
DISCRETE SEMICONDUCTORS

DATA SHEET

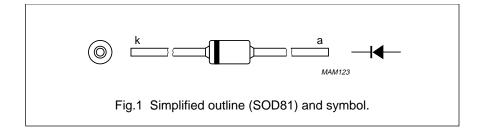
BYD43 seriesFast soft-recovery rectifiers

Product specification Supersedes data of February 1995 File under Discrete Semiconductors, SC01

Fast soft-recovery rectifiers

BYD43 series

FEATURES


- Glass passivated
- High maximum operating temperature
- Low leakage current
- Excellent stability
- Available in ammo-pack.

DESCRIPTION

Cavity free cylindrical glass package through Implotec^{™(1)} technology. This package is hermetically sealed

and fatigue free as coefficients of expansion of all used parts are matched.

(1) Implotec is a trademark of Philips.

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _{RSM}	non-repetitive peak reverse voltage				
	BYD43U		_	1300	V
	BYD43V		_	1500	V
	BYD43-16		_	1700	V
	BYD43-18		_	1900	V
	BYD43-20		_	2100	V
V_{RRM}	repetitive peak reverse voltage				
	BYD43U		_	1200	V
	BYD43V		_	1400	V
	BYD43-16		_	1600	V
	BYD43-18		_	1800	V
	BYD43-20		_	2000	V
I _{F(AV)}	average forward current	T _{tp} = 55 °C; lead length = 10 mm;			
	BYD43U and V	see Figs 2 and 3;	_	1.20	Α
	BYD43-16 to 20	averaged over any 20 ms period; see also Figs 10 and 11	_	0.68	А
$I_{F(AV)}$	average forward current	T _{amb} = 65 °C; PCB mounting (see			
	BYD43U and V	Fig.20); see Figs 4 and 5;	_	0.65	Α
	BYD43-16 to 20	averaged over any 20 ms period; see also Figs 10 and 11	_	0.30	А
I _{FRM}	repetitive peak forward current	T_{tp} = 55 °C; see Figs 6 and 7			
	BYD43U and V		_	11	Α
	BYD43-16 to 20		_	6	Α
I _{FRM}	repetitive peak forward current	T _{amb} = 65 °C; see Figs 8 and 9			
	BYD43U and V		_	6.0	Α
	BYD43-16 to 20			3.2	Α

Fast soft-recovery rectifiers

BYD43 series

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
I _{FSM}	non-repetitive peak forward current	$t = 10 \text{ ms half sinewave; } T_j = T_{j \text{ max}}$			
	BYD43U and V	prior to surge; $V_R = V_{RRMmax}$	_	6	Α
	BYD43-16 to 20		_	6	Α
T _{stg}	storage temperature		-65	+175	°C
Tj	junction temperature	see Figs 12 and 13	-65	+175	°C

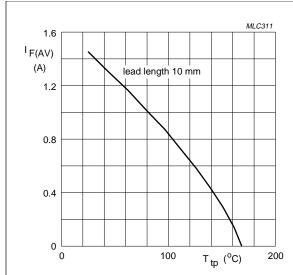
ELECTRICAL CHARACTERISTICS

 $T_i = 25$ °C unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _F	forward voltage	$I_F = 1 \text{ A}; T_j = T_{j \text{ max}};$				
	BYD43U and V	see Figs 14 and 15	_	_	1.20	V
	BYD43-16 to 20		_	_	2.05	V
V _F	forward voltage	I _F = 1 A;				
	BYD43U and V	see Figs 14 and 15	_	_	1.5	V
	BYD43-16 to 20		_	_	2.4	V
I _R	reverse current	$V_R = V_{RRMmax};$				
	BYD43U and V	see Figs 16 and 17	_	_	1	μΑ
	BYD43-16 to 20		_	_	5	μΑ
I _R	reverse current	$V_R = V_{RRMmax}$				
	BYD43U and V	$T_j = 165 ^{\circ}\text{C}$; see Fig 16	_	_	100	μΑ
	BYD43-16 to 20	$T_j = 125 ^{\circ}\text{C}$; see Fig 17	_	_	50	μΑ
t _{rr}	reverse recovery time	when switched from				
	BYD43U and V	$I_F = 0.5 \text{ A to } I_R = 1 \text{ A};$	_	_	250	ns
	BYD43-16 to 20	measured at $I_R = 0.25 \text{ A}$; see Fig 22	_	_	300	ns
C_d	diode capacitance	$f = 1 \text{ MHz}; V_R = 0 \text{ V};$				
	BYD43U and V	see Figs 18 and 19	_	20	_	pF
	BYD43-16 to 20		_	15	_	pF
dl _R	maximum slope of reverse recovery	when switched from				
dt	current	$I_F = 1 \text{ A to } V_R \ge 30 \text{ V}$				
	BYD43U and V	and $dI_F/dt = -1 A/\mu s$; see Fig.21	_	_	5	A/μs
	BYD43-16 to 20	300 1 19.21	_	_	5	A/μs

THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	CONDITIONS	VALUE	UNIT
R _{th j-tp}	thermal resistance from junction to tie-point	lead length = 10 mm	60	K/W
R _{th j-a}	thermal resistance from junction to ambient	note 1	120	K/W


Note

1. Device mounted on an epoxy-glass printed-circuit board, 1.5 mm thick; thickness of Cu-layer \geq 40 μ m, see Fig.20. For more information please refer to the *'General Part of Handbook SC01'*.

Fast soft-recovery rectifiers

BYD43 series

GRAPHICAL DATA

BYD43U and V

 $a = 1.42; \ V_R = V_{RRMmax}; \ \delta = 0.5.$ Switched mode application.

Fig.2 Maximum permissible average forward current as a function of tie-point temperature (including losses due to reverse leakage).

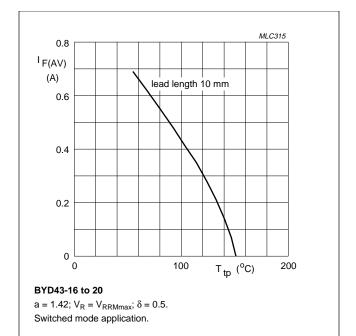
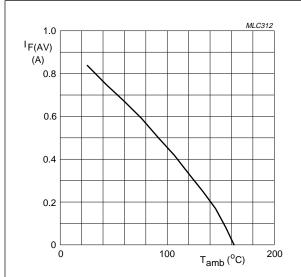
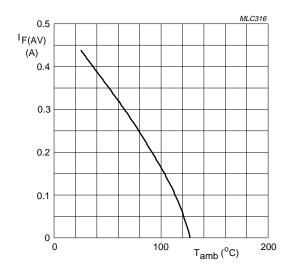



Fig.3 Maximum permissible average forward current as a function of tie-point temperature (including losses due to reverse leakage).


BYD43U and V

a = 1.42; $V_R = V_{RRMmax}$; $\delta = 0.5$.

Device mounted as shown in Fig.20.

Switched mode application.

Fig.4 Maximum permissible average forward current as a function of ambient temperature (including losses due to reverse leakage).

BYD43-16 to 20

a = 1.42; $V_R = V_{RRMmax}$; $\delta = 0.5$.

Device mounted as shown in Fig.20.

Switched mode application.

Fig.5 Maximum permissible average forward current as a function of ambient temperature (including losses due to reverse leakage).

Fast soft-recovery rectifiers

BYD43 series

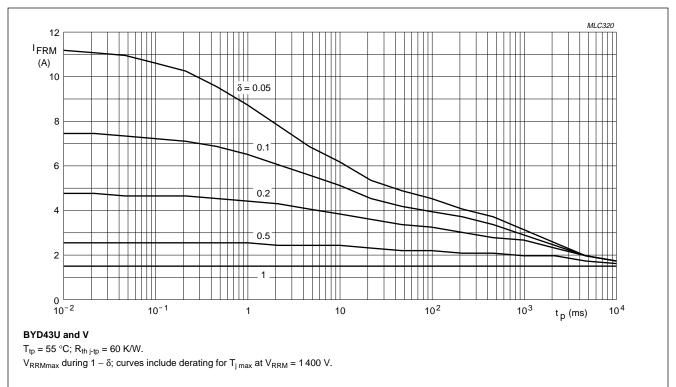
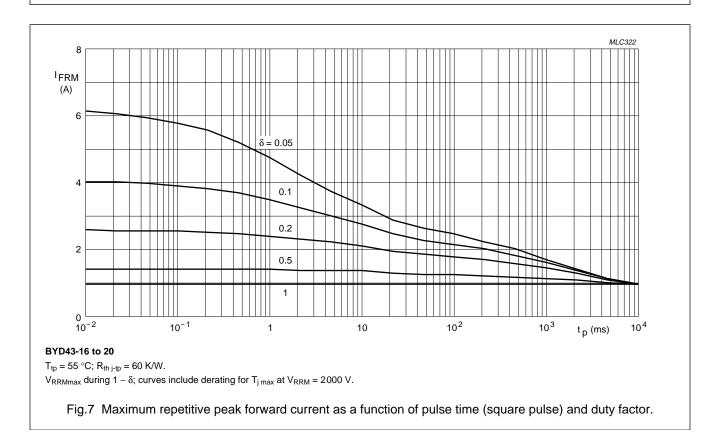



Fig.6 Maximum repetitive peak forward current as a function of pulse time (square pulse) and duty factor.

Fast soft-recovery rectifiers

BYD43 series

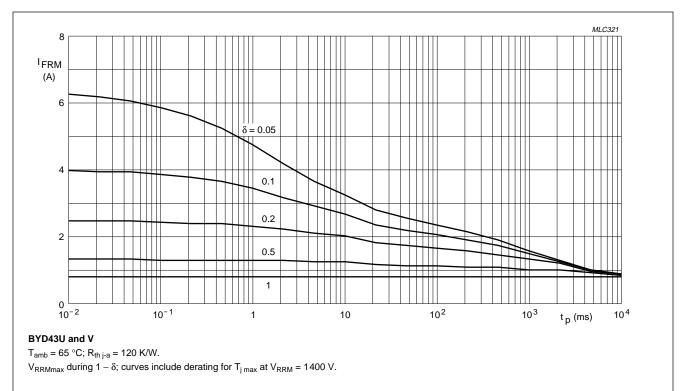
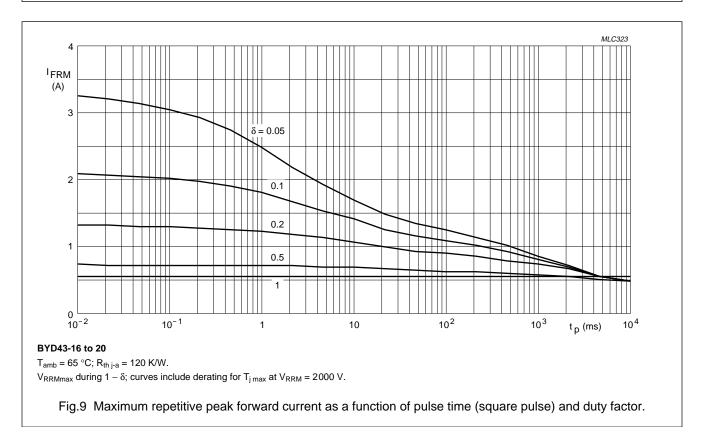
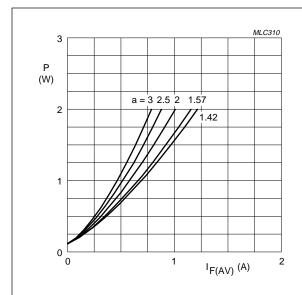
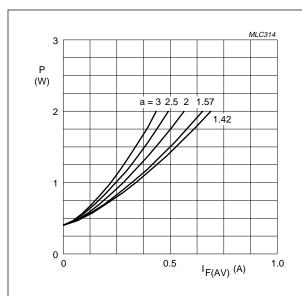




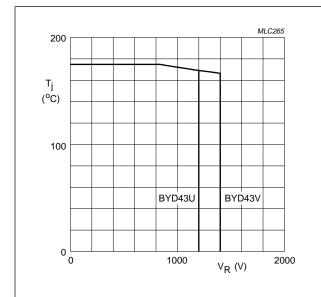
Fig.8 Maximum repetitive peak forward current as a function of pulse time (square pulse) and duty factor.

Fast soft-recovery rectifiers


BYD43 series

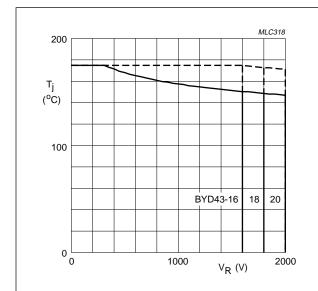
BYD43U and V

 $a = I_{F(RMS)}/I_{F(AV)}; \ V_R = V_{RRMmax}; \ \delta = 0.5.$


Fig.10 Maximum steady state power dissipation (forward plus leakage current losses, excluding switching losses) as a function of average forward current.

BYD43-16 to 20

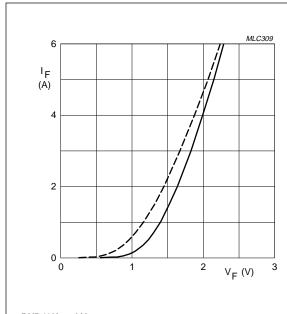
 $a = I_{F(RMS)}/I_{F(AV)}$; $V_R = V_{RRMmax}$; $\delta = 0.5$.


Fig.11 Maximum steady state power dissipation (forward plus leakage current losses, excluding switching losses) as a function of average forward current.

BYD43U and V

 V_{RRM} ; $\delta = 0.5$.

Fig.12 Maximum permissible junction temperature as a function of reverse voltage.

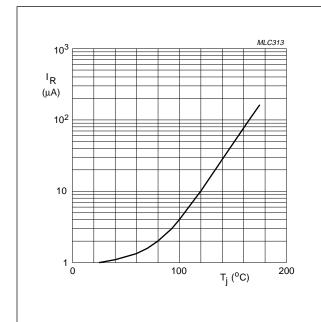

BYD43-16 to 20

 $\begin{aligned} & \text{Dotted line} = V_{RRM}; \ \delta = 0.1. \\ & \text{Solid line} = V_{RRM}; \ \delta = 0.5. \end{aligned}$

Fig.13 Maximum permissible junction temperature as a function of reverse voltage.

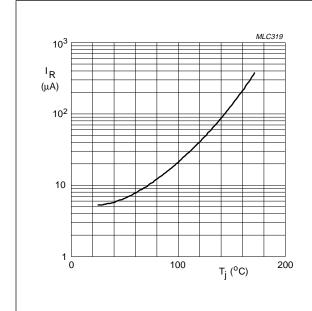
Fast soft-recovery rectifiers

BYD43 series


BYD43U and V

Dotted line: $T_j = 175$ °C. Solid line: $T_j = 25$ °C.

Fig.14 Forward current as a function of forward voltage; maximum values.


Fig.15 Forward current as a function of forward voltage; maximum values.

BYD43U and V

 $V_R = V_{RRMmax}$.

Fig.16 Reverse current as a function of junction temperature; maximum values.

BYD43-16 to 20

 $V_R = V_{RRMmax}$.

Fig.17 Reverse current as a function of junction temperature; maximum values.

Fast soft-recovery rectifiers

BYD43 series

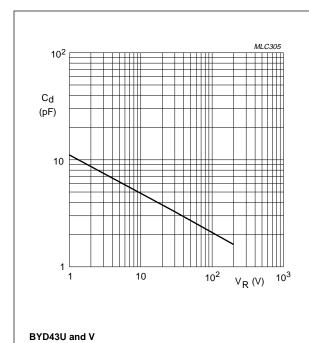
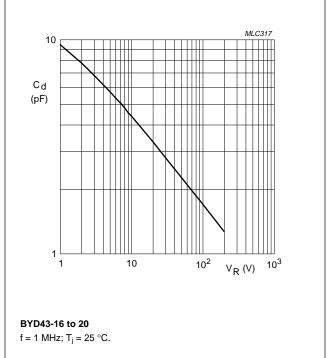
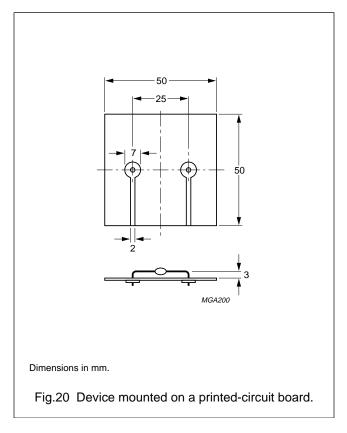
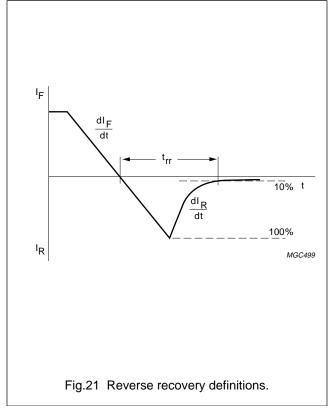
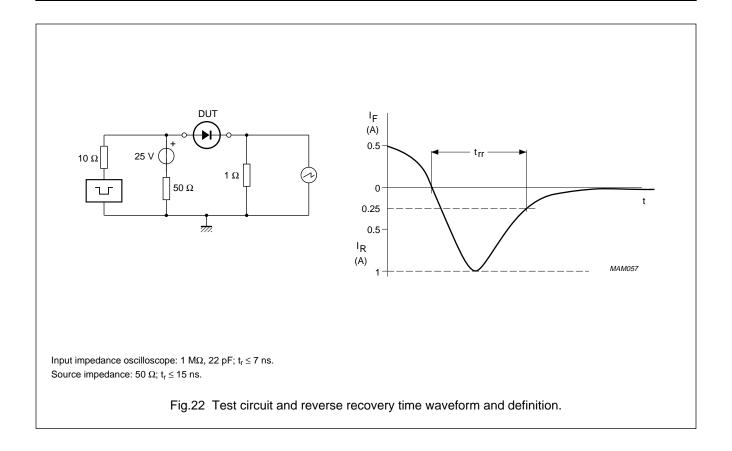


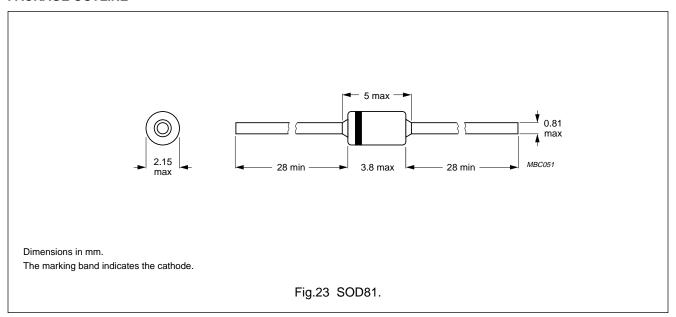
Fig.18 Diode capacitance as a function of reverse voltage; typical values.

f = 1 MHz; T_j = 25 °C.


Fig.19 Diode capacitance as a function of reverse voltage; typical values.

Fast soft-recovery rectifiers


BYD43 series

Fast soft-recovery rectifiers

BYD43 series

PACKAGE OUTLINE

DEFINITIONS

Data Sheet Status	
Objective specification	This data sheet contains target or goal specifications for product development.
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.
Product specification	This data sheet contains final product specifications.
Limiting values	

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and does not form part of the specification.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.