# HGTG12N60C3D 24A, 600V, UFS Series N-Channel IGBT with Anti-Parallel Hyperfast Diode August 1995 ### Features - 24A, 600V at T<sub>C</sub> = +25°C - Typical Fall Time 210ns at T<sub>J</sub> = +150°C - · Short Circuit Rating - Low Conduction Loss - · Hyperfast Anti-Parallel Diode ### Description The HGTG12N60C3D is a MOS gated high voltage switching device combining the best features of MOSFETs and bipolar transistors. The device has the high input impedance of a MOSFET and the low on-state conduction loss of a bipolar transistor. The much lower on-state voltage drop varies only moderately between +25°C and +150°C. The IGBT used is the development type TA49123. The diode used in antiparallel with the IGBT is the development type TA49061. The IGBT is ideal for many high voltage switching applications operating at moderate frequencies where low conduction losses are essential. #### **PACKAGING AVAILABILITY** | PART NUMBER | PACKAGE | BRAND | |--------------|---------|-----------| | HGTG12N60C3D | TO-247 | G12N60C3D | NOTE: When ordering, use the entire part number. Formerly Developmental Type TA49117. ### Package ### **Terminal Diagram** **N-CHANNEL ENHANCEMENT MODE** | <b>Absolute Maximum Ratings</b> $T_C = +25^{\circ}C$ , Unless Otherwise Specified | HGTG12N60C3D | UNITS | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------| | Collector-Emitter Voltage | 600 | V | | Collector Current Continuous | | | | At $T_C = +25^{\circ}C$ $I_{C25}$ | 24 | Α | | At $T_C = +110^{\circ}C$ $I_{C110}$ | 12 | Α | | Average Diode Forward Current at +110°C | 15 | Α | | Collector Current Pulsed (Note 1) | 96 | Α | | Gate-Emitter Voltage ContinuousV <sub>GES</sub> | ±20 | V | | Gate-Emitter Voltage Pulsed | ±30 | V | | Switching Safe Operating Area at T <sub>J</sub> = +150°C | 24A at 600V | | | Power Dissipation Total at T <sub>C</sub> = +25°C P <sub>D</sub> | 104 | W | | Power Dissipation Derating T <sub>C</sub> > +25°C | 0.83 | W/°C | | Operating and Storage Junction Temperature Range | -40 to +150 | °C | | Maximum Lead Temperature for Soldering | 260 | °C | | Short Circuit Withstand Time (Note 2) at V <sub>GE</sub> = 15V | 4 | μs | | Short Circuit Withstand Time (Note 2) at V <sub>GE</sub> = 10V | 13 | μs | | A B THE BELL CHIEF STEEL TO BE A STEEL TO STEEL THE STEE | | | - 1. Repetitive Rating: Pulse width limited by maximum junction temperature. - 2. $V_{CE(PK)} = 360V$ , $T_J = +125^{\circ}C$ , $R_{GE} = 25\Omega$ . | HARRIS | SEMICONDUCTO | R IGBT PRODU | CT IS COVERED | BY ONE OR M | ORE OF THE FO | LLOWING U.S. I | PATENTS: | |-----------|--------------|--------------|---------------|-------------|---------------|----------------|-----------| | 4,364,073 | 4,417,385 | 4,430,792 | 4,443,931 | 4,466,176 | 4,516,143 | 4,532,534 | 4,567,641 | | 4,587,713 | 4,598,461 | 4,605,948 | 4,618,872 | 4,620,211 | 4,631,564 | 4,639,754 | 4,639,762 | | 4,641,162 | 4,644,637 | 4,682,195 | 4,684,413 | 4,694,313 | 4,717,679 | 4,743,952 | 4,783,690 | | 4,794,432 | 4,801,986 | 4,803,533 | 4,809,045 | 4,809,047 | 4,810,665 | 4,823,176 | 4,837,606 | | 4,860,080 | 4,883,767 | 4,888,627 | 4,890,143 | 4,901,127 | 4,904,609 | 4,933,740 | 4,963,951 | | 4,969,027 | | | | | | | | # Specifications HGTG12N60C3D $\textbf{Electrical Specifications} \hspace{0.5cm} \textbf{T}_{C} = +25^{o}\text{C}, \hspace{0.1cm} \textbf{Unless Otherwise Specified}$ | | | TEST CONDITIONS | | LIMITS | | | | |--------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------|--------|------|------|-------| | PARAMETERS | SYMBOL | | | MIN | TYP | MAX | UNITS | | Collector-Emitter Breakdown Voltage | BV <sub>CES</sub> | $I_C = 250\mu A, V_{GE} = 0V$ | | 600 | - | - | V | | Emitter-Collector Breakdown Voltage | BV <sub>ECS</sub> | I <sub>C</sub> = 10mA, V <sub>GE</sub> = | I <sub>C</sub> = 10mA, V <sub>GE</sub> = 0V | | 25 | - | V | | Collector-Emitter Leakage Current | I <sub>CES</sub> | V <sub>CE</sub> = BV <sub>CES</sub> | $T_{C} = +25^{\circ}C$ | - | - | 250 | μΑ | | | | V <sub>CE</sub> = BV <sub>CES</sub> | $T_{\rm C} = +150^{\rm o}{\rm C}$ | - | - | 2.0 | mA | | Collector-Emitter Saturation Voltage | V <sub>CE(SAT)</sub> | $I_{C} = I_{C110},$ $V_{GE} = 15V$ | $T_{C} = +25^{\circ}C$ | - | 1.65 | 2.0 | V | | | | | $T_C = +150^{\circ}C$ | - | 1.85 | 2.2 | V | | | | I <sub>C</sub> = 15A, | $T_{C} = +25^{\circ}C$ | - | 1.80 | 2.2 | V | | | | V <sub>GE</sub> = 15V | $T_C = +150^{\circ}C$ | - | 2.0 | 2.4 | V | | Gate-Emitter Threshold Voltage | $V_{GE(TH)}$ | $I_C = 250\mu A,$ $V_{CE} = V_{GE}$ | $T_{C} = +25^{\circ}C$ | 3.0 | 5.0 | 6.0 | V | | Gate-Emitter Leakage Current | I <sub>GES</sub> | V <sub>GE</sub> = ±20V | | - | - | ±100 | nA | | Switching SOA | SSOA | $T_{J} = +150^{\circ}\text{C},$ $V_{GE} = 15\text{V},$ $R_{G} = 25\Omega,$ $L = 100\mu\text{H}$ | V <sub>CE(PK)</sub> = 480V | 80 | - | - | А | | | | | V <sub>CE(PK)</sub> = 600V | 24 | - | - | А | | Gate-Emitter Plateau Voltage | $V_{GEP}$ | $I_{C} = I_{C110}, V_{CE} = 0.5 \text{ BV}_{CES}$ | | - | 7.6 | - | V | | On-State Gate Charge | On-State Gate Charge $ Q_{G(ON)} \qquad \begin{aligned} I_{C} &= I_{C110}, \\ V_{CE} &= 0.5 \end{aligned} $ | $I_{C} = I_{C110},$ | V <sub>GE</sub> = 15V | - | 48 | 55 | nC | | | | V <sub>CE</sub> = 0.5 BV <sub>CES</sub> | V <sub>GE</sub> = 20V | - | 62 | 71 | nC | | Current Turn-On Delay Time | t <sub>D(ON)I</sub> | $T_J = +150^{\circ}\text{C},$ $I_{CE} = I_{C110},$ $V_{CE(PK)} = 0.8 \text{ BV}_{CES},$ | | - | 14 | - | ns | | Current Rise Time | t <sub>RI</sub> | | | - | 16 | - | ns | | Current Turn-Off Delay Time | t <sub>D(OFF)I</sub> | $R_G = 25\Omega$ , | | | 270 | 400 | ns | | Current Fall Time | t <sub>Fl</sub> | <b>L</b> = 100μH | | - | 210 | 275 | ns | | Turn-On Energy | E <sub>ON</sub> | 1 | - | 380 | - | μJ | | | Turn-Off Energy (Note 1) | E <sub>OFF</sub> | 1 | - | 900 | - | μJ | | | Diode Forward Voltage | V <sub>EC</sub> | I <sub>EC</sub> = 12A | | - | 1.7 | 2.0 | ٧ | | Diode Reverse Recovery Time | t <sub>RR</sub> | $I_{EC} = 12A$ , $dI_{EC}/dt = 100A/\mu s$ | | - | 34 | 42 | ns | | | | $I_{EC} = 1.0A$ , $dI_{EC}/dt = 100A/\mu s$ | | - | 30 | 37 | ns | | Thermal Resistance | $R_{ heta JC}$ | IGBT | | - | - | 1.2 | °C/W | | | | Diode | | - | - | 1.5 | °C/W | ### NOTE: Turn-Off Energy Loss (E<sub>OFF</sub>) is defined as the integral of the instantaneous power loss starting at the trailing edge of the input pulse, and ending at the point where the collector current equals zero (I<sub>CE</sub> = 0A). The HGTG12N60C3D was tested per JEDEC Standard No. 24-1 Method for Measurement of Power Device Turn-Off Switching Loss. This test method produces the true total Turn-Off Energy Loss. Turn-On losses include diode losses. # **Typical Performance Curves** COLLECTOR-EMITTER CURRENT (A) DUTY CYCLE <0.5%, V<sub>CE</sub> = 10V PULSE DURATION = 250μs 70 60 50 T<sub>C</sub> = +150°C 40 $T_C = +25^{\circ}C$ 30 $T_C = -40^{\circ}C$ 20 10 Ü FIGURE 1. TRANSFER CHARACTERISTICS V<sub>GE</sub>, GATE-TO-EMITTER VOLTAGE (V) FIGURE 2. SATURATION CHARACTERISTICS FIGURE 3. COLLECTOR-EMITTER ON-STATE VOLTAGE FIGURE 4. COLLECTOR-EMITTER ON-STATE VOLTAGE FIGURE 5. MAXIMUM DC COLLECTOR CURRENT AS A FUNC-TION OF CASE TEMPERATURE FIGURE 6. SHORT CIRCUIT WITHSTAND TIME #### Typical Performance Curves (Continued) 400 100 $T_J$ = +150°C, $R_G$ = 25 $\Omega,$ L = 100 $\mu\text{H},$ $V_{CE(PK)}$ = 480V $T_J = +150$ °C, $R_G = 25\Omega$ , $L = 100\mu H$ , $V_{CE(PK)} = 480V$ t<sub>D(OFF)I</sub>, TURN-OFF DELAY TIME (ns) t<sub>D(ON)I</sub>, TURN-ON DELAY TIME (ns) 300 V<sub>GE</sub> = 15V 50 $V_{GF} = 10V$ 200 $V_{GE} = 10V$ 20 V<sub>GE</sub> = 15V 100 10 10 15 20 25 30 20 30 I<sub>CE</sub>, COLLECTOR-EMITTER CURRENT (A) I<sub>CE</sub>, COLLECTOR-EMITTER CURRENT (A) FIGURE 7. TURN-ON DELAY TIME AS A FUNCTION OF FIGURE 8. TURN-OFF DELAY TIME AS A FUNCTION OF **COLLECTOR-EMITTER CURRENT COLLECTOR-EMITTER CURRENT** 300 200 $T_J$ = +150°C, $R_G$ = 25 $\Omega$ , L = 100 $\mu$ H, $V_{CE(PK)}$ = 480V $T_J$ = +150°C, $R_G$ = 25 $\Omega$ , L = 100 $\mu$ H, $V_{CE(PK)}$ = 480V 100 (ns) $V_{GE} = 10V$ **TURN-ON RISE TIME** 200 FALL TIME (ns) V<sub>GE</sub> = 10V or 15V V<sub>GE</sub> = 15V ij, 100 90 80 10 15 20 30 I<sub>CE</sub>, COLLECTOR-EMITTER CURRENT (A) I<sub>CE</sub>, COLLECTOR-EMITTER CURRENT (A) FIGURE 9. TURN-ON RISE TIME AS A FUNCTION OF FIGURE 10. TURN-OFF FALL TIME AS A FUNCTION OF **COLLECTOR-EMITTER CURRENT COLLECTOR-EMITTER CURRENT** $T_J = +150^{\circ}C$ , $R_G = 25\Omega$ , $L = 100\mu H$ , $V_{CE(PK)} = 480V$ $T_J = +150^{\circ}C$ , $R_G = 25\Omega$ , $L = 100\mu H$ , $V_{CE(PK)} = 480V$ EOFF, TURN-OFF ENERGY LOSS (mJ) <u>E</u> 2.5 TURN-ON ENERGY LOSS 1.5 2.0 $V_{GE} = 10V$ 1.0 1.5 V<sub>GE</sub> = 10V or 15V V<sub>GE</sub> = 15V 1.0 0.5 Eon, . 0.5 15 20 30 10 15 20 I<sub>CE</sub>, COLLECTOR-EMITTER CURRENT (A) I<sub>CE</sub>, COLLECTOR-EMITTER CURRENT (A) FIGURE 11. TURN-ON ENERGY LOSS AS A FUNCTION OF FIGURE 12. TURN-OFF ENERGY LOSS AS A FUNCTION OF **COLLECTOR-EMITTER CURRENT COLLECTOR-EMITTER CURRENT** ### Typical Performance Curves (Continued) 100 T<sub>J</sub> = +150°C, V<sub>GE</sub> = 15V, R<sub>G</sub> = 25Ω, L = 100μH 80 CRCUIT 20 0 100 200 300 400 500 600 V<sub>CE(PK)</sub>, COLLECTOR-TO-EMITTER VOLTAGE (V) FIGURE 13. OPERATING FREQUENCY AS A FUNCTION OF COLLECTOR-EMITTER CURRENT FIGURE 14. SWITCHING SAFE OPERATING AREA FIGURE 15. CAPACITANCE AS A FUNCTION OF COLLECTOR-EMITTER VOLTAGE FIGUE 16. GATE CHARGE WAVEFORMS FIGURE 17. IGBT NORMALIZED TRANSIENT THERMAL IMPEDANCE, JUNCTION TO CASE # Typical Performance Curves (Continued) FIGURE 18. DIODE FORWARD CURRENT AS A FUNCTION OF FORWARD VOLTAGE DROP FIGURE 19. RECOVERY TIMES AS A FUNCTION OF FORWARD CURRENT # Test Circuit and Waveforms FIGURE 20. INDUCTIVE SWITCHING TEST CIRCUIT FIGURE 21. SWITCHING TEST WAVEFORMS ### Operating Frequency Information Operating frequency information for a typical device (Figure 13) is presented as a guide for estimating device performance for a specific application. Other typical frequency vs collector current ( $I_{CE}$ ) plots are possible using the information shown for a typical unit in Figures 4, 7, 8, 11 and 12. The operating frequency plot (Figure 13) of a typical device shows $f_{MAX1}$ or $f_{MAX2}$ whichever is smaller at each point. The information is based on measurements of a typical device and is bounded by the maximum rated junction temperature. $f_{MAX1}$ is defined by $f_{MAX1} = 0.05/(t_{D(OFF)I} + t_{D(ON)I})$ . Deadtime (the denominator) has been arbitrarily held to 10% of the on-state time for a 50% duty factor. Other definitions are possible. $t_{D(OFF)I}$ and $t_{D(ON)I}$ are defined in Figure 21. Device turn-off delay can establish an additional frequency limiting condition for an application other than $T_{JMAX}$ . $t_{D(OFF)I}$ is important when controlling output ripple under a lightly loaded condition. $f_{MAX2}$ is defined by $f_{MAX2}=(P_D-P_C)/(E_{OFF}+E_{ON}).$ The allowable dissipation $(P_D)$ is defined by $P_D=(T_{JMAX}-T_C)/R_{\theta JC}.$ The sum of device switching and conduction losses must not exceed $P_D.$ A 50% duty factor was used (Figure 13) and the conduction losses $(P_C)$ are approximated by $P_C=(V_{CE}\ x\ I_{CE})/2.$ $E_{ON}$ and $E_{OFF}$ are defined in the switching waveforms shown in Figure 21. $E_{ON}$ is the integral of the instantaneous power loss ( $I_{CE} \times V_{CE}$ ) during turn-on and $E_{OFF}$ is the integral of the instantaneous power loss during turn-off. All tail losses are included in the calculation for $E_{OFF}$ ; i.e. the collector current equals zero ( $I_{CE} = 0$ ). ### Handling Precautions for IGBT's Insulated Gate Bipolar Transistors are susceptible to gate-insulation damage by the electrostatic discharge of energy through the devices. When handling these devices, care should be exercised to assure that the static charge built in the handler's body capacitance is not discharged through the device. With proper handling and application procedures, however, IGBT's are currently being extensively used in production by numerous equipment manufacturers in military, industrial and consumer applications, with virtually no damage problems due to electrostatic discharge. IGBT's can be handled safely if the following basic precautions are taken: - Prior to assembly into a circuit, all leads should be kept shorted together either by the use of metal shorting springs or by the insertion into conductive material such as †"ECCOSORBD LD26" or equivalent. - When devices are removed by hand from their carriers, the hand being used should be grounded by any suitable means, for example, with a metallic wristband. - 3. Tips of soldering irons should be grounded. - Devices should never be inserted into or removed from circuits with power on. - Gate Voltage Rating Never exceed the gate-voltage rating of V<sub>GEM</sub>. Exceeding the rated V<sub>GE</sub> can result in permanent damage to the oxide layer in the gate region. - 6. Gate Termination The gates of these devices are essentially capacitors. Circuits that leave the gate open-circuited or floating should be avoided. These conditions can result in turn-on of the device due to voltage buildup on the input capacitor due to leakage currents or pickup. - Gate Protection These devices do not have an internal monolithic Zener Diode from gate to emitter. If gate protection is required an external Zener is recommended. †Trademark Emerson and Cumming, Inc. ## **Packaging** | LEAD# | TERMINAL | |-------|-----------| | 1 | Gate | | 2 | Collector | | 3 | Emitter | | 4 | Collector | TO-247 3 LEAD JEDEC STYLE TO-247 PLASTIC PACKAGE | | INCHES | | MILLIM | | | |----------------|--------|-------|-----------|-------|---------| | SYMBOL | MIN | MAX | MIN | MAX | NOTES | | Α | 0.180 | 0.190 | 4.58 | 4.82 | - | | b | 0.046 | 0.051 | 1.17 | 1.29 | 2, 3 | | b <sub>1</sub> | 0.060 | 0.070 | 1.53 | 1.77 | 1, 2 | | b <sub>2</sub> | 0.095 | 0.105 | 2.42 | 2.66 | 1, 2 | | С | 0.020 | 0.026 | 0.51 | 0.66 | 1, 2, 3 | | D | 0.800 | 0.820 | 20.32 | 20.82 | - | | E | 0.605 | 0.625 | 15.37 | 15.87 | - | | е | 0.219 | TYP | 5.56 TYP | | 4 | | e <sub>1</sub> | 0.438 | BSC | 11.12 BSC | | 4 | | J <sub>1</sub> | 0.090 | 0.105 | 2.29 | 2.66 | 5 | | L | 0.620 | 0.640 | 15.75 | 16.25 | - | | L <sub>1</sub> | 0.145 | 0.155 | 3.69 | 3.93 | 1 | | ØP | 0.138 | 0.144 | 3.51 | 3.65 | - | | Q | 0.210 | 0.220 | 5.34 5.58 | | - | | ØR | 0.195 | 0.205 | 4.96 | 5.20 | - | | ØS | 0.260 | 0.270 | 6.61 | 6.85 | - | #### NOTES: - 1. Lead dimension and finish uncontrolled in L<sub>1</sub>. - 2. Lead dimension (without solder). - 3. Add typically 0.002 inches (0.05mm) for solder coating. - 4. Position of lead to be measured 0.250 inches (6.35mm) from bottom of dimension D. - 5. Position of lead to be measured 0.100 inches (2.54mm) from bottom of dimension D. - 6. Controlling dimension: Inch. - 7. Revision 1 dated 1-93. All Harris Semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification. Harris Semiconductor products are sold by description only. Harris Semiconductor reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Harris is believed to be accurate and reliable. However, no responsibility is assumed by Harris or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Harris or its subsidiaries. ### Sales Office Headquarters For general information regarding Harris Semiconductor and its products, call 1-800-4-HARRIS #### **UNITED STATES** Harris Semiconductor P. O. Box 883, Mail Stop 53-210 Melbourne, FL 32902 TEL: 1-800-442-7747 (407) 729-4984 FAX: (407) 729-5321 ### **EUROPE** Harris Semiconductor Mercure Center 100, Rue de la Fusee 1130 Brussels, Belgium TEL: (32) 2.724.2111 FAX: (32) 2.724.22.05 ### **ASIA** Harris Semiconductor PTE Ltd. No. 1 Tannery Road Cencon 1, #09-01 Singapore 1334 TEL: (65) 748-4200 FAX: (65) 748-0400