edge to Output Rising Edge ^[3]	Measured at V _{DD} /2 from REFIN to any output			±200	ps
t ₇	Device to Device Skew ^[3]	Measured at $V_{DD}/2$ on the 1/2xREF pin of devices (pin 1)			400	ps
tj	Period Jitter ^[3]	Measured at Fout=133.33 MHz, loaded outputs, 18-pF load			±175	ps
t _{LOCK}	PLL Lock Time ^[3]	Stable power supply, valid clocks pre- sented on REFIN			1.0	ms

Operating Conditions for CY2300SI Industrial Temperature Devices

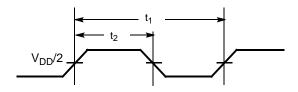
Parameter	Description	Min.	Max.	Unit
V _{DD}	Supply Voltage	3.0	3.6	V
T _A	Operating Temperature (Ambient Temperature)	-40	85	°C
CL	Load Capacitance, Fout < 133.33 MHz		15	pF
	Load Capacitance,133.33 MHz < Fout < 166.67MHz		10	pF
C _{IN}	Input Capacitance		7	pF

Electrical Characteristics for CY2300SI Industrial Temperature Devices

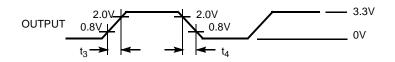
Parameter	Description	Test Conditions	Min.	Max.	Unit
V _{IL}	Input LOW Voltage			0.8	V
V _{IH}	Input HIGH Voltage		2.0		V
I _{IL}	Input LOW Current	V _{IN} = 0V		100	μΑ
I _{IH}	Input HIGH Current	V _{IN} = V _{DD}		50	μΑ
V _{OL}	Output LOW Voltage ^[2]	I _{OL} = 8 mA		0.4	V
V _{OH}	Output HIGH Voltage ^[2]	I _{OH} = -8 mA	2.4		V
I _{DD}	Supply Current	Unloaded outputs, REFIN = 66 MHz		48	mA
		Unloaded outputs, REFIN = 33 MHz		35	mA
		Unloaded outputs, REFIN = 20 MHz		20	mA

Note:

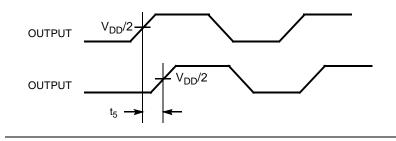
3. All parameters are specified with equally loaded outputs.



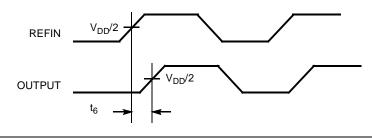
Parameter	Name	Test Conditions	Min.	Тур.	Max.	Unit
1/t ₁	Output Frequency	15-pF load	10		133.33	MHz
		10-pF load			166.67	MHz
	Duty Cycle ^[3] = $t_2 \div t_1$	Measured at V _{DD} /2	40	50	60	%
t ₃	Rise Time ^[3]	Measured between 0.8V and 2.0V			1.20	ns
t ₄	Fall Time ^[3]	Measured between 0.8V and 2.0V			1.20	ns
t ₅	Output to Output Skew on ris- ing edges ^[3]	All outputs equally loaded Measured at V _{DD} /2			200	ps
t ₆	Delay, REFIN Rising Edge to Output Rising Edge ^[3]	Measured at V _{DD} /2 from REFIN to any output			±200	ps
t ₇	Device to Device Skew ^[3]	Measured at $V_{DD}/2$ on the 1/2xREF pin of devices (pin 1)			400	ps
tj	Period Jitter ^[3]	Measured at Fout=133.33 MHz, loaded outputs, 15-pF load			±175	ps
t _{LOCK}	PLL Lock Time ^[3]	Stable power supply, valid clocks present- ed on REFIN			1.0	ms

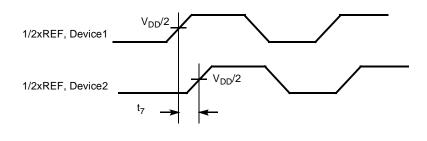

Switching Characteristics for CY2300SI Industrial Temperature Devices

Switching Waveforms


Duty Cycle Timing

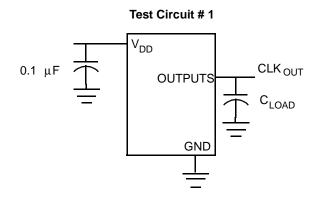
All Outputs Rise/Fall Time


Output-Output Skew



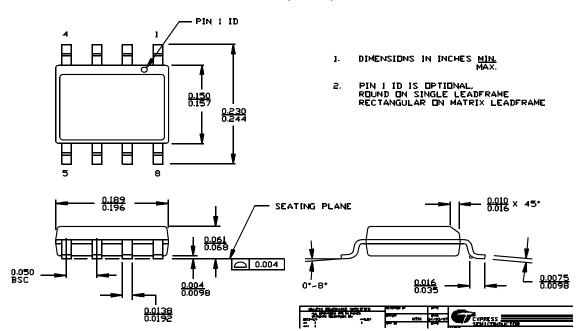
Switching Waveforms

Input-Output Propagation Delay



Device-Device Skew

Test Circuits



Ordering Information

Ordering Code	Package Name	Package Type	Operating Range
CY2300SC	S8	8-pin 150-mil SOIC	Commercial
CY2300SI	S8	8-pin 150-mil SOIC	Industrial

Package Diagrams

8-Lead (150-Mil) Molded SOIC S8

© Cypress Semiconductor Corporation, 2001. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress Semiconductor against all charges.

Document Title: CY2300 Phase-Aligned Clock Multiplier Document Number: 38-07252					
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change	
**	110517	01/07/02	SZV	Change from Spec number: 38-01039 to 38-07252	