MJE18002D2

POWER TRANSISTORS

Advance Information

High Speed, High Gain Bipolar NPN Power Transistor with Integrated Collector-Emitter Diode and Built-in Efficient Antisaturation Network

The MJE18002D2 use a newly developed technology, so called H2BIP*, to design the state of art transistor dedicated to the Electronic Light Ballast and PFC** circuit. The main advantages brought by these new transistors are:

- Improved Global Efficiency Due to the Low Base Drive Requirements
- DC Current Gain Typically Centered at 45
- Extremely Low Storage Time Variation, Thanks to the Antisaturation Network
- Easy to Use Thanks to the Integrated Collector/Emitter Diode

The MOTOROLA "Sig Sixma" philosophy provides tight and reproductible parameter distribution.

* High speed High gain BIPolar transistor

** Power Factor Control

MAXIMUM RATINGS

Rating	Symbol	Value	Unit	
Collector-Emitter Sustaining Voltage	V _{CEO}	450	Vdc	
Collector–Base Breakdown Voltage	V _{CBO}	1000	Vdc	
Collector–Emitter Breakdown Voltage	V _{CES}	1000	Vdc	
Emitter-Base Voltage	V _{EBO}	12	Vdc	
Collector Current — Continuous — Peak (1)	IC ICM	2 5	Adc	
Base Current — Continuous — Peak (1)	I _B I _{BM}	1 2	Adc	
*Total Device Dissipation @ T _C = 25°C *Derate above 25°C	PD	50 0.4	Watt W/°C	
Operating and Storage Temperature	TJ, T _{stg}	-65 to 150	°C	

THERMAL CHARACTERISTICS

Thermal Resistance — Junction to Case	R _θ JC	2.5	°C/W
— Junction to Ambient	R _θ JA	62.5	
Maximum Lead Temperature for Soldering Purposes: 1/8" from case for 5 seconds	ΤL	260	°C

(1) Pulse Test: Pulse Width = 5 ms, Duty Cycle \leq 10%.

This document contains information on a new product. Specifications and information herein are subject to change without notice.

Designer's and SWITCHMODE are trademarks of Motorola, Inc.

MJE18002D2

ELECTRICAL CHARACTERISTICS (T_C = 25° C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit	
OFF CHARACTERISTICS						
Collector–Emitter Sustaining Voltage $(I_C = 100 \text{ mA}, L = 25 \text{ mH})$	VCEO(sus)	450	570		Vdc	
Collector Cutoff Current (V_{CE} = Rated V_{CEO} , I_B = 0)	ICEO			100	μAdc	
Collector Cutoff Current (V _{CE} = Rated V _{CES} , V _{EB} = 0) $(V_{CE} = 500 \text{ V}, \text{ V}_{EB} = 0)$	@ $T_C = 25^{\circ}C$ @ $T_C = 125^{\circ}C$ @ $T_C = 125^{\circ}C$	ICES			100 500 100	μAdc
Emitter–Cutoff Current ($V_{EB} = 10 \text{ Vdc}, I_C = 0$)	IEBO			100	μAdc	
ON CHARACTERISTICS		11				
Base–Emitter Saturation Voltage ($I_C = 0.4 \text{ Adc}, I_B = 40 \text{ mAdc}$) ($I_C = 1 \text{ Adc}, I_B = 0.2 \text{ Adc}$)	@ T _C = 25°C @ T _C = 25°C	V _{BE(sat)}		0.78 0.87	1 1.1	Vdc
Collector–Emitter Saturation Voltage (I _C = 0.4 Adc, I _B = 40 mAdc)	@ T _C = 25°C @ T _C = 125°C	VCE(sat)		0.36 0.5	0.6 1	Vdc
$(I_{C} = 1 \text{ Adc}, I_{B} = 0.2 \text{ Adc})$	@ T _C = 25°C @ T _C = 125°C			0.4 0.65	0.75 1.2	
DC Current Gain (I _C = 0.4 Adc, V _{CE} = 1 Vdc)	@ T _C = 25°C @ T _C = 125°C	hFE	14 8	25 15		_
$(I_C = 1 \text{ Adc}, V_{CE} = 1 \text{ Vdc})$	@ T _C = 25°C @ T _C = 125°C		6 4	10 6		
DYNAMIC CHARACTERISTICS	L	1		1		
Current Gain Bandwidth (I _C = 0.5 Adc, V _{CE} = 10 Vdc, f = 1 MHz)		ŕΤ		13		MHz
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 1 MHz)	C _{ob}		50	100	pF	
Input Capacitance (V _{EB} = 8 Vdc)	C _{ib}		340	500	pF	
DIODE CHARACTERISTICS		11		1		
Forward Diode Voltage (I _{EC} = 1 Adc)	@ T _C = 25°C	V _{EC}		1.2	1.5	V
(I _{EC} = 0.2 Adc)	@ T _C = 25°C @ T _C = 125°C			0.9 0.6	1.2	
(I _{EC} = 0.4 Adc)	@ T _C = 25°C @ T _C = 125°C			1 0.6	1.3	
Forward Recovery Time (I _F = 0.2 Adc, di/dt = 10 A/ μ s)	@ T _C = 25°C	t _{fr}		540		ns
(I _F = 0.4 Adc, di/dt = 10 A/µs)	@ T _C = 25°C	1 1		517		1
$(I_{\rm F} = 1 \text{ Adc}, \text{ di/dt} = 10 \text{ A/}\mu\text{s})$ @ $T_{\rm C} = 25^{\circ}\text{C}$		1 1		480		1

ELECTRICAL CHARACTERISTICS (T_C = 25° C unless otherwise noted)

	Characteristic	Symbol	Min	Тур	Max	Unit		
SWITCHING CHARACTER	RISTICS: Resistive	Load (D.C.	≤ 10%, Pulse Wid	th = 20 μs)				-
Turn–on Time	$I_{C} = 1 \text{ Adc}, I_{B1} = 0.2 \text{ Adc}$ $I_{B2} = 0.5 \text{ Adc}$ $V_{CC} = 300 \text{ Vdc}$		@ T _C = 25°C @ T _C = 125°C	ton		100 94	150	ns
Turn–off Time			@ T _C = 25°C @ T _C = 125°C	^t off	0.95	1.5	1.25	μs
WITCHING CHARACTER	RISTICS: Inductive	Load (V _{cla}	mp = 300 V, V _{CC} =	= 15 V, L = 200	μH)		-	-
Fall Time	$I_{C} = 0.4 \text{ Adc}$ $I_{B1} = 40 \text{ mAdc}$ $I_{B2} = 0.2 \text{ Adc}$		@ T _C = 25°C @ T _C = 125°C	tf		130 120	175	ns
Storage Time			@ T _C = 25°C @ T _C = 125°C	t _S		0.55 0.7	0.65	μs
Crossover Time			@ T _C = 25°C @ T _C = 125°C	t _c		110 100	175	ns
Fall Time	IC = 0.8 Adc IB1 = 160 mAdc IB2 = 160 mAdc		@ T _C = 25°C @ T _C = 125°C	tf		130 140	175	ns
Storage Time			@ T _C = 25°C @ T _C = 125°C	ts	2.1	3	2.4	μs
Crossover Time			@ T _C = 25°C @ T _C = 125°C	t _C		275 350	350	ns
Fall Time	I _C = 1 Adc I _{B1} = 0.2 Adc I _{B2} = 0.5 Adc		@ T _C = 25°C @ T _C = 125°C	tf		100 100	150	ns
Storage Time			@ T _C = 25°C @ T _C = 125°C	t _s		1.05 1.45	1.2	μs
Crossover Time			@ T _C = 25°C @ T _C = 125°C	t _C		100 115	150	ns
OYNAMIC SATURATION	/OLTAGE		•					·
Dynamic Saturation Voltage:	$I_{B1} = 40 \text{ mA}$	@ 1 µs	@ T _C = 25°C	VCE(dsat)		7.4		V
Determined 1 µs and		@ 3 μs	@ T _C = 25°C			2.5		
3 μ s respectively after rising I _{B1} reaches 90% of final I _{B1}		@ 1 μs	@ T _C = 25°C			11.7		
	$V_{CC} = 300 V$ @ 3 µs		@ T _C = 25°C			1.3		

PACKAGE DIMENSIONS

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and (A) are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1-800-441-2447

MFAX: RMFAX0@email.sps.mot.com - TOUCHTONE (602) 244-6609

JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC, Toshikatsu Otsuki, 6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan. 03-3521-8315

INTERNET: http://Design-NET.com

HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298

