DISCRETE SEMICONDUCTORS

Product specification File under Discrete Semiconductors, SC01 1996 May 09

PZTM1102

FEATURES

- Low output capacitance
- Fast switching time
- Integrated Schottky protection diode.

APPLICATIONS

• High-speed switching for industrial applications.

PINNING

PIN	DESCRIPTION
1	cathode Schottky
2	base
3	emitter
4	collector, anode Schottky

DESCRIPTION

Combination of a PNP transistor and a Schottky barrier diode in a plastic

SOT223 package. NPN complement: PZTM1101.

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
PNP trans	istor			-	
V _{CBO}	collector-base voltage	open emitter	-	-40	V
V _{CES}	collector-emitter voltage	$V_{BE} = 0$	_	-40	V
V _{EBO}	emitter-base voltage	open collector	_	-6	V
I _C	collector current (DC)		_	-200	mA
Schottky	barrier diode				
V _R	continuous reverse voltage		-	40	V
l _F	forward current (DC)		_	1	A
I _{F(AV)}	average forward current		_	1	A
Р	power dissipation	up to $T_{amb} = 25 \text{ °C}$; note 1	_	0.5	W
Tj	junction temperature	reverse current applied	_	125	°C
		forward current applied	_	150	°C
Combined	l device			-	, ,
P _{tot}	total power dissipation	up to $T_{amb} = 25 \text{ °C}$; note 2	-	1.2	W
T _{amb}	operating ambient temperature		-55	+150	°C
T _{stg}	storage temperature		-55	+150	°C
Tj	junction temperature		_	150	°C

Notes

1. An additional copper area of >20 mm² is required for pin 1, if power dissipation in the Schottky die is >0.5 W.

2. It is not allowed to dissipate the total power of 1.2 W in the Schottky die only.

PZTM1102

ELECTRICAL CHARACTERISTICS

 $T_{amb} = 25 \ ^{\circ}C$ unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
NPN trans	istor				•
V _{(BR)CBO}	collector-base breakdown voltage	open emitter; $I_C = -10 \ \mu A$; $I_E = 0$; $T_{amb} = -55 \ to +150 \ ^\circ C$; note 1	-40	-	V
V _{(BR)CES}	collector-emitter breakdown voltage	open base; $I_C = -1$ mA; $V_{BE} = 0$; $T_{amb} = -55$ to +150 °C; note 1	-40	-	V
V _{(BR)EBO}	emitter-base breakdown voltage	open collector; $I_E = -10 \ \mu$ A; $I_C = 0$; $T_{amb} = -55 \ to +150 \ ^{\circ}C$; note 1	-6	-	V
I _{CES}	collector-emitter cut-off	$V_{CE} = -20 \text{ V}; \text{ V}_{BE} = 0$	_	100	nA
	current	$V_{CE} = -20 \text{ V}; V_{BE} = 0; T_{amb} = -55 \text{ to } +150 ^{\circ}\text{C}$	_	50	μA
I _{EBO}	emitter-base cut-off current	$V_{EB} = -6 V; I_C = 0$	_	50	nA
		$V_{EB} = -6 \text{ V}; \text{ I}_{C} = 0; \text{ T}_{amb} = -55 \text{ to } +150 ^{\circ}\text{C}$	_	10	μA
V _{CEsat}	collector-emitter saturation	note 1			
	voltage	$I_{\rm C} = -10 \text{ mA}; I_{\rm B} = -1 \text{ mA}$	-	-200	mV
		$I_{\rm C} = -50 \text{ mA}; I_{\rm B} = -3.2 \text{ mA}$	-	-300	mV
V _{CEsat}	collector-emitter saturation	T _{amb} = -55 to +150 °C; note 1			
	voltage	$I_{\rm C} = -10 \text{ mA}; I_{\rm B} = -1 \text{ mA}$	_	-250	mV
		$I_{\rm C} = -50 \text{ mA}; I_{\rm B} = -3.2 \text{ mA}$	_	-350	mV
V _{BEsat}	base-emitter saturation	note 1			
	voltage	$I_{\rm C} = -10 \text{ mA}; I_{\rm B} = -1 \text{ mA}$	_	-850	mV
		$I_{\rm C} = -50 \text{ mA}; I_{\rm B} = -5 \text{ mA}$	_	-950	mV
V _{BEsat}	base-emitter saturation	$T_{amb} = -55$ to +150 °C; note 1			
	voltage	$I_{\rm C} = -10 \text{ mA}; I_{\rm B} = -1 \text{ mA}$	_	-1.0	V
		$I_{\rm C} = -50 \text{ mA}; I_{\rm B} = -5 \text{ mA}$	_	-1.1	V
C _{ob}	output capacitance	$I_E = i_e = 0; V_{CB} = -5 V; f = 1 MHz$	_	4.5	pF
C _{ib}	input capacitance	$I_{\rm C} = I_{\rm c} = 0; V_{\rm EB} = -0.5 \text{ V}; \text{ f} = 1 \text{ MHz}$	_	10	pF
f _T	transition frequency	$I_{\rm C} = -10$ mA; $V_{\rm CE} = -20$ V; f = 100 MHz	250	_	MHz
h _{FE}	DC current gain	$V_{CE} = -1$ V; note 1			
		$I_{\rm C} = -0.1 \rm{mA}$	40	_	
		$I_{\rm C} = -1 \rm mA$	70	_	
		$I_{\rm C} = -10 \rm{mA}$	100	300	
		$I_{\rm C} = -100 \rm{mA}$	30	_	
h _{FE}	DC current gain	$V_{CE} = -1$ V; $T_{amb} = -55$ to +150 °C; note 1			
		$I_{\rm C} = -10 \text{ mA}$	60	500	
		$I_{\rm C} = -100 \rm{mA}$	15	_	
SWITCHING	TIMES (see Figs 2 and 3)	v	_	1	<u> </u>
t _d	delay time	V _{CC} = 5 V	3	7	ns
t _r	rise time	$I_{\rm C} = 50 \mathrm{mA}$	13	23	ns
t _s	storage time	$V_i = 0$ to 5 V	200	380	ns
ts t _f	fall time		50	80	ns

PZTM1102

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
Schottky I	barrier diode		- I	- !	•
V _F forv	forward voltage	I _F = 100 mA; note 1	_	330	mV
		I _F = 100 mA; T _{amb} = -55 to +150 °C; note 1	_	400	mV
		I _F = 1 A; note 1	_	500	mV
		I _F = 1 A; T _{amb} = -55 to +150 °C; note 1	_	560	mV
I _R rever	reverse current	V _R = 40 V; note 1	_	300	μA
		V _R = 40 V; T _j = 125 °C; T _{amb} = -55 to +150 °C; note 1	-	35 ⁽²⁾	mA
I _R	reverse current	V _R = 10 V; note 1	-	40	μA
		V _R = 10 V; T _j = 125 °C; T _{amb} = -55 to +150 °C; note 1	-	15 ⁽²⁾	mA
Cj	junction capacitance	V _R = 0 V; f = 1 MHz	_	250	pF

Notes

1. Measured under pulsed conditions: $t_p \leq 300 \ \mu s; \ \delta \leq 0.01.$

2. Limiting value for $T_j = 125 \text{ °C}$; $T_j = 150 \text{ °C}$ with reverse current applied is not allowed as this may cause thermal runaway leading to thermal destruction of the diode. A peak junction temperature of $T_j = 150 \text{ °C}$ is only allowed with forward voltage applied.

THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	CONDITIONS	VALUE	UNIT
R _{th j-a}	thermal resistance from junction to ambient (for the transistor)	note 1	100	K/W
R _{th j-a}	thermal resistance from junction to ambient (for the Schottky diode)	note 1	250	K/W

Note

1. Refer to SOT223 standard mounting conditions.

PZTM1102

GRAPHICAL DATA

Product specification

PZTM1102

PACKAGE OUTLINE

DEFINITIONS

Data sheet status	
Objective specification	This data sheet contains target or goal specifications for product development.
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.
Product specification	This data sheet contains final product specifications.
Limiting values	
more of the limiting values of the device at these or at	accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or may cause permanent damage to the device. These are stress ratings only and operation any other conditions above those given in the Characteristics sections of the specification limiting values for extended periods may affect device reliability.
Application information	
Whore application informat	ion is given, it is advisory and does not form part of the specification

Where application information is given, it is advisory and does not form part of the specification.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

PZTM1102