
Instruction Set

6-1

Instruction Set Nomenclature:

Status Register (SREG):
SREG: Status register
C: Carry flag in status register
Z: Zero flag in status register
N: Negative flag in status register
V: Twos complement overflow indicator
S: N ⊕ V, For signed tests
H: Half Carry flag in the status register
T: Transfer bit used by BLD and BST instructions
I: Global interrupt enable/disable flag

Registers and operands:
Rd: Destination (and source) register in the register file
Rr: Source register in the register file
R: Result after instruction is executed
K: Constant literal or byte data (8 bit)
k: Constant address data for program counter
b: Bit in the register file or I/O register (3 bit)
s: Bit in the status register (3 bit)

X,Y,Z: Indirect address register (X=R27:R26,
Y=R29:R28 and Z=R31:R30)

P: I/O port address
q: Displacement for direct addressing (6 bit)

I/O Registers
RAMPX, RAMPY, RAMPZ: Registers concatenated with
the X, Y and Z registers enabling indirect addressing of the
whole SRAM area on MCUs with more than 64K bytes
SRAM.

Stack:
STACK:Stack for return address and pushed registers
SP: Stack Pointer to STACK

Flags:
⇔: Flag affected by instruction
0: Flag cleared by instruction
1: Flag set by instruction
-: Flag not affected by instruction

Conditional Branch Summary

* Interchange Rd and Rr in the operation before the test. i.e. CP Rd,Rr → CP Rr,Rd

Test Boolean Mnemonic Complementary Boolean Mnemonic Comment

Rd > Rr Z•(N ⊕ V) = 0 BRLT* Rd ≤ Rr Z+(N ⊕ V) = 1 BRGE* Signed

Rd ≥ Rr (N ⊕ V) = 0 BRGE Rd < Rr (N ⊕ V) = 1 BRLT Signed

Rd = Rr Z = 1 BREQ Rd ≠ Rr Z = 0 BRNE Signed

Rd ≤ Rr Z+(N ⊕ V) = 1 BRGE* Rd > Rr Z•(N ⊕ V) = 0 BRLT* Signed

Rd < Rr (N ⊕ V) = 1 BRLT Rd ≥ Rr (N ⊕ V) = 0 BRGE Signed

Rd > Rr C + Z = 0 BRLO* Rd ≤ Rr C + Z = 1 BRSH* Unsigned

Rd ≥ Rr C = 0 BRSH/BRCC Rd < Rr C = 1 BRLO/BRCS Unsigned

Rd = Rr Z = 1 BREQ Rd ≠ Rr Z = 0 BRNE Unsigned

Rd ≤ Rr C + Z = 1 BRSH* Rd > Rr C + Z = 0 BRLO* Unsigned

Rd < Rr C = 1 BRLO/BRCS Rd ≥ Rr C = 0 BRSH/BRCC Unsigned

Carry C = 1 BRCS No carry C = 0 BRCC Simple

Negative N = 1 BRMI Positive N = 0 BRPL Simple

Overflow V = 1 BRVS No overflow V = 0 BRVC Simple

Zero Z = 1 BREQ Not zero Z = 0 BRNE Simple

Instruction Set6-2

Complete Instruction Set Summary

√) Not available in base-line microcontrollers

(continued)

Mnemonics Operands Description Operation Flags #Clock

Note

ARITHMETIC AND LOGIC INSTRUCTIONS

ADD Rd, Rr Add without Carry Rd ← Rd + Rr Z,C,N,V,H 1

ADC Rd, Rr Add with Carry Rd ← Rd + Rr + C Z,C,N,V,H 1

ADIW Rd, K Add Immediate to Word Rd+1:Rd ← Rd+1:Rd + K Z,C,N,V 2

SUB Rd, Rr Subtract without Carry Rd ← Rd - Rr Z,C,N,V,H 1

SUBI Rd, K Subtract Immediate Rd ← Rd - K Z,C,N,V,H 1

SBC Rd, Rr Subtract with Carry Rd ← Rd - Rr - C Z,C,N,V,H 1

SBCI Rd, K Subtract Immediate with Carry Rd ← Rd - K - C Z,C,N,V,H 1

SBIW Rd, K Subtract Immediate from Word Rd+1:Rd ← Rd+1:Rd - K Z,C,N,V 2

AND Rd, Rr Logical AND Rd ← Rd . Rr Z,N,V 1

ANDI Rd, K Logical AND with Immediate Rd ← Rd • K Z,N,V 1

OR Rd, Rr Logical OR Rd ← Rd v Rr Z,N,V 1

ORI Rd, K Logical OR with Immediate Rd ← Rd v K Z,N,V 1

EOR Rd, Rr Exclusive OR Rd ← Rd ⊕ Rr Z,N,V 1

COM Rd One’s Complement Rd ← $FF - Rd Z,C,N,V 1

NEG Rd Two’s Complement Rd ← $00 - Rd Z,C,N,V,H 1

SBR Rd,K Set Bit(s) in Register Rd ← Rd v K Z,N,V 1

CBR Rd,K Clear Bit(s) in Register Rd ← Rd • ($FFh - K) Z,N,V 1

INC Rd Increment Rd ← Rd + 1 Z,N,V 1

DEC Rd Decrement Rd ← Rd - 1 Z,N,V 1

TST Rd Test for Zero or Minus Rd ← Rd • Rd Z,N,V 1

CLR Rd Clear Register Rd ← Rd ⊕ Rd Z,N,V 1

SER Rd Set Register Rd ← $FF None 1

CP Rd,Rr Compare Rd - Rr Z,C,N,V,H, 1

CPC Rd,Rr Compare with Carry Rd - Rr - C Z,C,N,V,H 1

CPI Rd,K Compare with Immediate Rd - K Z,C,N,V,H 1

Instruction Set

6-3

Complete Instruction Set Summary (continued)

(continued)

Mnemonics Operands Description Operation Flags #Clock

Note

BRANCH INSTRUCTIONS

RJMP k Relative Jump PC ← PC + k + 1 None 2

IJMP Indirect Jump to (Z) PC ← Z None 2

JMP k Jump PC ← k None 3

RCALL k Relative Call Subroutine PC ← PC + k + 1 None 3

ICALL Indirect Call to (Z) PC ← Z None 3

CALL k Call Subroutine PC ← k None 4

RET Subroutine Return PC ← STACK None 4

RETI Interrupt Return PC ← STACK I 4

CPSE Rd,Rr Compare, Skip if Equal if (Rd = Rr) PC ← PC + 2 or 3 None 1 / 2 / 3

SBRC Rr, b Skip if Bit in Register Cleared if (Rr(b)=0) PC ← PC + 2 or 3 None 1 / 2 / 3

SBRS Rr, b Skip if Bit in Register Set if (Rr(b)=1) PC ← PC + 2 or 3 None 1 / 2 / 3

SBIC P, b Skip if Bit in I/O Register Cleared if(I/O(P,b)=0) PC ← PC + 2 or 3 None 1 / 2 / 3

SBIS P, b Skip if Bit in I/O Register Set If(I/O(P,b)=1) PC← PC + 2 or 3 None 1 / 2 / 3

BRBS s, k Branch if Status Flag Set if (SREG(s) = 1) then PC←PC+k + 1 None 1 / 2

BRBC s, k Branch if Status Flag Cleared if (SREG(s) = 0) then PC←PC+k + 1 None 1 / 2

BREQ k Branch if Equal if (Z = 1) then PC ← PC + k + 1 None 1 / 2

BRNE k Branch if Not Equal if (Z = 0) then PC ← PC + k + 1 None 1 / 2

BRCS k Branch if Carry Set if (C = 1) then PC ← PC + k + 1 None 1 / 2

BRCC k Branch if Carry Cleared if (C = 0) then PC ← PC + k + 1 None 1 / 2

BRSH k Branch if Same or Higher if (C = 0) then PC ← PC + k + 1 None 1 / 2

BRLO k Branch if Lower if (C = 1) then PC ← PC + k + 1 None 1 / 2

BRMI k Branch if Minus if (N = 1) then PC ← PC + k + 1 None 1 / 2

BRPL k Branch if Plus if (N = 0) then PC ← PC + k + 1 None 1 / 2

BRGE k Branch if Greater or Equal, Signed if (N ⊕ V= 0) then PC ← PC+ k + 1 None 1 / 2

BRLT k Branch if Less Than, Signed if (N ⊕ V= 1) then PC ← PC + k + 1 None 1 / 2

BRHS k Branch if Half Carry Flag Set if (H = 1) then PC ← PC + k + 1 None 1 / 2

BRHC k Branch if Half Carry Flag Cleared if (H = 0) then PC ← PC + k + 1 None 1 / 2

BRTS k Branch if T Flag Set if (T = 1) then PC ← PC + k + 1 None 1 / 2

BRTC k Branch if T Flag Cleared if (T = 0) then PC ← PC + k + 1 None 1 / 2

BRVS k Branch if Overflow Flag is Set if (V = 1) then PC ← PC + k + 1 None 1 / 2

BRVC k Branch if Overflow Flag is Cleared if (V = 0) then PC ← PC + k + 1 None 1 / 2

BRIE k Branch if Interrupt Enabled if (I = 1) then PC ← PC + k + 1 None 1 / 2

BRID k Branch if Interrupt Disabled if (I = 0) then PC ← PC + k + 1 None 1 / 2

Instruction Set 6-4

Complete Instruction Set Summary (continued)

(continued)

Mnemonics Operands Description Operation Flags #Clock

Note

DATA TRANSFER INSTRUCTIONS

MOV Rd, Rr Copy Register Rd ← Rr None 1

LDI Rd, K Load Immediate Rd ← K None 1

LDS Rd, k Load Direct from SRAM Rd ← (k) None 3

LD Rd, X Load Indirect Rd ← (X) None 2

LD Rd, X+ Load Indirect and Post-Increment Rd ← (X), X ← X + 1 None 2

LD Rd, -X Load Indirect and Pre-Decrement X ← X - 1, Rd ← (X) None 2

LD Rd, Y Load Indirect Rd ← (Y) None 2

LD Rd, Y+ Load Indirect and Post-Increment Rd ← (Y), Y ← Y + 1 None 2

LD Rd, -Y Load Indirect and Pre-Decrement Y ← Y - 1, Rd ← (Y) None 2

LDD Rd,Y+q Load Indirect with Displacement Rd ← (Y + q) None 2

LD Rd, Z Load Indirect Rd ← (Z) None 2

LD Rd, Z+ Load Indirect and Post-Increment Rd ← (Z), Z ← Z+1 None 2

LD Rd, -Z Load Indirect and Pre-Decrement Z ← Z - 1, Rd ← (Z) None 2

LDD Rd, Z+q Load Indirect with Displacement Rd ← (Z + q) None 2

STS k, Rr Store Direct to SRAM Rd ← (k) None 3

ST X, Rr Store Indirect (X) ← Rr None 2

ST X+, Rr Store Indirect and Post-Increment (X) ← Rr, X ← X + 1 None 2

ST -X, Rr Store Indirect and Pre-Decrement X ← X - 1, (X) ← Rr None 2

ST Y, Rr Store Indirect (Y) ← Rr None 2

ST Y+, Rr Store Indirect and Post-Increment (Y) ← Rr, Y ← Y + 1 None 2

ST -Y, Rr Store Indirect and Pre-Decrement Y ← Y - 1, (Y) ← Rr None 2

STD Y+q,Rr Store Indirect with Displacement (Y + q) ← Rr None 2

ST Z, Rr Store Indirect (Z) ← Rr None 2

ST Z+, Rr Store Indirect and Post-Increment (Z) ← Rr, Z ← Z + 1 None 2

ST -Z, Rr Store Indirect and Pre-Decrement Z ← Z - 1, (Z) ← Rr None 2

STD Z+q,Rr Store Indirect with Displacement (Z + q) ← Rr None 2

LPM Load Program Memory R0 ← (Z) None 3

IN Rd, P In Port Rd ← P None 1

OUT P, Rr Out Port P ← Rr None 1

PUSH Rr Push Register on Stack STACK ← Rr None 2

POP Rd Pop Register from Stack Rd ← STACK None 2

Instruction Set

6-5

Complete Instruction Set Summary (continued)

Mnemonics Operands Description Operation Flags #Clock

Note

BIT AND BIT-TEST INSTRUCTIONS

LSL Rd Logical Shift Left Rd(n+1)←Rd(n),Rd(0)←0,C←Rd(7 Z,C,N,V,H 1

LSR Rd Logical Shift Right Rd(n)←Rd(n+1),Rd(7)←0,C←Rd(0 Z,C,N,V 1

ROL Rd Rotate Left Through Carry Rd(0)←C,Rd(n+1)←Rd(n),C←Rd(7 Z,C,N,V,H 1

ROR Rd Rotate Right Through Carry Rd(7)←C,Rd(n)←Rd(n+1),C←Rd(0 Z,C,N,V 1

ASR Rd Arithmetic Shift Right Rd(n) ← Rd(n+1), n=0..6 Z,C,N,V 1

SWAP Rd Swap Nibbles Rd(3..0) ↔ Rd(7..4) None 1

BSET s Flag Set SREG(s) ← 1 SREG(s) 1

BCLR s Flag Clear SREG(s) ← 0 SREG(s) 1

SBI P, b Set Bit in I/O Register I/O(P, b) ← 1 None 2

CBI P, b Clear Bit in I/O Register I/O(P, b) ← 0 None 2

BST Rr, b Bit Store from Register to T T ← Rr(b) T 1

BLD Rd, b Bit load from T to Register Rd(b) ← T None 1

SEC Set Carry C ← 1 C 1

CLC Clear Carry C ← 0 C 1

SEN Set Negative Flag N ← 1 N 1

CLN Clear Negative Flag N ← 0 N 1

SEZ Set Zero Flag Z ← 1 Z 1

CLZ Clear Zero Flag Z ← 0 Z 1

SEI Global Interrupt Enable I ← 1 I 1

CLI Global Interrupt Disable I ← 0 I 1

SES Set Signed Test Flag S ← 1 S 1

CLS Clear Signed Test Flag S ← 0 S 1

SEV Set Two’s Complement Overflow V ← 1 V 1

CLV Clear Two’s Complement Overflow V ← 0 V 1

SET Set T in SREG T ← 1 T 1

CLT Clear T in SREG T ← 0 T 1

SEH Set Half Carry Flag in SREG H ← 1 H 1

CLH Clear Half Carry Flag in SREG H ← 0 H 1

NOP No Operation None 1

SLEEP Sleep (see specific descr. for Sleep) None 1

WDR Watchdog Reset (see specific descr. for WDR) None 1

Instruction Set 6-6

ADC - Add with Carry

Description:

Adds two registers and the contents of the C flag and places the result in the destination register Rd.

Operation:

(i) Rd ← Rd + Rr + C

Syntax: Operands: Program Counter:

(i) ADC Rd,Rr 0 ≤ d ≤ 31, 0 ≤ r ≤ 31 PC ← PC + 1

16 bit Opcode:

Status Register (SREG) Boolean Formulae:

H: Rd3•Rr3+Rr3+R3+R3•Rd3
Set if there was a carry from bit 3; cleared otherwise

S: N ⊕ V, For signed tests.

V: Rd7•Rr7•R7+Rd7•Rr7•R7
Set if two’s complement overflow resulted from the operation; cleared otherwise.

N: R7
Set if MSB of the result is set; cleared otherwise.

Z: Rd7• Rr7• Rr7 • R7 • R7 •Rd7
Set if the result is $00; cleared otherwise.

C: Rd7•Rr7+Rr7•R7+R7•Rd7
Set if there was carry from the MSB of the result; cleared otherwise.

R (Result) equals Rd after the operation.

Example:
; Add R1:R0 to R3:R2

add r2,r0 ; Add low byte

adc r3,r1 ; Add with carry high byte

Words: 1 (2 bytes)

Cycles: 1

0001 11rd dddd rrrr

I T H S V N Z C

− − ⇔ ⇔ ⇔ ⇔ ⇔ ⇔

Instruction Set

6-7

ADD - Add without Carry

Description:

Adds two registers without the C flag and places the result in the destination register Rd.
Operation:

(i) Rd ← Rd + Rr

Syntax: Operands: Program Counter:

(i) ADD Rd,Rr 0 ≤ d ≤ 31, 0 ≤ r ≤ 31 PC ← PC + 1

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

H: Rd3•Rr3+Rr3+R3+R3•Rd3
Set if there was a carry from bit 3; cleared otherwise

S: N ⊕ V, For signed tests.

V: Rd7•Rr7•R7+Rd7•Rr7•R7
Set if two’s complement overflow resulted from the operation; cleared otherwise.

N: R7
Set if MSB of the result is set; cleared otherwise.

Z: R7• R6 •R5• R4 •R3 •R2 •R1 •R0
Set if the result is $00; cleared otherwise.

C: Rd7 •Rr7 +Rr7 •R7+ R7 •Rd7
Set if there was carry from the MSB of the result; cleared otherwise.

R (Result) equals Rd after the operation.

Example:
add r1,r2 ; Add r2 to r1 (r1=r1+r2)

add r28,r28 ; Add r28 to itself (r28=r28+r28)

Words: 1 (2 bytes)

Cycles: 1

0000 11rd dddd rrrr

I T H S V N Z C

- - ⇔ ⇔ ⇔ ⇔ ⇔ ⇔

Instruction Set 6-8

ADIW - Add Immediate to Word

Description:

Adds an immediate value (0-63) to a register pair and places the result in the register pair. This instruction operates on the
upper four register pairs, and is well suited for operations on the pointer registers.

Operation:

(i) Rdh:Rdl ← Rdh:Rdl + K

Syntax: Operands: Program Counter:

(i) ADIW Rdl,K dl ∈ {24,26,28,30}, 0 ≤ K ≤ 63 PC ← PC + 1

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

S: N ⊕ V, For signed tests.

V: Rdh7 R15
Set if two’s complement overflow resulted from the operation; cleared otherwise.

N: R15
Set if MSB of the result is set; cleared otherwise.

Z: R15 •R14 •R13 •R12 •R11 •R10 •R9 •R8 •R7• R6• R5• R4• R3• R2 •R1• R0
Set if the result is $0000; cleared otherwise.

C: R15 • Rdh7
Set if there was carry from the MSB of the result; cleared otherwise.

R (Result) equals Rdh:Rdl after the operation (Rdh7-Rdh0 = R15-R8, Rdl7-Rdl0=R7-R0).

Example:
adiw r24,1 ; Add 1 to r25:r24

adiw r30,63 ; Add 63 to the Z pointer(r31:r30)

Words: 1 (2 bytes)

Cycles: 2

1001 0110 KKdd KKKK

I T H S V N Z C

- - - ⇔ ⇔ ⇔ ⇔ ⇔

Instruction Set

6-9

AND - Logical AND

Description:

Performs the logical AND between the contents of register Rd and register Rr and places the result in the destination regis-
ter Rd.

Operation:

(i) Rd ← Rd • Rr

Syntax: Operands: Program Counter:

(i) AND Rd,Rr 0 ≤ d ≤ 31, 0 ≤ r ≤ 31 PC ← PC + 1

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

S: N ⊕ V, For signed tests.

V: 0
Cleared

N: R7
Set if MSB of the result is set; cleared otherwise.

Z: R7 •R6 •R5 •R4 •R3• R2 •R1 •R0
Set if the result is $00; cleared otherwise.

R (Result) equals Rd after the operation.

Example:
and r2,r3 ; Bitwise and r2 and r3, result in r2

ldi r16,1 ; Set bitmask 0000 0001 in r16

and r2,r16 ; Isolate bit 0 in r2

Words: 1 (2 bytes)

Cycles: 1

0010 00rd dddd rrrr

I T H S V N Z C

- - - ⇔ 0 ⇔ ⇔ -

Instruction Set 6-10

ANDI - Logical AND with Immediate

Description:

Performs the logical AND between the contents of register Rd and a constant and places the result in the destination regis-
ter Rd.

Operation:

 (i) Rd ← Rd • K

Syntax: Operands: Program Counter:

 (i) ANDI Rd,K 16 ≤ d ≤ 31, 0 ≤ K ≤ 255 PC ← PC + 1

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

S: N ⊕ V, For signed tests.

V: 0
Cleared

N: R7
Set if MSB of the result is set; cleared otherwise.

Z: R7 •R6• R5•R4 •R3• R2• R1• R0
Set if the result is $00; cleared otherwise.

R (Result) equals Rd after the operation.

Example:
andi r17,$0F ; Clear upper nibble of r17

andi r18,$10 ; Isolate bit 4 in r18

andi r19,$AA ; Clear odd bits of r19

Words: 1 (2 bytes)

Cycles: 1

0111 KKKK dddd KKKK

I T H S V N Z C

- - - ⇔ 0 ⇔ ⇔ -

Instruction Set

6-11

ASR - Arithmetic Shift Right

Description:

Shifts all bits in Rd one place to the right. Bit 7 is held constant. Bit 0 is loaded into the C flag of the SREG. This operation
effectively divides a twos complement value by two without changing its sign. The carry flag can be used to round the
result.

Operation:

(i)

Syntax: Operands: Program Counter:

(i) ASR Rd 0 ≤ d ≤ 31 PC ← PC + 1

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

S: N ⊕ V, For signed tests.

V: N ⊕ C (For N and C after the shift)

Set if (N is set and C is clear) or (N is clear and C is set); Cleared otherwise (for values of N and C after the shift).

N: R7
Set if MSB of the result is set; cleared otherwise.

Z: R7 •R6 •R5• R4 •R3 •R2• R1• R0
Set if the result is $00; cleared otherwise.

C: Rd0
Set if, before the shift, the LSB of Rd was set; cleared otherwise.

R (Result) equals Rd after the operation.

Example:
ldi r16,$10 ; Load decimal 16 into r16

asr r16 ; r16=r16 / 2

ldi r17,$FC ; Load -4 in r17

asr r17 ; r17=r17/2

Words: 1 (2 bytes)

Cycles: 1

1001 010d dddd 0101

I T H S V N Z C

- - - ⇔ ⇔ ⇔ ⇔ ⇔

b7 - - - - - - - - - b0 C

Instruction Set 6-12

BCLR - Bit Clear in SREG

Description:

Clears a single flag in SREG.

Operation:

(i) SREG(s) ← 0

Syntax: Operands: Program Counter:

(i) BCLR s 0 ≤ s ≤ 7 PC ← PC + 1

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

I: 0 if s = 7; Unchanged otherwise.

T: 0 if s = 6; Unchanged otherwise.

H: 0 if s = 5; Unchanged otherwise.

S: 0 if s = 4; Unchanged otherwise.

V: 0 if s = 3; Unchanged otherwise.

N: 0 if s = 2; Unchanged otherwise.

Z: 0 if s = 1; Unchanged otherwise.

C: 0 if s = 0; Unchanged otherwise.

Example:
bclr 0 ; Clear carry flag

bclr 7 ; Disable interrupts

Words: 1 (2 bytes)

Cycles: 1

1001 0100 1sss 1000

I T H S V N Z C

⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔

Instruction Set

6-13

BLD - Bit Load from the T Flag in SREG to a Bit in Register.

Description:

Copies the T flag in the SREG (status register) to bit b in register Rd.

Operation:

 (i) Rd(b) ← T

Syntax: Operands: Program Counter:

 (i) BLD Rd,b 0 ≤ d ≤ 31, 0 ≤ b ≤ 7 PC ← PC + 1

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

Example:
; Copy bit

bst r1,2 ; Store bit 2 of r1 in T flag

bld r0,4 ; Load T flag into bit 4 of r0

Words: 1 (2 bytes)

Cycles: 1

1111 100d dddd 0bbb

I T H S V N Z C

- - - - - - - -

Instruction Set 6-14

BRBC - Branch if Bit in SREG is Cleared

Description:

Conditional relative branch. Tests a single bit in SREG and branches relatively to PC if the bit is cleared. This instruction
branches relatively to PC in either direction (PC-64≤destination≤PC+63). The parameter k is the offset from PC and is
represented in two’s complement form.

Operation:

(i) If SREG(s) = 0 then PC ← PC + k + 1, else PC ← PC + 1

Syntax: Operands: Program Counter:

(i) BRBC s,k 0 ≤ s ≤ 7, -64 ≤ k ≤ +63 PC ← PC + k + 1
PC ← PC + 1, if condition is false

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

Example:
cpi r20,5 ; Compare r20 to the value 5

brbc 1,noteq ; Branch if zero flag cleared

...

noteq:nop ; Branch destination (do nothing)

Words: 1 (2 bytes)

Cycles: 1 if condition is false
2 if condition is true

1111 01kk kkkk ksss

I T H S V N Z C

- - - - - - - -

Instruction Set

6-15

BRBS - Branch if Bit in SREG is Set

Description:

Conditional relative branch. Tests a single bit in SREG and branches relatively to PC if the bit is set. This instruction
branches relatively to PC in either direction (PC-64≤destination≤PC+63). The parameter k is the offset from PC and is rep-
resented in two’s complement form.

Operation:

(i) If SREG(s) = 1 then PC ← PC + k + 1, else PC ← PC + 1

Syntax: Operands: Program Counter:

(i) BRBS s,k 0 ≤ s ≤ 7, -64 ≤ k ≤ +63 PC ← PC + k + 1
PC ← PC + 1, if condition is false

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

Example:
bst r0,3 ; Load T bit with bit 3 of r0

brbs 6,bitset ; Branch T bit was set

...

bitset: nop ; Branch destination (do nothing)

Words: 1 (2 bytes)

Cycles: 1 if condition is false
2 if condition is true

1111 00kk kkkk ksss

I T H S V N Z C

- - - - - - - -

Instruction Set 6-16

BRCC - Branch if Carry Cleared

Description:

Conditional relative branch. Tests the Carry flag (C) and branches relatively to PC if C is cleared. This instruction branches
relatively to PC in either direction (PC-64≤destination≤PC+63). The parameter k is the offset from PC and is represented in
two’s complement form. (Equivalent to instruction BRBC 0,k).

Operation:

(i) If C = 0 then PC ← PC + k + 1, else PC ← PC + 1

Syntax: Operands: Program Counter:

(i) BRCC k -64 ≤ k ≤ +63 PC ← PC + k + 1
PC ← PC + 1, if condition is false

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

Example:
 addr22,r23 ; Add r23 to r22

brccnocarry ; Branch if carry cleared

...

nocarry: nop ; Branch destination (do nothing)

Words: 1 (2 bytes)

Cycles: 1 if condition is false
2 if condition is true

1111 01kk kkkk k000

I T H S V N Z C

- - - - - - - -

Instruction Set

6-17

BRCS - Branch if Carry Set

Description:

Conditional relative branch. Tests the Carry flag (C) and branches relatively to PC if C is set. This instruction branches rel-
atively to PC in either direction (PC-64≤destination≤PC+63). The parameter k is the offset from PC and is represented in
two’s complement form. (Equivalent to instruction BRBS 0,k).

Operation:

(i) If C = 1 then PC ← PC + k + 1, else PC ← PC + 1

Syntax: Operands: Program Counter:

(i) BRCS k -64 ≤ k ≤ +63 PC ← PC + k + 1
PC ← PC + 1, if condition is false

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

Example:
cpi r26,$56 ; Compare r26 with $56

brcs carry ; Branch if carry set

...

carry: nop ; Branch destination (do nothing)

Words: 1 (2 bytes)

Cycles: 1 if condition is false
2 if condition is true

1111 00kk kkkk k000

I T H S V N Z C

- - - - - - - -

Instruction Set 6-18

BREQ - Branch if Equal

Description:

Conditional relative branch. Tests the Zero flag (Z) and branches relatively to PC if Z is set. If the instruction is executed
immediately after any of the instructions CP, CPI, SUB or SUBI, the branch will occur if and only if the unsigned or signed
binary number represented in Rd was equal to the unsigned or signed binary number represented in Rr. This instruction
branches relatively to PC in either direction (PC-64≤destination≤PC+63). The parameter k is the offset from PC and is rep-
resented in two’s complement form. (Equivalent to instruction BRBS 1,k).

Operation:

(i) If Rd = Rr (Z = 1) then PC ← PC + k + 1, else PC ← PC + 1

Syntax: Operands: Program Counter:

(i) BREQ k -64 ≤ k ≤ +63 PC ← PC + k + 1
PC ← PC + 1, if condition is false

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

Example:
cpr1,r0 ; Compare registers r1 and r0

breqequal ; Branch if registers equal

...

equal: nop ; Branch destination (do nothing)

Words: 1 (2 bytes)

Cycles: 1 if condition is false

2 if condition is true

1111 00kk kkkk k001

I T H S V N Z C

- - - - - - - -

Instruction Set

6-19

BRGE - Branch if Greater or Equal (Signed)

Description:

Conditional relative branch. Tests the Signed flag (S) and branches relatively to PC if S is cleared. If the instruction is exe-
cuted immediately after any of the instructions CP, CPI, SUB or SUBI, the branch will occur if and only if the signed binary
number represented in Rd was greater than or equal to the signed binary number represented in Rr. This instruction
branches relatively to PC in either direction (PC-64≤destination≤PC+63). The parameter k is the offset from PC and is rep-
resented in two’s complement form. (Equivalent to instruction BRBC 4,k).

Operation:

(i) If Rd ≥ Rr (N ⊕ V = 0) then PC ← PC + k + 1, else PC ← PC + 1

Syntax: Operands: Program Counter:

(i) BRGE k -64 ≤ k ≤ +63 PC ← PC + k + 1
PC ← PC + 1, if condition is false

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

Example:
cpr11,r12 ; Compare registers r11 and r12

brgegreateq ; Branch if r11 >= r12 (signed)

...

greateq: nop ; Branch destination (do nothing)

Words: 1 (2 bytes)

Cycles: 1 if condition is false

2 if condition is true

1111 01kk kkkk k100

I T H S V N Z C

- - - - - - - -

Instruction Set 6-20

BRHC - Branch if Half Carry Flag is Cleared

Description:

Conditional relative branch. Tests the Half Carry flag (H) and branches relatively to PC if H is cleared. This instruction
branches relatively to PC in either direction (PC-64≤destination≤PC+63). The parameter k is the offset from PC and is rep-
resented in two’s complement form. (Equivalent to instruction BRBC 5,k).

Operation:

(i) If H = 0 then PC ← PC + k + 1, else PC ← PC + 1

Syntax: Operands: Program Counter:

(i) BRHC k -64 ≤ k ≤ +63 PC ← PC + k + 1
PC ← PC + 1, if condition is false

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

Example:
brhc hclear ; Branch if half carry flag cleared

...

hclear: nop ; Branch destination (do nothing)

Words: 1 (2 bytes)

Cycles: 1 if condition is false
2 if condition is true

1111 01kk kkkk k101

I T H S V N Z C

- - - - - - - -

Instruction Set

6-21

BRHS - Branch if Half Carry Flag is Set

Description:

Conditional relative branch. Tests the Half Carry flag (H) and branches relatively to PC if H is set. This instruction branches
relatively to PC in either direction (PC-64≤destination≤PC+63). The parameter k is the offset from PC and is represented in
two’s complement form. (Equivalent to instruction BRBS 5,k).

Operation:

(i) If H = 1 then PC ← PC + k + 1, else PC ← PC + 1

Syntax: Operands: Program Counter:

(i) BRHS k -64 ≤ k ≤ +63 PC ← PC + k + 1
PC ← PC + 1, if condition is false

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

Example:
brhshset ; Branch if half carry flag set

...

hset: nop ; Branch destination (do nothing)

Words: 1 (2 bytes)

Cycles: 1 if condition is false

2 if condition is true

1111 00kk kkkk k101

I T H S V N Z C

- - - - - - - -

Instruction Set 6-22

BRID - Branch if Global Interrupt is Disabled

Description:

Conditional relative branch. Tests the Global Interrupt flag (I) and branches relatively to PC if I is cleared. This instruction
branches relatively to PC in either direction (PC-64≤destination≤PC+63). The parameter k is the offset from PC and is rep-
resented in two’s complement form. (Equivalent to instruction BRBC 7,k).

Operation:

(i) If I = 0 then PC ← PC + k + 1, else PC ← PC + 1

Syntax: Operands: Program Counter:

(i) BRID k -64 ≤ k ≤ +63 PC ← PC + k + 1
PC ← PC + 1, if condition is false

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

Example:
brid intdis ; Branch if interrupt disabled

...

intdis: nop ; Branch destination (do nothing)

Words: 1 (2 bytes)

Cycles: 1 if condition is false

2 if condition is true

1111 01kk kkkk k111

I T H S V N Z C

- - - - - - - -

Instruction Set

6-23

BRIE - Branch if Global Interrupt is Enabled

Description:

Conditional relative branch. Tests the Global Interrupt flag (I) and branches relatively to PC if I is set. This instruction
branches relatively to PC in either direction (PC-64≤destination≤PC+63). The parameter k is the offset from PC and is rep-
resented in two’s complement form. (Equivalent to instruction BRBS 7,k).

Operation:

(i) If I = 1 then PC ← PC + k + 1, else PC ← PC + 1

Syntax: Operands: Program Counter:

(i) BRIE k -64 ≤ k ≤ +63 PC ← PC + k + 1
PC ← PC + 1, if condition is false

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

Example:
brieinten ; Branch if interrupt enabled

...

inten: nop ; Branch destination (do nothing)

Words: 1 (2 bytes)

Cycles: 1 if condition is false
2 if condition is true

1111 00kk kkkk k111

I T H S V N Z C

- - - - - - - -

Instruction Set 6-24

BRLO - Branch if Lower (Unsigned)

Description:

Conditional relative branch. Tests the Carry flag (C) and branches relatively to PC if C is set. If the instruction is executed
immediately after any of the instructions CP, CPI, SUB or SUBI, the branch will occur if and only if the unsigned binary
number represented in Rd was smaller than the unsigned binary number represented in Rr. This instruction branches rela-
tively to PC in either direction (PC-64≤destination≤PC+63). The parameter k is the offset from PC and is represented in
two’s complement form. (Equivalent to instruction BRBS 0,k).

Operation:

(i) If Rd < Rr (C = 1) then PC ← PC + k + 1, else PC ← PC + 1

Syntax: Operands: Program Counter:

(i) BRLO k -64 ≤ k ≤ +63 PC ← PC + k + 1
PC ← PC + 1, if condition is false

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

Example:
eor r19,r19 ; Clear r19

loop: inc r19 ; Increase r19

...

cpi r19,$10 ; Compare r19 with $10

brlo loop ; Branch if r19 < $10 (unsigned)

nop ; Exit from loop (do nothing)

Words: 1 (2 bytes)

Cycles: 1 if condition is false

2 if condition is true

1111 00kk kkkk k000

I T H S V N Z C

- - - - - - - -

Instruction Set

6-25

BRLT - Branch if Less Than (Signed)

Description:

Conditional relative branch. Tests the Signed flag (S) and branches relatively to PC if S is set. If the instruction is executed
immediately after any of the instructions CP, CPI, SUB or SUBI, the branch will occur if and only if the signed binary num-
ber represented in Rd was less than the signed binary number represented in Rr. This instruction branches relatively to PC
in either direction (PC-64≤destination≤PC+63). The parameter k is the offset from PC and is represented in two’s comple-
ment form. (Equivalent to instruction BRBS 4,k).

Operation:

(i) If Rd < Rr (N ⊕ V = 1) then PC ← PC + k + 1, else PC ← PC + 1

Syntax: Operands: Program Counter:

(i) BRLT k -64 ≤ k ≤ +63 PC ← PC + k + 1
PC ← PC + 1, if condition is false

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

Example:
cp r16,r1 ; Compare r16 to r1

brlt less ; Branch if r16 < r1 (signed)

...

less: nop ; Branch destination (do nothing)

Words: 1 (2 bytes)

Cycles: 1 if condition is false

2 if condition is true

1111 00kk kkkk k100

I T H S V N Z C

- - - - - - - -

Instruction Set 6-26

BRMI - Branch if Minus

Description:

Conditional relative branch. Tests the Negative flag (N) and branches relatively to PC if N is set. This instruction branches
relatively to PC in either direction (PC-64≤destination≤PC+63). The parameter k is the offset from PC and is represented in
two’s complement form. (Equivalent to instruction BRBS 2,k).

Operation:

(i) If N = 1 then PC ← PC + k + 1, else PC ← PC + 1

Syntax: Operands: Program Counter:

(i) BRMI k -64 ≤ k ≤ +63 PC ← PC + k + 1
PC ← PC + 1, if condition is false

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

Example:
subi r18,4 ; Subtract 4 from r18

brmi negative ; Branch if result negative

...

negative: nop ; Branch destination (do nothing)

Words: 1 (2 bytes)

Cycles: 1 if condition is false
2 if condition is true

1111 00kk kkkk k010

I T H S V N Z C

- - - - - - - -

Instruction Set

6-27

BRNE - Branch if Not Equal

Description:

Conditional relative branch. Tests the Zero flag (Z) and branches relatively to PC if Z is cleared. If the instruction is exe-
cuted immediately after any of the instructions CP, CPI, SUB or SUBI, the branch will occur if and only if the unsigned or
signed binary number represented in Rd was not equal to the unsigned or signed binary number represented in Rr. This
instruction branches relatively to PC in either direction (PC-64≤destination≤PC+63). The parameter k is the offset from PC
and is represented in two’s complement form. (Equivalent to instruction BRBC 1,k).

Operation:

(i) If Rd ≠ Rr (Z = 0) then PC ← PC + k + 1, else PC ← PC + 1

Syntax: Operands: Program Counter:

(i) BRNE k -64 ≤ k ≤ +63 PC ← PC + k + 1
PC ← PC + 1, if condition is false

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

Example:
eor r27,r27 ; Clear r27

loop: inc r27 ; Increase r27

...

cpi r27,5 ; Compare r27 to 5

brne loop ; Branch if r27<>5

nop ; Loop exit (do nothing)

Words: 1 (2 bytes)

Cycles: 1 if condition is false
2 if condition is true

1111 01kk kkkk k001

I T H S V N Z C

- - - - - - - -

Instruction Set 6-28

BRPL - Branch if Plus

Description:

Conditional relative branch. Tests the Negative flag (N) and branches relatively to PC if N is cleared. This instruction
branches relatively to PC in either direction (PC-64≤destination≤PC+63). The parameter k is the offset from PC and is rep-
resented in two’s complement form. (Equivalent to instruction BRBC 2,k).

Operation:

(i) If N = 0 then PC ← PC + k + 1, else PC ← PC + 1

Syntax: Operands: Program Counter:

(i) BRPL k -64 ≤ k ≤ +63 PC ← PC + k + 1
PC ← PC + 1, if condition is false

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

Example:
subi r26,$50 ; Subtract $50 from r26

brpl positive ; Branch if r26 positive

...

positive: nop ; Branch destination (do nothing)

Words: 1 (2 bytes)

Cycles: 1 if condition is false
2 if condition is true

1111 01kk kkkk k010

I T H S V N Z C

- - - - - - - -

Instruction Set

6-29

BRSH - Branch if Same or Higher (Unsigned)

Description:

Conditional relative branch. Tests the Carry flag (C) and branches relatively to PC if C is cleared. If the instruction is exe-
cuted immediately after execution of any of the instructions CP, CPI, SUB or SUBI the branch will occur if and only if the
unsigned binary number represented in Rd was greater than or equal to the unsigned binary number represented in Rr.
This instruction branches relatively to PC in either direction (PC-64≤destination≤PC+63). The parameter k is the offset from
PC and is represented in two’s complement form. (Equivalent to instruction BRBC 0,k).

Operation:

(i) If Rd ≥Rr (C = 0) then PC ← PC + k + 1, else PC ← PC + 1

Syntax: Operands: Program Counter:

(i) BRSH k -64 ≤ k ≤ +63 PC ← PC + k + 1
PC ← PC + 1, if condition is false

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

Example:
subi r19,4 ; Subtract 4 from r19

brsh highsm ; Branch if r19 >= 4 (unsigned)

...

highsm: nop ; Branch destination (do nothing)

Words: 1 (2 bytes)

Cycles: 1 if condition is false

2 if condition is true

1111 01kk kkkk k000

I T H S V N Z C

- - - - - - - -

Instruction Set 6-30

BRTC - Branch if the T Flag is Cleared

Description:

Conditional relative branch. Tests the T flag and branches relatively to PC if T is cleared. This instruction branches rela-
tively to PC in either direction (PC-64≤destination≤PC+63). The parameter k is the offset from PC and is represented in
two’s complement form. (Equivalent to instruction BRBC 6,k).

Operation:

(i) If T = 0 then PC ← PC + k + 1, else PC ← PC + 1

Syntax: Operands: Program Counter:

(i) BRTC k -64 ≤ k ≤ +63 PC ← PC + k + 1
PC ← PC + 1, if condition is false

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

Example:
bst r3,5 ; Store bit 5 of r3 in T flag

brtc tclear ; Branch if this bit was cleared

...

tclear: nop ; Branch destination (do nothing)

Words: 1 (2 bytes)

Cycles: 1 if condition is false
2 if condition is true

1111 01kk kkkk k110

I T H S V N Z C

- - - - - - - -

Instruction Set

6-31

BRTS - Branch if the T Flag is Set

Description:

Conditional relative branch. Tests the T flag and branches relatively to PC if T is set. This instruction branches relatively to
PC in either direction (PC-64≤destination≤PC+63). The parameter k is the offset from PC and is represented in two’s com-
plement form. (Equivalent to instruction BRBS 6,k).

Operation:

(i) If T = 1 then PC ← PC + k + 1, else PC ← PC + 1

Syntax: Operands: Program Counter:

(i) BRTS k -64 ≤ k ≤ +63 PC ← PC + k + 1
PC ← PC + 1, if condition is false

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

Example:
bst r3,5 ; Store bit 5 of r3 in T flag

brts tset ; Branch if this bit was set

...

tset: nop ; Branch destination (do nothing)

Words: 1 (2 bytes)

Cycles: 1 if condition is false
2 if condition is true

1111 00kk kkkk k110

I T H S V N Z C

- - - - - - - -

Instruction Set 6-32

BRVC - Branch if Overflow Cleared

Description:

Conditional relative branch. Tests the Overflow flag (V) and branches relatively to PC if V is cleared. This instruction branch-
es relatively to PC in either direction (PC-64≤destination≤PC+63). The parameter k is the offset from PC and is represented
in two’s complement form. (Equivalent to instruction BRBC 3,k).

Operation:

(i) If V = 0 then PC ← PC + k + 1, else PC ← PC + 1

Syntax: Operands: Program Counter:

(i) BRVC k -64 ≤ k ≤ +63 PC ← PC + k + 1
PC ← PC + 1, if condition is false

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

Example:
add r3,r4 ; Add r4 to r3

brvc noover ; Branch if no overflow

...

noover: nop ; Branch destination (do nothing)

Words: 1 (2 bytes)

Cycles: 1 if condition is false
2 if condition is true

1111 01kk kkkk k011

I T H S V N Z C

- - - - - - - -

Instruction Set

6-33

BRVS - Branch if Overflow Set

Description:

Conditional relative branch. Tests the Overflow flag (V) and branches relatively to PC if V is set. This instruction branches
relatively to PC in either direction (PC-64≤destination≤PC+63). The parameter k is the offset from PC and is represented in
two’s complement form. (Equivalent to instruction BRBS 3,k).

Operation:

(i) If V = 1 then PC ← PC + k + 1, else PC ← PC + 1

Syntax: Operands: Program Counter:

(i) BRVS k -64 ≤ k ≤ +63 PC ← PC + k + 1
PC ← PC + 1, if condition is false

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

Example:
add r3,r4 ; Add r4 to r3

brvs overfl ; Branch if overflow

...

overfl: nop ; Branch destination (do nothing)

Words: 1 (2 bytes)

Cycles: 1 if condition is false
2 if condition is true

1111 00kk kkkk k011

I T H S V N Z C

- - - - - - - -

Instruction Set 6-34

BSET - Bit Set in SREG

Description:

Sets a single flag or bit in SREG.

Operation:

(i) SREG(s) ← 1

Syntax: Operands: Program Counter:

(i) BSET s 0 ≤ s ≤ 7 PC ← PC + 1

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

I: 1 if s = 7; Unchanged otherwise.

T: 1 if s = 6; Unchanged otherwise.

H: 1 if s = 5; Unchanged otherwise.

S: 1 if s = 4; Unchanged otherwise.

V: 1 if s = 3; Unchanged otherwise.

N: 1 if s = 2; Unchanged otherwise.

Z: 1 if s = 1; Unchanged otherwise.

C: 1 if s = 0; Unchanged otherwise.

Example:
bset 6 ; Set T flag

bset 7 ; Enable interrupt

Words: 1 (2 bytes)

Cycles: 1

1001 0100 0sss 1000

I T H S V N Z C

⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔

Instruction Set

6-35

BST - Bit Store from Bit in Register to T Flag in SREG

Description:

Stores bit b from Rd to the T flag in SREG (status register).

Operation:

(i) T ← Rd(b)

Syntax: Operands: Program Counter:

(i) BST Rd,b 0 ≤ d ≤ 31, 0 ≤ b ≤ 7 PC ← PC + 1

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

T: 0 if bit b in Rd is cleared. Set to 1 otherwise.

Example:
; Copy bit

bst r1,2 ; Store bit 2 of r1 in T flag

bld r0,4 ; Load T into bit 4 of r0

Words: 1 (2 bytes)

Cycles: 1

1111 101d dddd Xbbb

I T H S V N Z C

- ⇔ - - - - - -

Instruction Set 6-36

CALL - Long Call to a Subroutine

Description:

Calls to a subroutine within the entire program memory. The return address (to the instruction after the CALL) will be stored
onto the stack. (See also RCALL).

Operation:

(i) PC ← k Devices with 16 bits PC, 128K bytes program memory maximum.
(ii) PC ← k Devices with 22 bits PC, 8M bytes program memory maximum.

Syntax: Operands: Program Counter:Stack

 (i) CALL k 0 ≤ k ≤ 64K PC ← kSTACK ← PC+2
SP ← SP-2, (2 bytes, 16 bits)

(ii) CALL k 0 ≤ k ≤ 4M PC ← kSTACK ← PC+2
SP ← SP-3 (3 bytes, 22 bits)

32 bit Opcode:

Status Register (SREG) and Boolean Formulae:

Example:
mov r16,r0 ; Copy r0 to r16

call check ; Call subroutine

nop ; Continue (do nothing)

...

check: cpi r16,$42 ; Check if r16 has a special value

breq error ; Branch if equal

ret ; Return from subroutine

...

error: rjmp error ; Infinite loop

Words: 2 (4 bytes)

Cycles: 4

1001 010k kkkk 111k

kkkk kkkk kkkk kkkk

I T H S V N Z C

- - - - - - - -

Instruction Set

6-37

CBI - Clear Bit in I/O Register

Description:

Clears a specified bit in an I/O register. This instruction operates on the lower 32 I/O registers - addresses 0-31.

Operation:

(i) I/O(P,b) ← 0

Syntax: Operands: Program Counter:

 (i) CBI P,b 0 ≤ P ≤ 31, 0 ≤ b ≤ 7 PC ← PC + 1

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

Example:
cbi $12,7 ; Clear bit 7 in Port D

Words: 1 (2 bytes)

Cycles: 2

1001 1000 pppp pbbb

I T H S V N Z C

- - - - - - - -

Instruction Set 6-38

CBR - Clear Bits in Register

Description:

Clears the specified bits in register Rd. Performs the logical AND between the contents of register Rd and the complement
of the constant mask K. The result will be placed in register Rd.

Operation:

(i) Rd ← Rd • ($FF - K)

Syntax: Operands: Program Counter:

 (i) CBR Rd,K 16 ≤ d ≤ 31, 0 ≤ K ≤ 255 PC ← PC + 1

16 bit Opcode: See ANDI with K complemented.

Status Register (SREG) and Boolean Formulae:

S: N ⊕ V, For signed tests.

V: 0
Cleared

N: R7
Set if MSB of the result is set; cleared otherwise.

Z: R7 •R6 •R5• R4• R3 •R2• R1• R0
Set if the result is $00; cleared otherwise.

R (Result) equals Rd after the operation.

Example:
cbr r16,$F0 ; Clear upper nibble of r16

cbr r18,1 ; Clear bit 0 in r18

Words: 1 (2 bytes)

Cycles: 1

I T H S V N Z C

- - - ⇔ 0 ⇔ ⇔ -

Instruction Set

6-39

CLC - Clear Carry Flag

Description:

Clears the Carry flag (C) in SREG (status register).

Operation:

(i) C ← 0

Syntax: Operands: Program Counter:

 (i) CLC None PC ← PC + 1

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

C: 0
Carry flag cleared

Example:
add r0,r0 ; Add r0 to itself

clc ; Clear carry flag

Words: 1 (2 bytes)

Cycles: 1

1001 0100 1000 1000

I T H S V N Z C

- - - - - - - 0

Instruction Set 6-40

CLH - Clear Half Carry Flag

Description:

Clears the Half Carry flag (H) in SREG (status register).

Operation:

(i) H ← 0

Syntax: Operands: Program Counter:

 (i) CLH None PC ← PC + 1

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

H: 0
Half Carry flag cleared

Example:
clh ; Clear the Half Carry flag

Words: 1 (2 bytes)

Cycles: 1

1001 0100 1101 1000

I T H S V N Z C

- - 0 - - - - -

Instruction Set

6-41

CLI - Clear Global Interrupt Flag

Description:

Clears the Global Interrupt flag (I) in SREG (status register).

Operation:

(i) I ← 0

Syntax: Operands: Program Counter:

 (i) CLI None PC ← PC + 1

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

I: 0
Global Interrupt flag cleared

Example:
cli ; Disable interrupts

in r11,$16 ; Read port B

sei ; Enable interrupts

Words: 1 (2 bytes)

Cycles: 1

1001 0100 1111 1000

I T H S V N Z C

0 - - - - - - -

Instruction Set 6-42

CLN - Clear Negative Flag

Description:

Clears the Negative flag (N) in SREG (status register).

Operation:

(i) N ← 0

Syntax: Operands: Program Counter:

 (i) CLN None PC ← PC + 1

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

N: 0
Negative flag cleared

Example:
add r2,r3 ; Add r3 to r2

cln ; Clear negative flag

Words: 1 (2 bytes)

Cycles: 1

1001 0100 1010 1000

I T H S V N Z C

- - - - - 0 - -

Instruction Set

6-43

CLR - Clear Register

Description:

Clears a register. This instruction performs an Exclusive OR between a register and itself. This will clear all bits in the reg-
ister.

Operation:

(i) Rd ← Rd ⊕ Rd

Syntax: Operands: Program Counter:

 (i) CLR Rd 0 ≤ d ≤ 31 PC ← PC + 1

16 bit Opcode: (see EOR Rd,Rd)

Status Register (SREG) and Boolean Formulae:

S: 0
Cleared

V: 0
Cleared

N: 0
Cleared

Z: 1
Set

R (Result) equals Rd after the operation.

Example:
clr r18 ; clear r18

loop: inc r18 ; increase r18

...

cpi r18,$50 ; Compare r18 to $50

brne loop

Words: 1 (2 bytes)

Cycles: 1

0010 01dd dddd dddd

I T H S V N Z C

- - - 0 0 0 1 -

Instruction Set 6-44

CLS - Clear Signed Flag

Description:

Clears the Signed flag (S) in SREG (status register).

Operation:

(i) S ← 0

Syntax: Operands: Program Counter:

 (i) CLS None PC ← PC + 1

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

S: 0
Signed flag cleared

Example:
add r2,r3 ; Add r3 to r2

cls ; Clear signed flag

Words: 1 (2 bytes)

Cycles: 1

1001 0100 1100 1000

I T H S V N Z C

- - - 0 - - - -

Instruction Set

6-45

CLT - Clear T Flag

Description:

Clears the T flag in SREG (status register).

Operation:

(i) T ← 0

Syntax: Operands: Program Counter:

 (i) CLT None PC ← PC + 1

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

T: 0
T flag cleared

Example:
clt ; Clear T flag

Words: 1 (2 bytes)

Cycles: 1

1001 0100 1110 1000

I T H S V N Z C

- 0 - - - - - -

Instruction Set 6-46

CLV - Clear Overflow Flag

Description:

Clears the Overflow flag (V) in SREG (status register).

Operation:

(i) V ← 0

Syntax: Operands: Program Counter:

 (i) CLV None PC ← PC + 1

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

V: 0
Overflow flag cleared

Example:
add r2,r3 ; Add r3 to r2

clv ; Clear overflow flag

Words: 1 (2 bytes)

Cycles: 1

1001 0100 1011 1000

I T H S V N Z C

- - - - 0 - - -

Instruction Set

6-47

CLZ - Clear Zero Flag

Description:

Clears the Zero flag (Z) in SREG (status register).

Operation:

(i) Z ← 0

Syntax: Operands: Program Counter:

 (i) CLZ None PC ← PC + 1

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

Z: 0
Zero flag cleared

Example:
add r2,r3 ; Add r3 to r2

clz ; Clear zero

Words: 1 (2 bytes)

Cycles: 1

1001 0100 1001 1000

I T H S V N Z C

- - - - - - 0 -

Instruction Set 6-48

COM - One’s Complement

Description:

This instruction performs a one’s complement of register Rd.

Operation:

(i) Rd ← $FF - Rd

Syntax: Operands: Program Counter:

 (i) COM Rd 0 ≤ d ≤ 31 PC ← PC + 1

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

S: N ⊕ V
For signed tests.

V: 0
Cleared.

N: R7
Set if MSB of the result is set; cleared otherwise.

Z: R7 •R6• R5• R4 •R3 •R2• R1 •R0
Set if the result is $00; Cleared otherwise.

C: 1
Set.

R (Result) equals Rd after the operation.

Example:
com r4 ; Take one’s complement of r4

breq zero ; Branch if zero

...

zero: nop ; Branch destination (do nothing)

Words: 1 (2 bytes)

Cycles: 1

1001 010d dddd 0000

I T H S V N Z C

- - - ⇔ 0 ⇔ ⇔ 1

Instruction Set

6-49

CP - Compare

Description:

This instruction performs a compare between two registers Rd and Rr. None of the registers are changed. All conditional
branches can be used after this instruction.

Operation:

(i) Rd - Rr

Syntax: Operands: Program Counter:

 (i) CP Rd,Rr 0 ≤ d ≤ 31, 0 ≤ r ≤ 31 PC ← PC + 1

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

H: Rd3 •Rr3+ Rr3 •R3 +R3• Rd3
Set if there was a borrow from bit 3; cleared otherwise

S: N ⊕ V, For signed tests.

V: Rd7• Rd7 •R7+ Rd7 •Rr7 •R7
Set if two’s complement overflow resulted from the operation; cleared otherwise.

N: R7
Set if MSB of the result is set; cleared otherwise.

Z: Rd7 •Rr7 +Rr7• R7+ R7• Rd7
Set if the result is $00; cleared otherwise.

C: Rd7 •Rr7+ Rr7• R7 +R7• Rd7
Set if the absolute value of the contents of Rr is larger than the absolute value of Rd; cleared otherwise.

 R (Result) after the operation.

Example:
cp r4,r19 ; Compare r4 with r19

brne noteq ; Branch if r4 <> r19

...

noteq: nop ; Branch destination (do nothing)

Words: 1 (2 bytes)

Cycles: 1

0001 01rd dddd rrrr

I T H S V N Z C

- - ⇔ ⇔ ⇔ ⇔ ⇔ ⇔

Instruction Set 6-50

CPC - Compare with Carry

Description:

This instruction performs a compare between two registers Rd and Rr and also takes into account the previous carry. None
of the registers are changed. All conditional branches can be used after this instruction.

Operation:

(i) Rd - Rr - C

Syntax: Operands: Program Counter:

 (i) CPC Rd,Rr 0 ≤ d ≤ 31, 0 ≤ r ≤ 31 PC ← PC + 1

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

H: Rd3 •Rr3+ Rr3 •R3 +R3 •Rd3
Set if there was a borrow from bit 3; cleared otherwise

S: N ⊕ V, For signed tests.

V: Rd7 •Rr7• R7+ Rd7• Rr7 •R7
Set if two’s complement overflow resulted from the operation; cleared otherwise.

N: R7
Set if MSB of the result is set; cleared otherwise.

Z: R7 •R6• R5• R4 •R3 •R2 •R1• R0 •Z
Previous value remains unchanged when the result is zero; cleared otherwise.

C: Rd7 •Rr7+ Rr7• R7 +R7 •Rd7
Set if the absolute value of the contents of Rr plus previous carry is larger than the absolute value of Rd; cleared
otherwise.

 R (Result) after the operation.
Example:

; Compare r3:r2 with r1:r0

cp r2,r0 ; Compare low byte

cpc r3,r1 ; Compare high byte

brne noteq ; Branch if not equal

...

noteq: nop ; Branch destination (do nothing)

Words: 1 (2 bytes)

Cycles: 1

0000 01rd dddd rrrr

I T H S V N Z C

- - ⇔ ⇔ ⇔ ⇔ ⇔ ⇔

Instruction Set

6-51

CPI - Compare with Immediate

Description:

This instruction performs a compare between register Rd and a constant. The register is not changed. All conditional
branches can be used after this instruction.

Operation:

(i) Rd - K

Syntax: Operands: Program Counter:

 (i) CPI Rd,K 16 ≤ d ≤ 31, 0≤ K ≤ 255 PC ← PC + 1

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

H: Rd3 •K3+ K3• R3+ R3 •Rd3
Set if there was a borrow from bit 3; cleared otherwise

S: N ⊕ V, For signed tests.

V: Rd7 •K7 •R7 +Rd7 •K7 •R7
Set if two’s complement overflow resulted from the operation; cleared otherwise.

N: R7
Set if MSB of the result is set; cleared otherwise.

Z: R7 •R6• R5 •R4• R3• R2 •R1 •R0
Set if the result is $00; cleared otherwise.

C: Rd7 •K7 +K7 •R7+ R7 •Rd7
Set if the absolute value of K is larger than the absolute value of Rd; cleared otherwise.

 R (Result) after the operation.

Example:
cpi r19,3 ; Compare r19 with 3

brne error ; Branch if r19<>3

...

error: nop ; Branch destination (do nothing)

Words: 1 (2 bytes)

Cycles: 1

0011 KKKK dddd KKKK

I T H S V N Z C

- - ⇔ ⇔ ⇔ ⇔ ⇔ ⇔

Instruction Set 6-52

CPSE - Compare Skip if Equal

Description:

This instruction performs a compare between two registers Rd and Rr, and skips the next instruction if Rd = Rr.

Operation:

(i) If Rd = Rr then PC ← PC + 2 (or 3) else PC ← PC + 1

Syntax: Operands: Program Counter:

 (i) CPSE Rd,Rr 0 ≤ d ≤ 31, 0 ≤ r ≤ 31 PC ← PC + 1, Condition false - no skip
PC ← PC + 2, Skip a one word instruction
PC ← PC + 3, Skip a two word instruction

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

Example:
inc r4 ; Increase r4

cpse r4,r0 ; Compare r4 to r0

neg r4 ; Only executed if r4<>r0

nop ; Continue (do nothing)

Words: 1 (2 bytes)

Cycles: 1

0001 00rd dddd rrrr

I T H S V N Z C

- - - - - - - -

Instruction Set

6-53

DEC - Decrement

Description:

Subtracts one -1- from the contents of register Rd and places the result in the destination register Rd.

The C flag in SREG is not affected by the operation, thus allowing the DEC instruction to be used on a loop counter in mul-
tiple-precision computations.

When operating on unsigned values, only BREQ and BRNE branches can be expected to perform consistently. When
operating on two’s complement values, all signed branches are available.

Operation:

(i) Rd ← Rd - 1

Syntax: Operands: Program Counter:

(i) DEC Rd 0 ≤ d ≤ 31 PC ← PC + 1

16 bit Opcode:

Status Register and Boolean Formulae:

S: N ⊕ V
For signed tests.

V: R7 •R6 •R5 •R4• R3• R2 •R1• R0
Set if two’s complement overflow resulted from the operation; cleared otherwise. Two’s complement overflow occurs
if and only if Rd was $80 before the operation.

N: R7
Set if MSB of the result is set; cleared otherwise.

Z: R7 •R6• R5 •R4• R3• R2• R1• R0
Set if the result is $00; Cleared otherwise.

R (Result) equals Rd after the operation.

Example:
ldi r17,$10 ; Load constant in r17

loop: add r1,r2 ; Add r2 to r1

dec r17 ; Decrement r17

brne loop ; Branch if r17<>0

nop ; Continue (do nothing)

Words: 1 (2 bytes)

Cycles: 1

1001 010d dddd 1010

I T H S V N Z C

- - - ⇔ ⇔ ⇔ ⇔ -

Instruction Set 6-54

EOR - Exclusive OR

Description:

Performs the logical EOR between the contents of register Rd and register Rr and places the result in the destination regis-
ter Rd.

Operation:

(i) Rd ← Rd ⊕ Rr

Syntax: Operands: Program Counter:

(i) EOR Rd,Rr 0 ≤ d ≤ 31, 0 ≤ r ≤ 31 PC ← PC + 1

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

S: N ⊕ V, For signed tests.

V: 0
Cleared

N: R7
Set if MSB of the result is set; cleared otherwise.

Z: R7 •R6 •R5 •R4• R3• R2 •R1• R0
Set if the result is $00; cleared otherwise.

R (Result) equals Rd after the operation.

Example:
eor r4,r4 ; Clear r4

eor r0,r22 ; Bitwise exclusive or between r0 and r22

Words: 1 (2 bytes)

Cycles: 1

0010 01rd dddd rrrr

I T H S V N Z C

- - - ⇔ 0 ⇔ ⇔ -

Instruction Set

6-55

ICALL - Indirect Call to Subroutine

Description:

Indirect call of a subroutine pointed to by the Z (16 bits) pointer register in the register file. The Z pointer register is 16 bits
wide and allows call to a subroutine within the current 64K words (128K bytes) section in the program memory space.

Operation:

 (i) PC(15-0) ← Z(15 - 0)Devices with 16 bits PC, 128K bytes program memory maximum.
(ii) PC(15-0) ← Z(15 - 0)Devices with 22 bits PC, 8M bytes program memory maximum.

PC(21-16) is unchanged

Syntax: Operands: Program Counter: Stack

 (i) ICALL None See Operation STACK ← PC+1
SP ← SP-2 (2 bytes, 16 bits)

(ii) ICALL None See Operation STACK ← PC+1
SP ← SP-3 (3 bytes, 22 bits)

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

Example:
mov r30,r0 ; Set offset to call table

icall ; Call routine pointed to by r31:r30

Words: 1 (2 bytes)

Cycles: 3

1001 0101 XXXX 1001

I T H S V N Z C

- - - - - - - -

Instruction Set 6-56

IJMP - Indirect Jump

Description:

Indirect jump to the address pointed to by the Z (16 bits) pointer register in the register file. The Z pointer register is 16 bits
wide and allows jump within the current 64K words (128K bytes) section of program memory.

Operation:

 (i) PC ← Z(15 - 0) Devices with 16 bits PC, 128K bytes program memory maximum.
(ii) PC(15-0) ← Z(15-0)Devices with 22 bits PC, 8M bytes program memory maximum.

PC(21-16) is unchanged

Syntax: Operands: Program Counter: Stack

(ii) IJMP None See Operation Not Affected
(iii) IJMP None See Operation Not Affected

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

Example:
mov r30,r0 ; Set offset to jump table

ijmp ; Jump to routine pointed to by r31:r30

Words: 1 (2 bytes)

Cycles: 2

1001 0100 XXXX 1001

I T H S V N Z C

- - - - - - - -

Instruction Set

6-57

IN - Load an I/O Port to Register

Description:

Loads data from the I/O Space (Ports, Timers, Configuration registers etc.) into register Rd in the register file.

Operation:

(i) Rd ← P

Syntax: Operands: Program Counter:

(i) IN Rd,P 0 ≤ d ≤ 31, 0 ≤ P ≤ 63 PC ← PC + 1

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

Example:
in r25,$16 ; Read Port B

cpi r25,4 ; Compare read value to constant

breq exit ; Branch if r25=4

...

exit: nop ; Branch destination (do nothing)

Words: 1 (2 bytes)

Cycles: 1

1011 0PPd dddd PPPP

I T H S V N Z C

- - - - - - - -

Instruction Set 6-58

INC - Increment

Description:

Adds one -1- to the contents of register Rd and places the result in the destination register Rd.

The C flag in SREG is not affected by the operation, thus allowing the INC instruction to be used on a loop counter in mul-
tiple-precision computations.

When operating on unsigned numbers, only BREQ and BRNE branches can be expected to perform consistently. When
operating on two’s complement values, all signed branches are available.

Operation:

(i) Rd ← Rd + 1

Syntax: Operands: Program Counter:

(i) INC Rd 0 ≤ d ≤ 31 PC ← PC + 1

16 bit Opcode:

Status Register and Boolean Formulae:

S: N ⊕ V

For signed tests.

V: R7 •R6 •R5 •R4 •R3• R2 •R1 •R0
Set if two’s complement overflow resulted from the operation; cleared otherwise. Two’s complement overflow occurs
if and only if Rd was $7F before the operation.

N: R7
Set if MSB of the result is set; cleared otherwise.

Z: R7 •R6 •R5 •R4•R3 •R2• R1• R0
Set if the result is $00; Cleared otherwise.

R (Result) equals Rd after the operation.

Example:
clr r22 ; clear r22

loop: inc r22 ; increment r22

...

cpi r22,$4F ; Compare r22 to $4f

brne loop ; Branch if not equal

nop ; Continue (do nothing)

Words: 1 (2 bytes)
Cycles: 1

1001 010d dddd 0011

I T H S V N Z C

- - - ⇔ ⇔ ⇔ ⇔ -

Instruction Set

6-59

JMP - Jump

Description:

Jump to an address within the entire 4M (words) program memory. See also RJMP.

Operation:

(i) PC ← k

Syntax: Operands: Program Counter: Stack

(i) JMP k 0 ≤ k ≤ 4M PC ← k Unchanged

32 bit Opcode:

Status Register (SREG) and Boolean Formulae:

Example:
mov r1,r0 ; Copy r0 to r1

jmp farplc ; Unconditional jump

...

farplc: nop ; Jump destination (do nothing)

Words: 2 (4 bytes)

Cycles: 3

1001 010k kkkk 110k

kkkk kkkk kkkk kkkk

I T H S V N Z C

- - - - - - - -

Instruction Set 6-60

LD - Load Indirect from SRAM to Register using Index X

Description:

Loads one byte indirect from SRAM to register. The SRAM location is pointed to by the X (16 bits) pointer register in the
register file. Memory access is limited to the current SRAM page of 64K bytes. To access another SRAM page the RAMPX
in register in the I/O area has to be changed.

The X pointer register can either be left unchanged after the operation, or it can be incremented or decremented. These
features are especially suited for accessing arrays, tables, and stack pointer usage of the X pointer register.

Using the X pointer:

Operation: Comment:

(i) Rd ← (X) X: Unchanged
(ii) Rd ← (X) X ← X + 1 X: Post incremented
(iii) X ← X - 1 Rd ← (X) X: Pre decremented

Syntax: Operands: Program Counter:

(i) LD Rd, X 0 ≤ d ≤ 31 PC ← PC + 1
(ii) LD Rd, X+ 0 ≤ d ≤ 31 PC ← PC + 1
(iii) LD Rd,-X 0 ≤ d ≤ 31 PC ← PC + 1

16 bit Opcode :

Status Register (SREG) and Boolean Formulae:

Example:
clr r27 ; Clear X high byte

ldi r26,$20 ; Set X low byte to $20

ld r0,X+ ; Load r0 with SRAM loc. $20(X post inc)

ld r1,X ; Load r1 with SRAM loc. $21

ldi r26,$23 ; Set X low byte to $23

ld r2,X ; Load r2 with SRAM loc. $23

ld r3,-X ; Load r3 with SRAM loc. $22(X pre dec)

Words: 1 (2 bytes)

Cycles: 2

(i) 1001 000d dddd 1100

(ii) 1001 000d dddd 1101

(iii) 1001 000d dddd 1110

I T H S V N Z C

- - - - - - - -

Instruction Set

6-61

LD (LDD) - Load Indirect from SRAM to Register using Index Y

Description:

Loads one byte indirect with or without displacement from SRAM to register. The SRAM location is pointed to by the Y (16
bits) pointer register in the register file. Memory access is limited to the current SRAM page of 64K bytes. To access
another SRAM page the RAMPY register in the I/O area has to be changed.

The Y pointer register can either be left unchanged after the operation, or it can be incremented or decremented. These
features are especially suited for accessing arrays, tables, and stack pointer usage of the Y pointer register.

Using the Y pointer:

Operation: Comment:

(i) Rd ← (Y) Y: Unchanged
(ii) Rd ← (Y) Y ← Y + 1 Y: Post incremented
(iii) Y ← Y - 1 Rd ← (Y) Y: Pre decremented
(iiii) Rd ← (Y+q) Y: Unchanged, q: Displacement

Syntax: Operands: Program Counter:

(i) LD Rd, Y 0 ≤ d ≤ 31 PC ← PC + 1
(ii) LD Rd, Y+ 0 ≤ d ≤ 31 PC ← PC + 1
(iii) LD Rd,-Y 0 ≤ d ≤ 31 PC ← PC + 1
(iiii) LDD Rd, Y+q 0 ≤ d ≤ 31, 0 ≤ q ≤ 63 PC ← PC + 1

16 bit Opcode :

Status Register (SREG) and Boolean Formulae:

Example:
clr r29 ; Clear Y high byte

ldi r28,$20 ; Set Y low byte to $20

ld r0,Y+ ; Load r0 with SRAM loc. $20(Y post inc)

ld r1,Y ; Load r1 with SRAM loc. $21

ldi r28,$23 ; Set Y low byte to $23

ld r2,Y ; Load r2 with SRAM loc. $23

ld r3,-Y ; Load r3 with SRAM loc. $22(Y pre dec)

ldd r4,Y+2 ; Load r4 with SRAM loc. $24

Words: 1 (2 bytes)

Cycles: 2

(i) 1000 000d dddd 1000

(ii) 1001 000d dddd 1001

(iii) 1001 000d dddd 1010

(iiii) 10q0 qq0d dddd 1qqq

I T H S V N Z C

- - - - - - - -

Instruction Set 6-62

LD (LDD) - Load Indirect From SRAM to Register using Index Z

Description:

Loads one byte indirectly with or without displacement from SRAM to register. The SRAM location is pointed to by the Z (16
bits) pointer register in the register file. Memory access is limited to the current SRAM page of 64K bytes. To access
another SRAM page the RAMPZ register in the I/O area has to be changed.

The Z pointer register can either be left unchanged after the operation, or it can be incremented or decremented. These
features are especially suited for stack pointer usage of the Z pointer register, however because the Z pointer register can
be used for indirect subroutine calls, indirect jumps and table lookup, it is often more convenient to use the X or Y pointer
as a dedicated stack pointer.

For using the Z pointer for table lookup in program memory see the LPM instruction.

Using the Z pointer:

Operation: Comment:

(i) Rd ← (Z) Z: Unchanged
(ii) Rd ← (Z) Z ← Z + 1 Z: Post increment
(iii) Z ← Z -1 Rd ← (Z) Z: Pre decrement
(iiii) Rd ← (Z+q) Z: Unchanged, q: Displacement

Syntax: Operands: Program Counter:

(i) LD Rd, Z 0 ≤ d ≤ 31 PC ← PC + 1
(ii) LD Rd, Z+ 0 ≤ d ≤ 31 PC ← PC + 1
(iii) LD Rd,-Z 0 ≤ d ≤ 31 PC ← PC + 1
(iiii) LDD Rd, Z+q 0 ≤ d ≤ 31, 0 ≤ q ≤ 63 PC ← PC + 1

16 bit Opcode :

Status Register (SREG) and Boolean Formulae:

Example:
clr r31 ; Clear Z high byte

ldi r30,$20 ; Set Z low byte to $20

ld r0,Z+ ; Load r0 with SRAM loc. $20(Z post inc)

ld r1,Z ; Load r1 with SRAM loc. $21

ldi r30,$23 ; Set Z low byte to $23

ld r2,Z ; Load r2 with SRAM loc. $23

ld r3,-Z ; Load r3 with SRAM loc. $22(Z pre dec)

ldd r4,Z+2 ; Load r4 with SRAM loc. $24

Words: 1 (2 bytes)

Cycles: 2

(i) 1000 000d dddd 0000

(ii) 1001 000d dddd 0001

(iii) 1001 000d dddd 0010

(iiii) 10q0 qq0d dddd 0qqq

I T H S V N Z C

- - - - - - - -

Instruction Set

6-63

LDI - Load Immediate

Description:

Loads an 8 bit constant directly to register 16 to 31.

Operation:

(i) Rd ← K

Syntax: Operands: Program Counter:

(i) LDI Rd,K 16 ≤ d ≤ 31, 0 ≤ K ≤ 255 PC ← PC + 1

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

Example:
clr r31 ; Clear Z high byte

ldi r30,$F0 ; Set Z low byte to $F0

lpm ; Load constant from program

; memory pointed to by Z

Words: 1 (2 bytes)

Cycles: 1

1110 KKKK dddd KKKK

I T H S V N Z C

- - - - - - - -

Instruction Set 6-64

LDS - Load Direct from SRAM

Description:

Loads one byte from the SRAM to a Register. A 16-bit address must be supplied. Memory access is limited to the current
SRAM Page of 64K bytes. The LDS instruction uses the RAMPZ register to access memory above 64K bytes.

Operation:

(i) Rd ← (k)

Syntax: Operands: Program Counter:

(i) LDS Rd,k 0 ≤ d ≤ 31, 0 ≤ k ≤ 65535 PC ← PC + 2

32 bit Opcode:

Status Register (SREG) and Boolean Formulae:

Example:
lds r2,$FF00 ; Load r2 with the contents of SRAM location $FF00

add r2,r1 ; add r1 to r2

sts $FF00,r2 ; Write back

Words: 2 (4 bytes)

Cycles: 3

1001 000d dddd 0000

kkkk kkkk kkkk kkkk

I T H S V N Z C

- - - - - - - -

Instruction Set

6-65

LPM - Load Program Memory

Description:

Loads one byte pointed to by the Z register into register 0 (R0). This instruction features a 100% space effective constant
initialization or constant data fetch. The program memory is organized in 16 bits words and the LSB of the Z (16 bits)
pointer selects either low byte (0) or high byte (1). This instruction can address the first 64K bytes (32K words) of program
memory.

Operation: Comment:

(i) R0 ← (Z) Z points to program memory

Syntax: Operands: Program Counter:

(i) LPM None PC ← PC + 1

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

Example:
clr r31 ; Clear Z high byte

ldi r30,$F0 ; Set Z low byte

lpm ; Load constant from program

; memory pointed to by Z (r31:r30)

Words: 1 (2 bytes)

Cycles: 3

1001 0101 110X 1000

I T H S V N Z C

- - - - - - - -

Instruction Set 6-66

LSL - Logical Shift Left

Description:

Shifts all bits in Rd one place to the left. Bit 0 is cleared. Bit 7 is loaded into the C flag of the SREG. This operation effec-
tively multiplies an unsigned value by two.

Operation:

(i)

Syntax: Operands: Program Counter:

(i) LSL Rd 0 ≤ d ≤ 31 PC ← PC + 1

16 bit Opcode: (see ADD Rd,Rd)

Status Register (SREG) and Boolean Formulae:

H: Rd3

S: N ⊕ V, For signed tests.

V: N ⊕ C (For N and C after the shift)

Set if (N is set and C is clear) or (N is clear and C is set); Cleared otherwise (for values of N and C after the shift).

N: R7
Set if MSB of the result is set; cleared otherwise.

Z: R7• R6 •R5• R4• R3 •R2• R1• R0
Set if the result is $00; cleared otherwise.

C: Rd7
Set if, before the shift, the MSB of Rd was set; cleared otherwise.

R (Result) equals Rd after the operation.

Example:
add r0,r4 ; Add r4 to r0

lsl r0 ; Multiply r0 by 2

Words: 1 (2 bytes)

Cycles: 1

←

C ← b7 - - - - - - - - - - - - - - - - - - b0 ← 0

0000 11dd dddd dddd

I T H S V N Z C

- - ⇔ ⇔ ⇔ ⇔ ⇔ ⇔

Instruction Set

6-67

LSR - Logical Shift Right

Description:

Shifts all bits in Rd one place to the right. Bit 7 is cleared. Bit 0 is loaded into the C flag of the SREG. This operation effec-
tively divides an unsigned value by two. The C flag can be used to round the result.

Operation:

Syntax: Operands: Program Counter:

(i) LSR Rd 0 ≤ d ≤ 31 PC ← PC + 1

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

S: N ⊕ V, For signed tests.

V: N ⊕ C (For N and C after the shift)

Set if (N is set and C is clear) or (N is clear and C is set); Cleared otherwise (for values of N and C after the shift).

N: 0

Z: R7• R6 •R5• R4• R3 •R2• R1• R0
Set if the result is $00; cleared otherwise.

C: Rd0
Set if, before the shift, the LSB of Rd was set; cleared otherwise.

R (Result) equals Rd after the operation.

Example:
add r0,r4 ; Add r4 to r0

lsr r0 ; Divide r0 by 2

Words: 1 (2 bytes)

Cycles: 1

→

0 → b7 - - - - - - - - - - - - - - - - - - b0 → C

1001 010d dddd 0110

I T H S V N Z C

- - - ⇔ ⇔ 0 ⇔ ⇔

Instruction Set 6-68

MOV - Copy Register

Description:

This instruction makes a copy of one register into another. The source register Rr is left unchanged, while the destination
register Rd is loaded with a copy of Rr.

Operation:

(i) Rd ← Rr

Syntax: Operands: Program Counter:

(i) MOV Rd,Rr 0 ≤ d ≤ 31, 0 ≤ r ≤ 31 PC ← PC + 1

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

Example:
mov r16,r0 ; Copy r0 to r16

call check ; Call subroutine

...

check: cpi r16,$11 ; Compare r16 to $11

...

ret ; Return from subroutine

Words: 1 (2 bytes)

Cycles: 1

0010 11rd dddd rrrr

I T H S V N Z C

- - - - - - - -

Instruction Set

6-69

MUL - Multiply

Description:

This instruction performs 8-bit × 8-bit → 16-bit unsigned multiplication.

The multiplicand Rr and the multiplier Rd are two registers. The 16-bit product is placed in R1 (high byte) and R0 (low byte).
Note that if the multiplicand and the multiplier is selected from R0 or R1 the result will overwrite those after multiplication.

Operation:

(i) R1,R0 ← Rr × Rd

Syntax: Operands: Program Counter:

(i) MUL Rd,Rr 0 ≤ d ≤ 31, 0 ≤ r ≤ 31 PC ← PC + 1

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

C: R15
Set if bit 15 of the result is set; cleared otherwise.

R (Result) equals R1,R0 after the operation.

Example:
mulr6,r5; Multiply r6 and r5

movr6,r1; Copy result back in r6:r5

movr5,r0; Copy result back in r6:r5

Words: 1 (2 bytes)

Cycles: 2

Not available in base-line microcontrollers.

Rr Rd R1 R0

Multiplicand × Multiplier → Product High Product Low

8 8 16

1001 11rd dddd rrrr

I T H S V N Z C

- - - - - - - ⇔

Instruction Set 6-70

NEG - Two’s Complement

Description:

Replaces the contents of register Rd with its two’s complement; the value $80 is left unchanged.
Operation:

(i) Rd ← $00 - Rd

Syntax: Operands: Program Counter:

 (i) NEG Rd 0 ≤ d ≤ 31 PC ← PC + 1

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

H: R3• Rd3
Set if there was a borrow from bit 3; cleared otherwise

S: N ⊕ V
For signed tests.

V: R7• R6 •R5• R4• R3 •R2• R1• R0
Set if there is a two’s complement overflow from the implied subtraction from zero; cleared otherwise. A two’s com-
plement overflow will occur if and only if the contents of the Register after operation (Result) is $80.

N: R7
Set if MSB of the result is set; cleared otherwise.

Z: R7• R6 •R5• R4• R3 •R2• R1• R0
Set if the result is $00; Cleared otherwise.

C: R7 + R6 + R5 + R4 + R3 + R2 + R1 + R0
Set if there is a borrow in the implied subtraction from zero; cleared otherwise. The C flag will be set in all cases
except when the contents of Register after operation is $00.

R (Result) equals Rd after the operation.

Example:
sub r11,r0 ; Subtract r0 from r11

brpl positive ; Branch if result positive

neg r11 ; Take two’s complement of r11

positive: nop ; Branch destination (do nothing)

Words: 1 (2 bytes)

Cycles: 1

1001 010d dddd 0001

I T H S V N Z C

- - ⇔ ⇔ ⇔ ⇔ ⇔ ⇔

Instruction Set

6-71

NOP - No Operation

Description:

This instruction performs a single cycle No Operation.

Operation:

(i) No

Syntax: Operands: Program Counter:

(i) NOP None PC ← PC + 1

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

Example:
clr r16 ; Clear r16

ser r17 ; Set r17

out $18,r16 ; Write zeros to Port B

nop ; Wait (do nothing)

out $18,r17 ; Write ones to Port B

Words: 1 (2 bytes)

Cycles: 1

0000 0000 0000 0000

I T H S V N Z C

- - - - - - - -

Instruction Set 6-72

OR - Logical OR

Description:

Performs the logical OR between the contents of register Rd and register Rr and places the result in the destination register
Rd.

Operation:

(i) Rd ← Rd v Rr

Syntax: Operands: Program Counter:

(i) OR Rd,Rr 0 ≤ d ≤ 31, 0 ≤ r ≤ 31 PC ← PC + 1

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

S: N ⊕ V, For signed tests.

V: 0
Cleared

N: R7
Set if MSB of the result is set; cleared otherwise.

Z: R7• R6 •R5• R4• R3 •R2• R1• R0
Set if the result is $00; cleared otherwise.

R (Result) equals Rd after the operation.

Example:
or r15,r16 ; Do bitwise or between registers

bst r15,6 ; Store bit 6 of r15 in T flag

brts ok ; Branch if T flag set

...

ok: nop ; Branch destination (do nothing)

Words: 1 (2 bytes)

Cycles: 1

0010 10rd dddd rrrr

I T H S V N Z C

- - - ⇔ 0 ⇔ ⇔ -

Instruction Set

6-73

ORI - Logical OR with Immediate

Description:

Performs the logical OR between the contents of register Rd and a constant and places the result in the destination register
Rd.

Operation:

 (i) Rd ← Rd v K

Syntax: Operands: Program Counter:

 (i) ORI Rd,K 16 ≤ d ≤ 31, 0 ≤ K ≤ 255 PC ← PC + 1

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

S: N ⊕ V, For signed tests.

V: 0
Cleared

N: R7
Set if MSB of the result is set; cleared otherwise.

Z: R7• R6 •R5• R4• R3 •R2• R1• R0
Set if the result is $00; cleared otherwise.

R (Result) equals Rd after the operation.

Example:
ori r16,$F0 ; Set high nibble of r16

ori r17,1 ; Set bit 0 of r17

Words: 1 (2 bytes)

Cycles: 1

0110 KKKK dddd KKKK

I T H S V N Z C

- - - ⇔ 0 ⇔ ⇔ -

Instruction Set 6-74

OUT - Store Register to I/O port

Description:

Stores data from register Rr in the register file to I/O space (Ports, Timers, Configuration registers etc.).

Operation:

(i) P ← Rr

Syntax: Operands: Program Counter:

(i) OUT P,Rr 0 ≤ r ≤ 31, 0 ≤ P ≤ 63 PC ← PC + 1

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

Example:
clr r16 ; Clear r16

ser r17 ; Set r17

out $18,r16 ; Write zeros to Port B

nop ; Wait (do nothing)

out $18,r17 ; Write ones to Port B

Words: 1 (2 bytes)

Cycles: 1

1011 1PPr rrrr PPPP

I T H S V N Z C

- - - - - - - -

Instruction Set

6-75

POP - Pop Register from Stack

Description:

This instruction loads register Rd with a byte from the STACK.

Operation:

(i) Rd ← STACK

Syntax: Operands: Program Counter:Stack

 (i) POP Rd 0 ≤ d ≤ 31 PC ← PC + 1SP ← SP + 1

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

Example:
call routine ; Call subroutine

...

routine: push r14 ; Save r14 on the stack

push r13 ; Save r13 on the stack

...

pop r13 ; Restore r13

pop r14 ; Restore r14

ret ; Return from subroutine

Words: 1 (2 bytes)

Cycles: 2

1001 000d dddd 1111

I T H S V N Z C

- - - - - - - -

Instruction Set 6-76

PUSH - Push Register on Stack

Description:

This instruction stores the contents of register Rr on the STACK.

Operation:

(i) STACK ← Rr

Syntax: Operands: Program Counter:Stack:

(i) PUSH Rr 0 ≤ r ≤ 31 PC ← PC + 1SP ← SP - 1

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

Example:
call routine ; Call subroutine

...

routine: push r14 ; Save r14 on the stack

push r13 ; Save r13 on the stack

...

pop r13 ; Restore r13

pop r14 ; Restore r14

ret ; Return from subroutine

Words: 1 (2 bytes)

Cycles: 2

1001 001d dddd 1111

I T H S V N Z C

- - - - - - - -

Instruction Set

6-77

RCALL - Relative Call to Subroutine

Description:

Calls a subroutine within ± 2K words (4K bytes). The return address (the instruction after the RCALL) is stored onto the
stack. (See also CALL).

Operation:

 (i) PC ← PC + k + 1 Devices with 16 bits PC, 128K bytes program memory maximum.
(ii) PC ← PC + k + 1 Devices with 22 bits PC, 8M bytes program memory maximum.

Syntax: Operands: Program Counter: Stack

 (i) RCALL k -2K ≤ k ≤ 2K PC ← PC + k + 1 STACK ← PC+1
SP ← SP-2 (2 bytes, 16 bits)

(ii) RCALL k -2K ≤ k ≤ 2K PC ← PC + k + 1 STACK ← PC+1
SP ← SP-3 (3 bytes, 22 bits)

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

Example:
rcall routine ; Call subroutine

...

routine: push r14 ; Save r14 on the stack

...

pop r14 ; Restore r14

ret ; Return from subroutine

Words: 1 (2 bytes)

Cycles: 3

1101 kkkk kkkk kkkk

I T H S V N Z C

- - - - - - - -

Instruction Set 6-78

RET - Return from Subroutine

Description:

Returns from subroutine. The return address is loaded from the STACK.

Operation:

 (i) PC(15-0) ← STACKDevices with 16 bits PC, 128K bytes program memory maximum.
(ii) PC(21-0) ← STACKDevices with 22 bits PC, 8M bytes program memory maximum.

Syntax: Operands: Program Counter: Stack

 (i) RET None See Operation SP←SP+2,(2 bytes,16 bits pulled)

(ii) RET None See Operation SP←SP+3,(3 bytes,22 bits pulled)

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

Example:
call routine ; Call subroutine

...

routine: push r14 ; Save r14 on the stack

...

pop r14 ; Restore r14

ret ; Return from subroutine

Words: 1 (2 bytes)

Cycles: 4

1001 0101 0XX0 1000

I T H S V N Z C

- - - - - - - -

Instruction Set

6-79

RETI - Return from Interrupt

Description:

Returns from interrupt. The return address is loaded from the STACK and the global interrupt flag is set.

Operation:

(i) PC(15-0) ← STACKDevices with 16 bits PC, 128K bytes program memory maximum.
(ii) PC(21-0) ← STACKDevices with 22 bits PC, 8M bytes program memory maximum.

Syntax: Operands: Program Counter: Stack

 (i) RETI None See Operation SP ← SP +2 (2 bytes, 16 bits)

(ii) RETI None See Operation SP ← SP +3 (3 bytes, 22 bits)

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

I: 1
The I flag is set.

Example:
...

extint: push r0 ; Save r0 on the stack

...

pop r0 ; Restore r0

reti ; Return and enable interrupts

Words: 1 (2 bytes)

Cycles: 4

1001 0101 0XX1 1000

I T H S V N Z C

1 - - - - - - -

Instruction Set 6-80

RJMP - Relative Jump

Description:

Relative jump to an address within PC-2K and PC + 2K (words). In the assembler, labels are used instead of relative oper-
ands. For AVR microcontrollers with program memory not exceeding 4K words (8K bytes) this instruction can address the
entire memory from every address location.

Operation:

(i) PC ← PC + k + 1

Syntax: Operands: Program Counter: Stack

(i) RJMP k -2K ≤ k ≤ 2K PC ← PC + k + 1 Unchanged

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

Example:
cpi r16,$42 ; Compare r16 to $42

brne error ; Branch if r16 <> $42

rjmp ok ; Unconditional branch

error: add r16,r17 ; Add r17 to r16

inc r16 ; Increment r16

ok: nop ; Destination for rjmp (do nothing)

Words: 1 (2 bytes)

Cycles: 2

1100 kkkk kkkk kkkk

I T H S V N Z C

- - - - - - - -

Instruction Set

6-81

ROL - Rotate Left trough Carry

Description:

Shifts all bits in Rd one place to the left. The C flag is shifted into bit 0 of Rd. Bit 7 is shifted into the C flag.

Operation:

Syntax: Operands: Program Counter:

(i) ROL Rd 0 ≤ d ≤ 31 PC ← PC + 1

16 bit Opcode: (see ADC Rd,Rd)

Status Register (SREG) and Boolean Formulae:

H: Rd3

S: N ⊕ V, For signed tests.

V: N ⊕ C (For N and C after the shift)

Set if (N is set and C is clear) or (N is clear and C is set); Cleared otherwise (for values of N and C after the shift).

N: R7
Set if MSB of the result is set; cleared otherwise.

Z: R7• R6 •R5• R4• R3 •R2• R1• R0
Set if the result is $00; cleared otherwise.

C: Rd7
Set if, before the shift, the MSB of Rd was set; cleared otherwise.

R (Result) equals Rd after the operation.

Example:
rolr15 ; Rotate left

brcsoneenc ; Branch if carry set

...

oneenc: nop ; Branch destination (do nothing)

Words: 1 (2 bytes)

Cycles: 1

←

C ← b7 - - - - - - - - - - - - - - - - - - b0 ← C

0001 11dd dddd dddd

I T H S V N Z C

- - ⇔ ⇔ ⇔ ⇔ ⇔ ⇔

Instruction Set 6-82

ROR - Rotate Right trough Carry

Description:

Shifts all bits in Rd one place to the right. The C flag is shifted into bit 7 of Rd. Bit 0 is shifted into the C flag.

Operation:

Syntax: Operands: Program Counter:

(i) ROR Rd 0 ≤ d ≤ 31 PC ← PC + 1

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

S: N ⊕ V, For signed tests.

V: N ⊕ C (For N and C after the shift)

Set if (N is set and C is clear) or (N is clear and C is set); Cleared otherwise (for values of N and C after the shift).

N: R7
Set if MSB of the result is set; cleared otherwise.

Z: R7• R6 •R5• R4• R3 •R2• R1• R0
Set if the result is $00; cleared otherwise.

C: Rd0
Set if, before the shift, the LSB of Rd was set; cleared otherwise.

R (Result) equals Rd after the operation.

Example:
rorr15 ; Rotate right

brcczeroenc ; Branch if carry cleared

...

zeroenc: nop ; Branch destination (do nothing)

Words: 1 (2 bytes)

Cycles: 1

→

C → b7 - - - - - - - - - - - - - - - - - - b0 → C

1001 010d dddd 0111

I T H S V N Z C

- - - ⇔ ⇔ ⇔ ⇔ ⇔

Instruction Set

6-83

SBC - Subtract with Carry

Description:

Subtracts two registers and subtracts with the C flag and places the result in the destination register Rd.

Operation:

(i) Rd ← Rd - Rr - C

Syntax: Operands: Program Counter:

(i) SBC Rd,Rr 0 ≤ d ≤ 31, 0 ≤ r ≤ 31 PC ← PC + 1

16 bit Opcode:

Status Register and Boolean Formulae:

H: Rd3• Rr3 + Rr3• R3 + R3 •Rd3
Set if there was a borrow from bit 3; cleared otherwise

S: N ⊕ V, For signed tests.

V: Rd7 •Rr7• R7 +Rd7 •Rr7 •R7
Set if two’s complement overflow resulted from the operation; cleared otherwise.

N: R7
Set if MSB of the result is set; cleared otherwise.

Z: R7• R6 •R5• R4• R3 •R2• R1• R0• Z
Previous value remains unchanged when the result is zero; cleared otherwise.

C: Rd7 •Rr7+ Rr7 •R7 +R7 •Rd7
Set if the absolute value of the contents of Rr plus previous carry is larger than the absolute value of the Rd; cleared
otherwise.

 R (Result) equals Rd after the operation.

Example:
; Subtract r1:r0 from r3:r2

sub r2,r0 ; Subtract low byte

sbc r3,r1 ; Subtract with carry high byte

Words: 1 (2 bytes)

Cycles: 1

0000 10rd dddd rrrr

I T H S V N Z C

- - ⇔ ⇔ ⇔ ⇔ ⇔ ⇔

Instruction Set 6-84

SBCI - Subtract Immediate with Carry

Description:

Subtracts a constant from a register and subtracts with the C flag and places the result in the destination register Rd.

Operation:

(i) Rd ← Rd - K - C

Syntax: Operands: Program Counter:

(i) SBCI Rd,K 16 ≤ d ≤ 31, 0 ≤ K ≤ 255 PC ← PC + 1

16 bit Opcode:

Status Register and Boolean Formulae:

H: Rd3• K3 + K3• R3 + R3 •Rd3
Set if there was a borrow from bit 3; cleared otherwise

S: N ⊕ V, For signed tests.

V: Rd7 •K7• R7 +Rd7 •K7 •R7
Set if two’s complement overflow resulted from the operation; cleared otherwise.

N: R7
Set if MSB of the result is set; cleared otherwise.

Z: R7• R6 •R5• R4• R3 •R2• R1• R0• Z
Previous value remains unchanged when the result is zero; cleared otherwise.

C: Rd7 •K7+ K7 • R7 +R7 •Rd7
Set if the absolute value of the constant plus previous carry is larger than the absolute value of Rd; cleared other-
wise.

 R (Result) equals Rd after the operation.

Example:
; Subtract $4F23 from r17:r16

subi r16,$23 ; Subtract low byte

sbci r17,$4F ; Subtract with carry high byte

Words: 1 (2 bytes)

Cycles: 1

0100 KKKK dddd KKKK

I T H S V N Z C

- - ⇔ ⇔ ⇔ ⇔ ⇔ ⇔

Instruction Set

6-85

SBI - Set Bit in I/O Register

Description:

Sets a specified bit in an I/O register. This instruction operates on the lower 32 I/O registers - addresses 0-31.

Operation:

(i) I/O(P,b) ← 1

Syntax: Operands: Program Counter:

 (i) SBI P,b 0 ≤ P ≤ 31, 0 ≤ b ≤ 7 PC ← PC + 1

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

Example:
out $1E,r0 ; Write EEPROM address

sbi $1C,0 ; Set read bit in EECR

in r1,$1D ; Read EEPROM data

Words: 1 (2 bytes)

Cycles: 2

1001 1010 pppp pbbb

I T H S V N Z C

- - - - - - - -

Instruction Set 6-86

SBIC - Skip if Bit in I/O Register is Cleared

Description:

This instruction tests a single bit in an I/O register and skips the next instruction if the bit is cleared. This instruction oper-
ates on the lower 32 I/O registers - addresses 0-31.

Operation:

(i) If I/O(P,b) = 0 then PC ← PC + 2 (or 3) else PC ← PC + 1

Syntax: Operands: Program Counter:

 (i) SBIC P,b 0 ≤ P ≤ 31, 0 ≤ b ≤ 7 PC ← PC + 1, If condition is false, no skip.
PC ← PC + 2, If next instruction is one word.
PC ← PC + 3, If next instruction is JMP or CALL

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

Example:

e2wait: sbic $1C,1 ; Skip next inst. if EEWE cleared

rjmp e2wait ; EEPROM write not finished

nop ; Continue (do nothing)

Words: 1 (2 bytes)

Cycles: 1 if condition is false (no skip)

2 if condition is true (skip is executed)

1001 1001 pppp pbbb

I T H S V N Z C

- - - - - - - -

Instruction Set

6-87

SBIS - Skip if Bit in I/O Register is Set

Description:

This instruction tests a single bit in an I/O register and skips the next instruction if the bit is set. This instruction operates on
the lower 32 I/O registers - addresses 0-31.

Operation:

(i) If I/O(P,b) = 1 then PC ← PC + 2 (or 3) else PC ← PC + 1

Syntax: Operands: Program Counter:

 (i) SBIS P,b 0 ≤ P ≤ 31, 0 ≤ b ≤ 7 PC ← PC + 1, Condition false - no skip
PC ← PC + 2, Skip a one word instruction
PC ← PC + 3, Skip a JMP or a CALL

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

Example:

waitset: sbis $10,0 ; Skip next inst. if bit 0 in Port D set

rjmp waitset ; Bit not set

nop ; Continue (do nothing)

Words: 1 (2 bytes)

Cycles: 1 if condition is false (no skip)

2 if condition is true (skip is executed)

1001 1011 pppp pbbb

I T H S V N Z C

- - - - - - - -

Instruction Set 6-88

SBIW - Subtract Immediate from Word

Description:

Subtracts an immediate value (0-63) from a register pair and places the result in the register pair. This instruction operates
on the upper four register pairs, and is well suited for operations on the pointer registers.

Operation:

(i) Rdh:Rdl ← Rdh:Rdl - K

Syntax: Operands: Program Counter:

(i) SBIW Rdl,K dl ∈ {24,26,28,30}, 0 ≤ K ≤ 63 PC ← PC + 1

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

S: N ⊕ V, For signed tests.

V: Rdh7 •R15
Set if two’s complement overflow resulted from the operation; cleared otherwise.

N: R15
Set if MSB of the result is set; cleared otherwise.

Z: R15• R14 •R13 •R12 •R11• R10• R9• R8• R7• R6 •R5• R4• R3 •R2• R1• R0
Set if the result is $0000; cleared otherwise.

C: R15• Rdh7
Set if the absolute value of K is larger than the absolute value of Rd; cleared otherwise.

R (Result) equals Rdh:Rdl after the operation (Rdh7-Rdh0 = R15-R8, Rdl7-Rdl0=R7-R0).

Example:
sbiw r24,1 ; Subtract 1 from r25:r24

sbiw r28,63 ; Subtract 63 from the Y pointer(r29:r28)

Words: 1 (2 bytes)

Cycles: 2

1001 0111 KKdd KKKK

I T H S V N Z C

- - - ⇔ ⇔ ⇔ ⇔ ⇔

Instruction Set

6-89

SBR - Set Bits in Register

Description:

Sets specified bits in register Rd. Performs the logical ORI between the contents of register Rd and a constant mask K and
places the result in the destination register Rd.

Operation:

(i) Rd ← Rd v K

Syntax: Operands: Program Counter:

 (i) SBR Rd,K 16 ≤ d ≤ 31, 0 ≤ K ≤ 255 PC ← PC + 1

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

S: N ⊕ V, For signed tests.

V: 0
Cleared

N: R7
Set if MSB of the result is set; cleared otherwise.

Z: R7• R6 •R5• R4• R3 •R2• R1• R0
Set if the result is $00; cleared otherwise.

R (Result) equals Rd after the operation.

Example:
sbr r16,3 ; Set bits 0 and 1 in r16

sbr r17,$F0 ; Set 4 MSB in r17

Words: 1 (2 bytes)

Cycles: 1

0110 KKKK dddd KKKK

I T H S V N Z C

- - - ⇔ 0 ⇔ ⇔ -

Instruction Set 6-90

SBRC - Skip if Bit in Register is Cleared

Description:

This instruction tests a single bit in a register and skips the next instruction if the bit is cleared.

Operation:

(i) If Rr(b) = 0 then PC ← PC + 2 (or 3) else PC ← PC + 1

Syntax: Operands: Program Counter:

 (i) SBRC Rr,b 0 ≤ r ≤ 31, 0 ≤ b ≤ 7 PC ← PC + 1, If condition is false, no skip.
PC ← PC + 2, If next instruction is one word.
PC ← PC + 3, If next instruction is JMP or CALL

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

Example:
sub r0,r1 ; Subtract r1 from r0

sbrc r0,7 ; Skip if bit 7 in r0 cleared

sub r0,r1 ; Only executed if bit 7 in r0 not cleared

nop ; Continue (do nothing)

Words: 1 (2 bytes)

Cycles: 1 if condition is false (no skip)
2 if condition is true (skip is executed)

1111 110r rrrr Xbbb

I T H S V N Z C

- - - - - - - -

Instruction Set

6-91

SBRS - Skip if Bit in Register is Set

Description:

This instruction tests a single bit in a register and skips the next instruction if the bit is set.

Operation:

(i) If Rr(b) = 1 then PC ← PC + 2 (or 3) else PC ← PC + 1

Syntax: Operands: Program Counter:

 (i) SBRS Rr,b 0 ≤ r ≤ 31, 0 ≤ b ≤ 7 PC ← PC + 1, Condition false - no skip
PC ← PC + 2, Skip a one word instruction
PC ← PC + 3, Skip a JMP or a CALL

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

Example:
sub r0,r1 ; Subtract r1 from r0

sbrs r0,7 ; Skip if bit 7 in r0 set

neg r0 ; Only executed if bit 7 in r0 not set

nop ; Continue (do nothing)

Words: 1 (2 bytes)

Cycles: 1 if condition is false (no skip)
2 if condition is true (skip is executed)

1111 111r rrrr Xbbb

I T H S V N Z C

- - - - - - - -

Instruction Set 6-92

SEC - Set Carry Flag

Description:

Sets the Carry flag (C) in SREG (status register).

Operation:

(i) C ← 1

Syntax: Operands: Program Counter:

 (i) SEC None PC ← PC + 1

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

C: 1
Carry flag set

Example:
sec ; Set carry flag

adc r0,r1 ; r0=r0+r1+1

Words: 1 (2 bytes)

Cycles: 1

1001 0100 0000 1000

I T H S V N Z C

- - - - - - - 1

Instruction Set

6-93

SEH - Set Half Carry Flag

Description:

Sets the Half Carry (H) in SREG (status register).

Operation:

(i) H ← 1

Syntax: Operands: Program Counter:

 (i) SEH None PC ← PC + 1

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

H: 1
Half Carry flag set

Example:
seh ; Set Half Carry flag

Words: 1 (2 bytes)

Cycles: 1

1001 0100 0101 1000

I T H S V N Z C

- - 1 - - - - -

Instruction Set 6-94

SEI - Set Global Interrupt Flag

Description:

Sets the Global Interrupt flag (I) in SREG (status register).

Operation:

(i) I ← 1

Syntax: Operands: Program Counter:

 (i) SEI None PC ← PC + 1

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

I: 1
Global Interrupt flag set

Example:
cli ; Disable interrupts

in r13,$16 ; Read Port B

sei ; Enable interrupts

Words: 1 (2 bytes)

Cycles: 1

1001 0100 0111 1000

I T H S V N Z C

1 - - - - - - -

Instruction Set

6-95

SEN - Set Negative Flag

Description:

Sets the Negative flag (N) in SREG (status register).

Operation:

(i) N ← 1

Syntax: Operands: Program Counter:

 (i) SEN None PC ← PC + 1

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

N: 1
Negative flag set

Example:
add r2,r19 ; Add r19 to r2

sen ; Set negative flag

Words: 1 (2 bytes)

Cycles: 1

1001 0100 0010 1000

I T H S V N Z C

- - - - - 1 - -

Instruction Set 6-96

SER - Set all bits in Register

Description:

Loads $FF directly to register Rd.

Operation:

(i) Rd ← $FF

Syntax: Operands: Program Counter:

(i) SER Rd 16 ≤ d ≤ 31 PC ← PC + 1

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

Example:
clr r16 ; Clear r16

ser r17 ; Set r17

out $18,r16 ; Write zeros to Port B

nop ; Delay (do nothing)

out $18,r17 ; Write ones to Port B

Words: 1 (2 bytes)

Cycles: 1

1110 1111 dddd 1111

I T H S V N Z C

- - - - - - - -

Instruction Set

6-97

SES - Set Signed Flag

Description:

Sets the Signed flag (S) in SREG (status register).

Operation:

(i) S ← 1

Syntax: Operands: Program Counter:

 (i) SES None PC ← PC + 1

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

S: 1
Signed flag set

Example:
add r2,r19 ; Add r19 to r2

ses ; Set negative flag

Words: 1 (2 bytes)

Cycles: 1

1001 0100 0100 1000

I T H S V N Z C

- - - 1 - - - -

Instruction Set 6-98

SET - Set T Flag

Description:

Sets the T flag in SREG (status register).

Operation:

(i) T ← 1

Syntax: Operands: Program Counter:

 (i) SET None PC ← PC + 1

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

T: 1
T flag set

Example:
set ; Set T flag

Words: 1 (2 bytes)

Cycles: 1

1001 0100 0110 1000

I T H S V N Z C

- 1 - - - - - -

Instruction Set

6-99

SEV - Set Overflow Flag

Description:

Sets the Overflow flag (V) in SREG (status register).

Operation:

(i) V ← 1

Syntax: Operands: Program Counter:

 (i) SEV None PC ← PC + 1

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

V: 1
Overflow flag set

Example:
add r2,r19 ; Add r19 to r2

sev ; Set overflow flag

Words: 1 (2 bytes)

Cycles: 1

1001 0100 0011 1000

I T H S V N Z C

- - - - 1 - - -

Instruction Set 6-100

SEZ - Set Zero Flag

Description:

Sets the Zero flag (Z) in SREG (status register).

Operation:

(i) Z ← 1

Syntax: Operands: Program Counter:

 (i) SEZ None PC ← PC + 1

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

Z: 1
Zero flag set

Example:
add r2,r19 ; Add r19 to r2

sez ; Set zero flag

Words: 1 (2 bytes)

Cycles: 1

1001 0100 0001 1000

I T H S V N Z C

- - - - - - 1 -

Instruction Set

6-101

SLEEP

Description:

This instruction sets the circuit in sleep mode defined by the MCU control register. When an interrupt wakes up the MCU
from a sleep state, the instruction following the SLEEP instruction will be executed before the interrupt handler is executed.

Operation:

Syntax: Operands: Program Counter:

SLEEP None PC ← PC + 1

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

Example:
mov r0,r11 ; Copy r11 to r0

sleep ; Put MCU in sleep mode

Words: 1 (2 bytes)

Cycles: 1

1001 0101 100X 1000

I T H S V N Z C

- - - - - - - -

Instruction Set 6-102

ST - Store Indirect From Register to SRAM using Index X

Description:

Stores one byte indirect from Register to SRAM. The SRAM location is pointed to by the X (16 bits) pointer register in the
register file. Memory access is limited to the current SRAM Page of 64K bytes. To access another SRAM page the RAMPX
register in the I/O area has to be changed.

The X pointer register can either be left unchanged after the operation, or it can be incremented or decremented. These
features are especially suited for stack pointer usage of the X pointer register.

Using the X pointer:

Operation: Comment:

(i) (X) ← Rr X: Unchanged
(ii) (X) ← Rr X ← X+1 X: Post incremented
(iii) X ← X - 1 (X) ← Rr X: Pre decremented

Syntax: Operands: Program Counter:

(i) ST X, Rr 0 ≤ r ≤ 31 PC ← PC + 1
(ii) ST X+, Rr 0 ≤ r ≤ 31 PC ← PC + 1
(iii) ST -X, Rr 0 ≤ r ≤ 31 PC ← PC + 1

16 bit Opcode :

Status Register (SREG) and Boolean Formulae:

Example:
clr r27 ; Clear X high byte

ldi r26,$20 ; Set X low byte to $20

st X+,r0 ; Store r0 in SRAM loc. $20(X post inc)

st X,r1 ; Store r1 in SRAM loc. $21

ldi r26,$23 ; Set X low byte to $23

st r2,X ; Store r2 in SRAM loc. $23

st r3,-X ; Store r3 in SRAM loc. $22(X pre dec)

Words: 1 (2 bytes)

Cycles: 2

(i) 1001 001r rrrr 1100

(ii) 1001 001r rrrr 1101

(iii) 1001 001r rrrr 1110

I T H S V N Z C

- - - - - - - -

Instruction Set

6-103

ST (STD) - Store Indirect From Register to SRAM using Index Y

Description:

Stores one byte indirect with or without displacement from Register to SRAM. The SRAM location is pointed to by the Y (16
bits) pointer register in the register file. Memory access is limited to the current SRAM Page of 64K bytes. To access
another SRAM page the RAMPY register in the I/O area has to be changed.

The Y pointer register can either be left unchanged after the operation, or it can be incremented or decremented. These
features are especially suited for stack pointer usage of the Y pointer register.

Using the Y pointer:

Operation: Comment:

(i) (Y) ← Rr Y: Unchanged
(ii) (Y) ← Rr Y ← Y+1 Y: Post incremented
(iii) Y ← Y - 1 (Y) ← Rr Y: Pre decremented
(iiii) (Y+q) ← Rr Y: Unchanged, q: Displacement

Syntax: Operands: Program Counter:

(i) ST Y, Rr 0 ≤ r ≤ 31 PC ← PC + 1
(ii) ST Y+, Rr 0 ≤ r ≤ 31 PC ← PC + 1
(iii) ST -Y, Rr 0 ≤ r ≤ 31 PC ← PC + 1
(iiii) STD Y+q, Rr 0 ≤ r ≤ 31, 0 ≤ q ≤ 63 PC ← PC + 1

16 bit Opcode :

Status Register (SREG) and Boolean Formulae:

Example:
clr r29 ; Clear Y high byte

ldi r28,$20 ; Set Y low byte to $20

st Y+,r0 ; Store r0 in SRAM loc. $20(Y post inc)

st Y,r1 ; Store r1 in SRAM loc. $21

ldi r28,$23 ; Set Y low byte to $23

st Y,r2 ; Store r2 in SRAM loc. $23

st -Y,r3 ; Store r3 in SRAM loc. $22(Y pre dec)

std Y+2,r4 ; Store r4 in SRAM loc. $24

Words: 1 (2 bytes)

Cycles: 2

(i) 1000 001r rrrr 1000

(ii) 1001 001r rrrr 1001

(iii) 1001 001r rrrr 1010

(iiii) 10q0 qq1r rrrr 1qqq

I T H S V N Z C

- - - - - - - -

Instruction Set 6-104

ST (STD) - Store Indirect From Register to SRAM using Index Z

Description:

Stores one byte indirect with or without displacement from Register to SRAM. The SRAM location is pointed to by the Z (16
bits) pointer register in the register file. Memory access is limited to the current SRAM Page of 64K bytes. To access
another SRAM page the RAMPZ register in the I/O area has to be changed.

The Z pointer register can either be left unchanged after the operation, or it can be incremented or decremented. These
features are very suited for stack pointer usage of the Z pointer register, but because the Z pointer register can be used for
indirect subroutine calls, indirect jumps and table lookup it is often more convenient to use the X or Y pointer as a dedicated
stack pointer.

Using the Z pointer:

Operation: Comment:

(i) (Z) ←Rr Z: Unchanged
(ii) (Z) ← Rr Z ← Z+1 Z: Post incremented
(iii) Z ← Z - 1 (Z) ← Rr Z: Pre decremented
(iiii) (Z+q) ← Rr Z: Unchanged, q: Displacement

Syntax: Operands: Program Counter:

(i) ST Z, Rr 0 ≤ r ≤ 31 PC ← PC + 1
(ii) ST Z+, Rr 0 ≤ r ≤ 31 PC ← PC + 1
(iii) ST -Z, Rr 0 ≤ r ≤ 31 PC ← PC + 1
(iiii) STD Z+q, Rr 0 ≤ r ≤ 31, 0 ≤ q ≤ 63 PC ← PC + 1

16 bit Opcode :

Status Register (SREG) and Boolean Formulae:

Example:
clr r31 ; Clear Z high byte

ldi r30,$20 ; Set Z low byte to $20

st Z+,r0 ; Store r0 in SRAM loc. $20(Z post inc)

st Z,r1 ; Store r1 in SRAM loc. $21

ldi r30,$23 ; Set Z low byte to $23

st Z,r2 ; Store r2 in SRAM loc. $23

st -Z,r3 ; Store r3 in SRAM loc. $22(Z pre dec)

std Z+2,r4 ; Store r4 in SRAM loc. $24

Words: 1 (2 bytes)

Cycles: 2

(i) 1000 001r rrrr 0000

(ii) 1001 001r rrrr 0001

(iii) 1001 001r rrrr 0010

(iiii) 10q0 qq1r rrrr 0qqq

I T H S V N Z C

- - - - - - - -

Instruction Set

6-105

STS - Store Direct to SRAM

Description:

Stores one byte from a Register to the SRAM. A 16-bit address must be supplied. Memory access is limited to the current
SRAM Page of 64K bytes. The SDS instruction uses the RAMPZ register to access memory above 64K bytes.

Operation:

(i) (k) ← Rr

Syntax: Operands: Program Counter:

(i) STS k,Rr 0 ≤ r ≤ 31, 0 ≤ k ≤ 65535 PC ← PC + 2

32 bit Opcode:

Status Register (SREG) and Boolean Formulae:

Example:
lds r2,$FF00 ; Load r2 with the contents of SRAM location $FF00

add r2,r1 ; add r1 to r2

sts $FF00,r2 ; Write back

Words: 2 (4 bytes)

Cycles: 3

1001 001d dddd 0000

kkkk kkkk kkkk kkkk

I T H S V N Z C

- - - - - - - -

Instruction Set 6-106

SUB - Subtract without Carry

Description:

Subtracts two registers and places the result in the destination register Rd.

Operation:

(i) Rd ← Rd - Rr

Syntax: Operands: Program Counter:

(i) SUB Rd,Rr 0 ≤ d ≤ 31, 0 ≤ r ≤ 31 PC ← PC + 1

16 bit Opcode:

Status Register and Boolean Formulae:

H: Rd3• Rr3 +Rr3 •R3 +R3• Rd3
Set if there was a borrow from bit 3; cleared otherwise

S: N ⊕ V, For signed tests.

V: Rd7• Rr7 •R7 +Rd7 •Rr7• R7
Set if two’s complement overflow resulted from the operation; cleared otherwise.

N: R7
Set if MSB of the result is set; cleared otherwise.

Z: R7• R6 •R5• R4• R3 •R2• R1• R0
Set if the result is $00; cleared otherwise.

C: Rd7• Rr7 +Rr7 •R7 +R7• Rd7
Set if the absolute value of the contents of Rr is larger than the absolute value of Rd; cleared otherwise.

 R (Result) equals Rd after the operation.

Example:
sub r13,r12 ; Subtract r12 from r13

brne noteq ; Branch if r12<>r13

...

noteq: nop ; Branch destination (do nothing)

Words: 1 (2 bytes)

Cycles: 1

0001 10rd dddd rrrr

I T H S V N Z C

- - ⇔ ⇔ ⇔ ⇔ ⇔ ⇔

Instruction Set

6-107

SUBI - Subtract Immediate

Description:

Subtracts a register and a constant and places the result in the destination register Rd. This instruction is working on Reg-
ister R16 to R31 and is very well suited for operations on the X, Y and Z pointers.

Operation:

 (i) Rd ← Rd - K

Syntax: Operands: Program Counter:

 (i) SUBI Rd,K 16 ≤ d ≤ 31, 0 ≤ K ≤ 255 PC ← PC + 1

16 bit Opcode:

Status Register and Boolean Formulae:

H: Rd3• K3+K3 •R3 +R3 •Rd3
Set if there was a borrow from bit 3; cleared otherwise

S: N ⊕ V, For signed tests.

V: Rd7• K7 •R7 +Rd7• K7 •R7
Set if two’s complement overflow resulted from the operation; cleared otherwise.

N: R7
Set if MSB of the result is set; cleared otherwise.

Z: R7• R6 •R5• R4• R3 •R2• R1• R0
Set if the result is $00; cleared otherwise.

C: Rd7• K7 +K7 •R7 +R7• Rd7
Set if the absolute value of K is larger than the absolute value of Rd; cleared otherwise.

R (Result) equals Rd after the operation.

Example:
subir22,$11 ; Subtract $11 from r22

brnenoteq ; Branch if r22<>$11

...

noteq: nop ; Branch destination (do nothing)

Words: 1 (2 bytes)

Cycles: 1

0101 KKKK dddd KKKK

I T H S V N Z C

- - ⇔ ⇔ ⇔ ⇔ ⇔ ⇔

Instruction Set 6-108

SWAP - Swap Nibbles

Description:

Swaps high and low nibbles in a register.

Operation:

(i) R(7-4) ← Rd(3-0), R(3-0) ← Rd(7-4)

Syntax: Operands: Program Counter:

(i) SWAP Rd 0 ≤ d ≤ 31 PC ← PC + 1

16 bit Opcode:

Status Register and Boolean Formulae:

R (Result) equals Rd after the operation.

Example:
inc r1 ; Increment r1

swap r1 ; Swap high and low nibble of r1

inc r1 ; Increment high nibble of r1

swap r1 ; Swap back

Words: 1 (2 bytes)

Cycles: 1

1001 010d dddd 0010

I T H S V N Z C

- - - - - - - -

Instruction Set

6-109

TST - Test for Zero or Minus

Description:

Tests if a register is zero or negative. Performs a logical AND between a register and itself. The register will remain
unchanged.

Operation:

(i) Rd ← Rd • Rd

Syntax: Operands: Program Counter:

(i) TST Rd 0 ≤ d ≤ 31 PC ← PC + 1

16 bit Opcode:

Status Register and Boolean Formulae:

S: N ⊕ V, For signed tests.

V: 0
Cleared

N: R7
Set if MSB of the result is set; cleared otherwise.

Z: R7• R6 •R5• R4• R3 •R2• R1• R0
Set if the result is $00; cleared otherwise.

R (Result) equals Rd.

Example:
tst r0 ; Test r0

breq zero ; Branch if r0=0

...

zero: nop ; Branch destination (do nothing)

Words: 1 (2 bytes)

Cycles: 1

0010 00dd dddd dddd

I T H S V N Z C

- - - ⇔ 0 ⇔ ⇔ -

Instruction Set 6-110

WDR - Watchdog Reset

Description:

This instruction resets the Watchdog Timer. This instruction must be executed within a limited time given by the WD pres-
caler. See the Watchdog Timer hardware specification.

Operation:

(i) WD timer restart.

Syntax: Operands: Program Counter:

(i) WDR None PC ← PC + 1

16 bit Opcode:

Status Register and Boolean Formulae:

Example:
wdr ; Reset watchdog timer

Words: 1 (2 bytes)

Cycles: 1

1001 0101 101X 1000

I T H S V N Z C

- - - - - - - -

