
The RF Line NPN Silicon RF Power Transistor

... designed for high gain driver and output linear amplifier stages in 1.5 to 30 MHz HF/SSB equipment.

- Specified 28 Volt, 30 MHz Characteristics —
 Output Power = 25 W (PEP)
 Minimum Gain = 22 dB
 Efficiency = 35%
- Intermodulation Distortion @ 25 W (PEP) —
 IMD = -30 dB (Max)
- 100% Tested for Load Mismatch at all Phase Angles with 30:1 VSWR
- · Class A and AB Characterization
- BLX 13 Equivalent

MRF426

25 W (PEP), 30 MHz RF POWER TRANSISTOR NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector–Emitter Voltage	VCEO	35	Vdc
Collector–Base Voltage	V _{СВО}	65	Vdc
Emitter–Base Voltage	V _{EBO}	4.0	Vdc
Collector Current — Continuous	IC	3.0	Adc
Withstand Current — 5 s	_	6.0	Adc
Total Device Dissipation @ T _C = 25°C (1) Derate above 25°C	PD	70 0.4	Watts W/°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

THERMAL CHARACTERISTICS

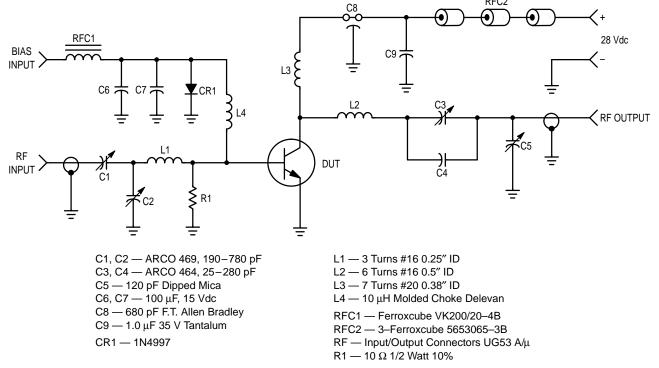
Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	2.5	°C/W

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector–Emitter Breakdown Voltage (I _C = 50 mAdc, I _B = 0)	V _(BR) CEO	35	_	_	Vdc
Collector–Base Breakdown Voltage (I _C = 50 mAdc, I _E = 0)	V(BR)CBO	65	_	_	Vdc
Emitter-Base Breakdown Voltage (I _E = 10 mAdc, I _C = 0)	V(BR)EBO	4.0	_	_	Vdc
Collector Cutoff Current (V _{CE} = 28 Vdc, V _{BE} = 0)	ICES	_	_	10	mAdc

NOTE: (continued)

1. This device is designed for RF operation. The total device dissipation rating applies only when the device is operated as an RF amplifier.



ELECTRICAL CHARACTERISTICS — **continued** ($T_C = 25$ °C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
ON CHARACTERISTICS					
DC Current Gain (I _C = 1.0 Adc, V _{CE} = 5.0 Vdc)	hFE	10	35	_	_
DYNAMIC CHARACTERISTICS					
Output Capacitance (V _{CB} = 30 Vdc, I _E = 0, f = 1.0 MHz)	C _{ob}	_	60	80	pF
FUNCTIONAL TESTS (SSB)					
Common–Emitter Amplifier Gain (V_{CC} = 28 Vdc, P_{out} = 25 W (PEP), f1 = 30 MHz, f2 = 30.001 MHz, I_{CQ} = 25 mA)	GPE	22	25	_	dB
Collector Efficiency (V_{CC} = 28 Vdc, P_{out} = 25 W (PEP), f1 = 30 MHz, f2 = 30.001 MHz, I_{CQ} = 25 mA)	η	35	_	_	%
Intermodulation Distortion (2) ($V_{CC} = 28 \text{ Vdc}$, $P_{out} = 25 \text{ W}$ (PEP), f1 = 30 MHz, f2 = 30.001 MHz, $I_{CQ} = 25 \text{ mA}$)	IMD _(d3)	_	-35	-30	dB
Load Mismatch (V _{CC} = 28 Vdc, P _{Out} = 25 W (PEP), f1 = 30 MHz, f2 = 30.001 MHz, I _{CQ} = 25 mA, VSWR 30:1 at All Phase Angles)	Ψ	No Degradation in Output Power			
CLASS A PERFORMANCE					
Intermodulation Distortion (2) and Power Gain (V _{CC} = 28 Vdc, P _{out} = 8.0 W (PEP), f1 = 30 MHz, f2 = 30.001 MHz, I _{CQ} = 1.2 Adc)	GPE IMD(d3) IMD(d5)		23.5 -40 -55		dB

NOTE:

^{2.} To Mil-Std-1311 Version A, Test Method 2204B, Two Tone, Reference each Tone.

Adjust Bias (Base) for $I_{CQ} = 20$ mA with No RF Applied

Figure 1. 30 MHz Linear Test Circuit

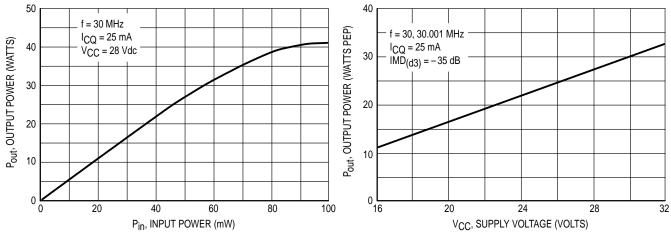


Figure 2. Output Power versus Input Power

Figure 3. Output Power versus Supply Voltage

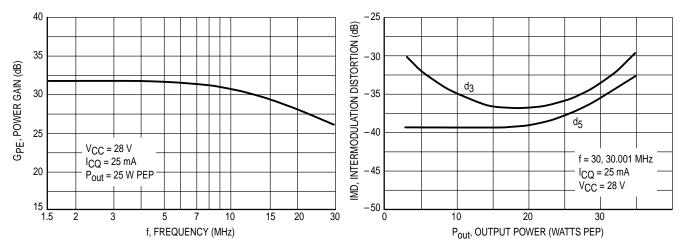


Figure 4. Power Gain versus Frequency

Figure 5. Intermodulation Distortion versus Output Power

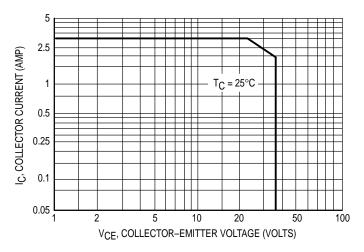


Figure 6. DC Safe Operating Area

MOTOROLA RF DEVICE DATA **MRF426**

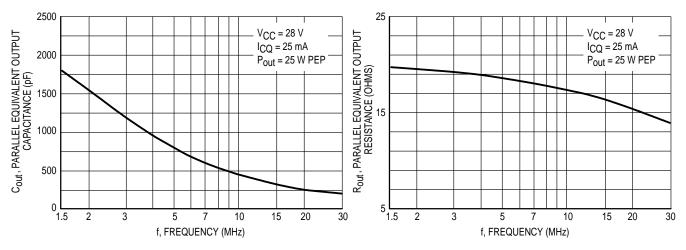


Figure 7. Output Capacitance versus Frequency

Figure 8. Output Resistance versus Frequency

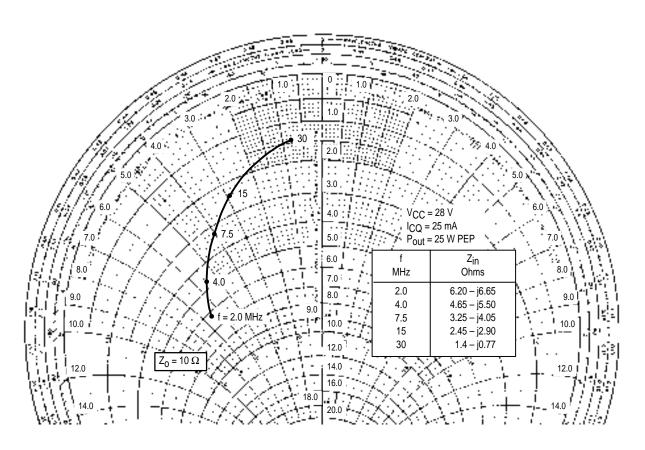
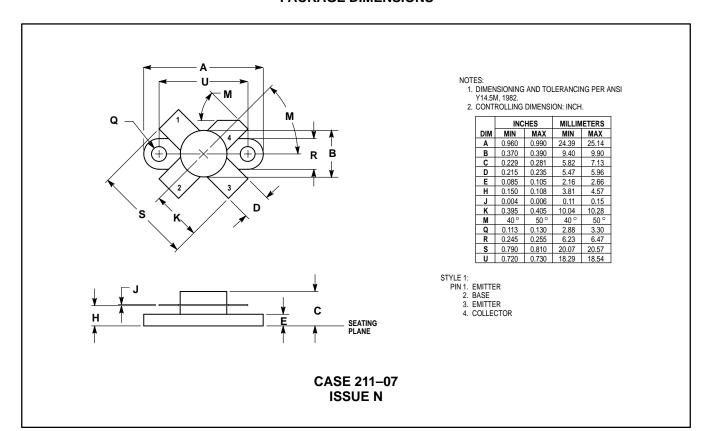



Figure 9. Series Equivalent Input Impedance

PACKAGE DIMENSIONS

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and "a are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

Literature Distribution Centers:

USA: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036.

EUROPE: Motorola Ltd.; European Literature Centre; 88 Tanners Drive, Blakelands, Milton Keynes, MK14 5BP, England.

JAPAN: Nippon Motorola Ltd.; 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141, Japan.

ASIA PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Center, No. 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong.

