

133-MHz Spread Spectrum Clock Synthesizer/Driver with Differential CPU Outputs

Features	Benefits
Compliant to Intel® CK00 Clock Synthesizer/Driver Specifications	Supports next generation Pentium® processors using dif- ferential clock drivers
Multiple output clocks at different frequencies	Motherboard clock generator
— Two pairs of differential CPU outputs, up to 133 MHz	— Optimized for single-CPU design
— Ten synchronous PCI clocks	— Support for PCI slots and chipset
— Two MRef clocks, 180 degrees out of phase	— Drives up to two Direct Rambus™ Clock Generators
— Three AGP and Hub Link clocks at 66 MHz	(DRCG)
— Two 48-MHz clocks	— Supports USB host controller and SuperI/O chip
— Two reference clocks at 14.318 MHz	— Supports ISA slots and I/O chip
Spread Spectrum clocking	Enables reduction of EMI and overall system cost
— 31 kHz modulation frequency	
— EPROM programmable percentage of spreading. De- fault is –0.6%, which is recommended by Intel	
Power-down features	Enables ACPI compliant designs
Three Select inputs	Supports up to eight CPU clock frequencies
Low-skew and low-jitter outputs	Meets tight system timing requirements at high frequency
OE and Test Mode support	Enables ATE and "bed of nails" testing
48-pin SSOP package	Widely available, standard package enables lower cost

Intel and Pentium are registered trademarks of Intel Corporation. Direct Rambus is a trademark of Rambus, Inc.

Pin Summary

Name	Pins	Description
V _{SSREF}	47	3.3V Reference ground
V _{DDREF}	2	3.3V Reference voltage supply
V _{SSPCI}	5, 11, 17	3.3V PCI ground
V _{DDPCI}	8, 14, 20	3.3V PCI voltage supply
V _{SS3V66}	28	3.3V AGP and Hub Link ground
V _{DD3V66}	26, 31	3.3V AGP and Hub Link voltage supply
V _{SSUSB}	22	3.3V USB ground
V _{DDUSB}	25	3.3V USB voltage supply
V _{SSCPU}	36	3.3V CPU ground
V _{DDCPU}	39	3.3V CPU voltage supply
V _{SSMEM}	43	3.3V Memory ground
V _{DDMEM}	46	3.3V Memory voltage supply
AV _{SS}	33	Analog ground for PLL and Core
AV _{DD}	34	Analog voltage supply to PLL and Core
I _{REF}	35	Reference current for external biasing
XTALIN ^[1]	3	Reference crystal input
XTALOUT ^[1]	4	Reference crystal feedback
CPUCLK [0-1]	38, 41	CPU clock outputs
CPUCLK [0–1]B	37, 40	Inverse CPU clock outputs
PCICLK [0–9]	6, 7, 9, 10, 12, 13, 15, 16, 18, 19	PCI clock outputs, synchronously running at 33.33 MHz
MemRef	45	MemRef clock output, drives memory clock generator
MemRefB	44	MemRefB clock output 180 degrees out of phase with MemRef
3V66_[0-2]	27, 29, 30	AGP and Hub Link clock outputs, running at 66 MHz
USBCLK [0–1]/Sel[A–B]	23, 24	Sel [A–B] inputs are sensed then internally latched on power-up be- fore the pins are used for 48-MHz USB clock outputs
REFCLK[0-1]/MultSel[0-1]	1, 48	MultSel[0–1] inputs are sensed then internally latched on power-up before the pins are Reference clock outputs, 14.318 MHz
PWR_DWN	32	Active LOW input, powers down part when asserted
SPREAD ^[2]	42	Active LOW input, enables spread spectrum when asserted
SEL133	21	CPU frequency select input (See Function Table)

Notes:

1. For best accuracy, use a parallel-resonant crystal, C_{LOAD} = 18 pF. For crystals with different C_{LOAD}, please refer to the application note, "Crystal Oscillator

Topics." 2. After Crystal Oscillator starts and during low period of Xin, if three pulses come on SPREAD part will go into internal test mode.

Function Table^[3]

SEL133	SELA	SELB	CPUCLK (MHz)	MemRef (MHz)	3V66CLK (MHz)	PCICLK (MHz)	USBCLK (MHz)	REFCLK (MHz)	Notes:
0	0	0	100	50	66	33	48	14.318	
0	0	1	N/A	N/A	N/A	N/A	N/A	N/A	
0	1	0	N/A	N/A	N/A	N/A	N/A	N/A	
0	1	1	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Hi-Z	
1	0	0	133	66	66	33	48	14.318	
1	0	1	N/A	N/A	N/A	N/A	N/A	N/A	
1	1	0	N/A	N/A	N/A	N/A	N/A	N/A	
1	1	1	TCLK/2	TCLK/4	TCLK/4	TCLK/8	TCLK/2	TCLK	

Note: 3. TCLK is a test clock driven in on the XTALIN input in test mode.

Actual Clock Frequency Values

Clock Output	Target Frequency (MHz)	Actual Frequency (MHz)	РРМ
CPUCLK	100	TBD	TBD
CPUCLK	133	TBD	TBD
USBCLK	48	48.008	167

Swing Select Functions

MultSel0	MultSel1	Board Target	Reference R, I _{REF =}	Output Current	V _{OH} @ Z, Iref = 2.32mA
0	0	60Ω	Rr = 475 <u>+</u> 1%, Iref = 2.32mA	I _{OH} = 5*Iref	0.71 @ 60
0	0	50Ω	Rr = 475 <u>+</u> 1%, Iref = 2.32mA	I _{OH} = 5*Iref	0.59 @ 50
0	1	60Ω	Rr = 475 <u>+</u> 1%, Iref = 2.32mA	I _{OH} = 6*Iref	0.85 @ 60
0	1	50Ω	Rr = 475 <u>+</u> 1%, Iref = 2.32mA	I _{OH} = 6*Iref	0.71 @ 50
1	0	60Ω	Rr = 475 <u>+</u> 1%, Iref = 2.32mA	I _{OH} = 4*Iref	0.56 @ 60
1	0	50Ω	Rr = 475 <u>+</u> 1%, Iref = 2.32mA	I _{OH} = 4*Iref	0.47 @ 50
1	1	60Ω	Rr = 475 <u>+</u> 1%, Iref = 2.32mA	I _{OH} = 7*Iref	0.99 @ 60
1	1	50Ω	Rr = 475 <u>+</u> 1%, Iref = 2.32mA	I _{OH} = 7*Iref	0.82 @ 50

Clock Driver Impedances

			Impedance		
Buffer Name	V _{DD} Range	Buffer Type	Minimum Ω	Typical Ω	\max_{Ω}
CPUCLK, CPUCLKB		Type X1			
USB, REF	3.135–3.465	Туре 3	20	40	60
PCI, 3V66	3.135–3.465	Туре 5	12	30	55
MemRef, MemRefB	3.135–3.465	Туре 5	12	30	55

Maximum Ratings

(Above which the useful life may be impaired. For lines, not tested.)	or user guide-
Supply Voltage	0.5 to +7.0V
Input Voltage	/ to V _{DD} +0.5

Storage Temperature (Non-Condensing)65°C to +	-150°C
Max. Soldering Temperature (10 sec) +	-260°C
Junction Temperature +	-150°C
Package Power Dissipation	1W
Static Discharge Voltage (per MIL-STD-883, Method 3015)>	2000V

Operating Conditions Over which Electrical Parameters are Guaranteed

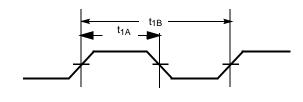
Parameter	Description	Min.	Max.	Unit
V _{DDREF} , V _{DDPCI} , AV _{DD} , V _{DD3V66} , V _{DDUSB} , V _{DDCPU} , V _{DDMEM}	3.3V Supply Voltages	3.135	3.465	V
T _A	Operating Temperature, Ambient	0	70	°C
C _{in}	Input Pin Capacitance		5	pF
C _{XTAL}	XTAL Pin Capacitance		22.5	pF
CL	Max. Capacitive Load on MemRef, USBCLK, REF PCICLK, 3V66		20 30	pF
f _(REF)	Reference Frequency, Oscillator Nominal Value	14.318	14.318	MHz

Electrical Characteristics Over the Operating Range

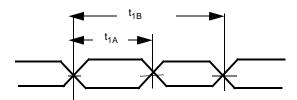
Parameter	Description	Test Conditions			Max.	Unit
V _{IH}	High-level Input Voltage	Except Crystal Pads. Threshold voltage for crystal pads = $V_{DD}/2$		2.0		V
V _{IL}	Low-level Input Voltage	Except Crystal Pads			0.8	V
V _{OH}	High-level Output Voltage	MemRef, USB, REF, 3V66	I _{OH} = -1 mA	2.4		V
		PCI	I _{OH} = -1 mA	2.4		V
V _{OL}	Low-level Output Voltage	MemRef, USB, REF, 3V66	I _{OL} = 1 mA		0.4	V
		PCI	I _{OL} = 1 mA		0.55	V
I _{IH}	Input High Current	$0 \le V_{IN} \le V_{DD}$		-5	5	μΑ
IIL	Input Low Current	$0 \le V_{IN} \le V_{DD}$		-5	5	μΑ
I _{OH}	High-level Output Current	CPU	Type X1, V _{OH} = 0.65V	12.9		mA
		For I _{OH} =6*IRef Configuration	Type X1, V _{OH} = 0.74V		14.9	
		USB, REF	Type 3, V _{OH} = 1.00V	-29		
			Type 3, V _{OH} = 3.135V		-23	
		3V66, PCI, MemRef, MemRefB	Type 5, V _{OH} = 1.00V	-33		
			Type 5, V _{OH} = 3.135V		-33	
I _{OL}	Low-level Output Current					mA
		USB, REF	Type 3, V _{OL} = 1.95V	29		
			Type 3, V _{OL} = 0.4V		27	
		3V66, PCI, MemRef, MemRefB	Type 5, V _{OL} =1.95 V	30		
			Type 5, V _{OL} = 0.4V		38	
I _{OZ}	Output Leakage Current	Three-state			10	μA
I _{DD3}	3.3V Power Supply Current	AV _{DD} /V _{DD33} = 3.465V, V _{DD25} = 2.625V, F _{CPU} = 133 MHz			250	mA
I _{DDPD3}	3.3V Shutdown Current	AV _{DD} /V _{DDQ3} = 3.465V, V _{DD25} = 2.62	5V		20	mA

Switching Characteristics^[4] Over the Operating Range

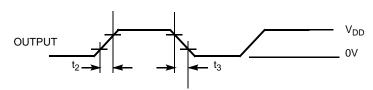
Parameter	Output	Description	Test Conditions	Min.	Max.	Unit
t ₁	All	Output Duty Cycle ^[5]	t _{1A} /(t _{1B})	45	55	%
t ₂	CPU	Rise Time	Measured at 20% to 80% of V _{oh}	175	700	ps
t ₂	USB, REF	Rising Edge Rate	Between 0.4V and 2.4V	0.5	2.0	V/ns
t ₂	PCI, 3V66, MemRef	Rising Edge Rate	Between 0.4V and 2.4V	1.0	4.0	V/ns
t ₃	CPU	Fall Time	Measured at 80% to 20% of V_{oh}	175	700	ps
t ₃	USB, REF	Falling Edge Rate	Between 2.4V and 0.4V	0.5	2.0	V/ns
t ₃	PCI, 3V66, MemRef	Falling Edge Rate	Between 2.4V and 0.4V	1.0	4.0	V/ns
t ₄	CPU	CPU-CPU Skew	Measured at Crossover		150	ps
t ₅	3V66	3V66-3V66 Skew	Measured at 1.5V		250	ps
t ₆	PCI	PCI-PCI Skew	Measured at 1.5V		500	ps
t ₇	3V66,PCI	3V66-PCI Clock Skew	3V66 leads. Measured at 1.5V	1.5	3.5	ns
t ₈	CPU	Cycle-Cycle Clock Jitter	Measured at Crossover $t_8 = t_{8A} - t_{8B}$ With all outputs running		200	ps
t ₉	Mref	Cycle-Cycle Clock Jitter	Measured at 1.5V $t_{9} = t_{9A} - t_{9B}$		250	ps
t ₉	3V66	Cycle-Cycle Clock Jitter	Measured at 1.5V $t_{9} = t_{9A} - t_{9B}$		300	ps
t ₉	USB	Cycle-Cycle Clock Jitter	Measured at 1.5V $t_{9} = t_{9A} - t_{9B}$		350	ps
t ₉	PCI	Cycle-Cycle Clock Jitter	Measured at 1.5V $t_{9} = t_{9A} - t_{9B}$		500	ps
t ₉	REF	Cycle-Cycle Clock Jitter	Measured at 1.5V $t_{9} = t_{9A} - t_{9B}$		1000	ps
	CPU, PCI	Settle Time	CPU and PCI clock stabilization from power-up		3	ms
	CPU	Rise/Fall Matching	Measured with test loads ^[6, 7]		20%	
	CPU	Overshoot	Measured with test loads ^[7]		V _{oh} + 0.2	V
	CPU	Undershoot	Measured with test loads ^[7]	-0.2		V
V _{oh}	CPU	High-level Output Voltage	Measured with test loads ^[7]	0.65	0.74	V
V _{ol}	CPU	Low-level Output Voltage	Measured with test loads ^[7]	0.0	0.05	V
V _{crossover}	CPU	Crossover Voltage	Measured with test loads ^[7]	45% of 0.65	55% of 0.74	V

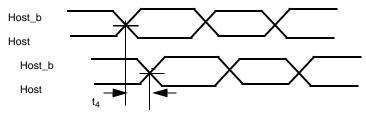

Notes:

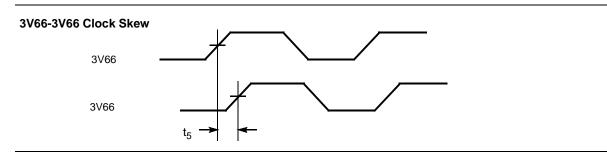
All parameters specified with loaded outputs.
Duty cycle is measured at 1.5V when V_{DD} = 3.3V. When V_{DD} = 2.5V, duty cycle is measured at 1.25V.
Determined as a fraction of 2*(Trp –Trn)/(Trp +Trn) Where Trp is a rising edge and Trp is an intersecting falling edge.
The test load is R_s = 33.2Ω, R_p = 49.9Ω in test circuit.



Switching Waveforms

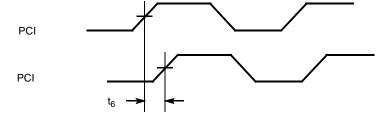

Duty Cycle Timing (Single Ended Output)

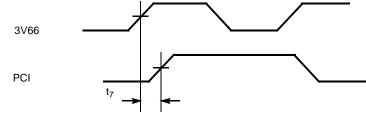

Duty Cycle Timing (CPU Differential Output)



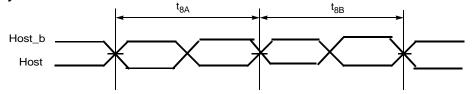
All Outputs Rise/Fall Time

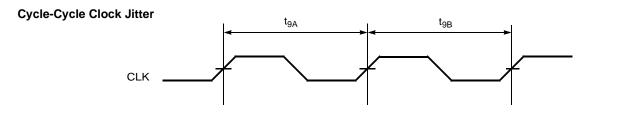
CPU-CPU Clock Skew

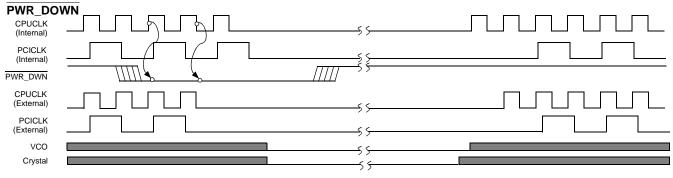




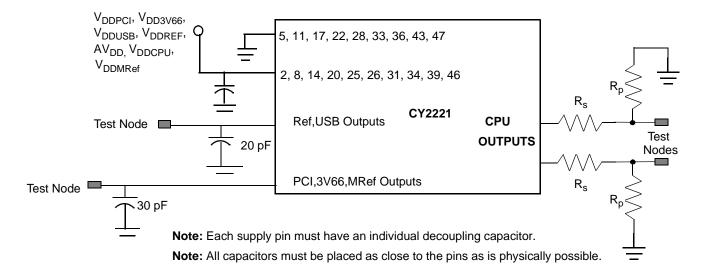
Switching Waveforms (continued)


PCI-PCI Clock Skew

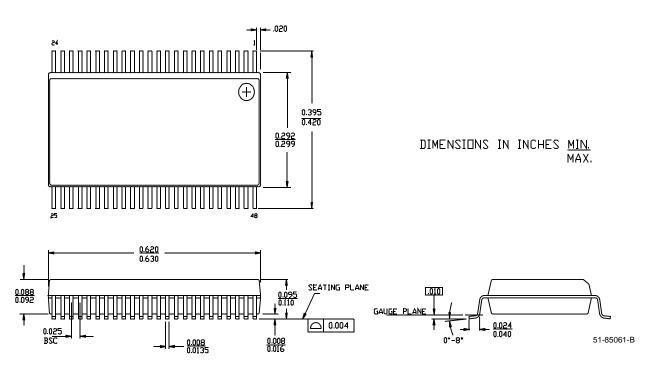



3V66-PCI Clock Skew

CPU Clock Cycle-Cycle Jitter



Shaded section on the VCO and Crystal waveforms indicates that the VCO and crystal oscillator are active, and there is a valid clock.


Test Circuit

Ordering Information

Ordering Code	Package Name	Package Type	Operating Range
CY2221PVC-1	O48	48-Pin SSOP	Commercial

Package Diagram

48-Lead Shrunk Small Outline Package O48

Document #: 38-07212 Rev. **

Page 8 of 9

© Cypress Semiconductor Corporation, 2001. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.

Document Title: CY2221 133-Mhz Spread Spectrum Clock Synthesizer/Driver with Differential CPU Outputs Document Number: 38-07212				
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change
**	110345	10/28/01	SZV	Change from Spec number: 38-00814 to 38-07212