Triacs BT136X series # **GENERAL DESCRIPTION** # Glass passivated triacs in a full pack plastic envelope, intended for use in applications requiring high bidirectional transient and blocking voltage capability and high thermal cycling performance. Typical applications include motor control, industrial and domestic lighting, heating and static switching. # **QUICK REFERENCE DATA** | SYMBOL | PARAMETER | MAX. | MAX. | MAX. | UNIT | |---------------------|---|---------------------|---------------------|---------------------|--------| | | BT136X-
BT136X-
BT136X- | 500
500F
500G | 600
600F
600G | 800
800F
800G | | | V_{DRM} | Repetitive peak off-state | 500 | 600 | 800 | V | | I _{T(RMS)} | voltages
RMS on-state current
Non-repetitive peak on-state
current | 4
25 | 4
25 | 4
25 | A
A | ### **PINNING - SOT186A** | PIN | DESCRIPTION | |------|-----------------| | 1 | main terminal 1 | | 2 | main terminal 2 | | 3 | gate | | case | isolated | # **PIN CONFIGURATION** ### **SYMBOL** # LIMITING VALUES Limiting values in accordance with the Absolute Maximum System (IEC 134). | SYMBOL | PARAMETER | CONDITIONS MIN. MAX. | | | UNIT | | | |--|---|---|---------------|---------------------------------|---------------------------------|--------------------|------------------------------| | V_{DRM} | Repetitive peak off-state voltages | | - | -500
500 ¹ | -600
600 ¹ | -800
800 | \
\ | | I _{T(RMS)} | RMS on-state current
Non-repetitive peak
on-state current | full sine wave; $T_{hs} \le 92 ^{\circ}\text{C}$
full sine wave; $T_j = 125 ^{\circ}\text{C}$ prior
to surge; with reapplied $V_{DRM(max)}$ | - | | 4 | | А | | | | t = 20 ms
t = 16.7 ms | - | | 25
27 | | Α | | l²t
dl _⊤ /dt | I ² t for fusing
Repetitive rate of rise of
on-state current after | t = 10.7 ms
t = 10 ms
$I_{TM} = 6 \text{ A}; I_{G} = 0.2 \text{ A};$
$dI_{G}/dt = 0.2 \text{ A}/\mu\text{s}$ | - | | 3.1 | | A
A ² s | | | triggering | T2+ G+
T2+ G-
T2- G-
T2- G+ | -
-
- | | 50
50
50
10 | | Α/μs
Α/μs
Α/μs
Α/μs | | I _{GM}
V _{GM}
P _{GM} | Peak gate current
Peak gate voltage
Peak gate power | 12-04 | -
-
- | | 2
5
5 | | V
W | | P _{G(AV)}
T _{stg}
T _j | Average gate power
Storage temperature
Operating junction
temperature | over any 20 ms period | -
-40
- | | 0.5
150
125 | | ους | ¹ Although not recommended, off-state voltages up to 800V may be applied without damage, but the triac may switch to the on-state. The rate of rise of current should not exceed 3 A/µs. Triacs BT136X series # **ISOLATION LIMITING VALUE & CHARACTERISTIC** T_{hs} = 25 °C unless otherwise specified | SYMBOL | PARAMETER | CONDITIONS | MIN. | TYP. | MAX. | UNIT | |-------------------|--|---|------|------|------|------| | V _{isol} | R.M.S. isolation voltage from all three terminals to external heatsink | f = 50-60 Hz; sinusoidal
waveform;
R.H. ≤ 65%; clean and dustfree | - | | 2500 | V | | C _{isol} | Capacitance from T2 to external heatsink | f = 1 MHz | - | 10 | - | pF | # THERMAL RESISTANCES | SYMBOL | PARAMETER | CONDITIONS | MIN. | TYP. | MAX. | UNIT | |----------------------|--|--|------|--------------|------------|-------------------| | R _{th j-hs} | Thermal resistance junction to heatsink Thermal resistance | full or half cycle
with heatsink compound
without heatsink compound
in free air | | -
-
55 | 5.5
7.2 | K/W
K/W
K/W | | rth j-a | junction to ambient | in nee an | | 3 | | 1000 | # STATIC CHARACTERISTICS T_i = 25 °C unless otherwise stated | SYMBOL | PARAMETER | CONDITIONS | MIN. | TYP. | MAX. | | | UNIT | |-----------------|--|---|----------------|-------------------|----------------|------------------|----------------|----------------| | I _{GT} | Gate trigger current | BT136X- $V_D = 12 \text{ V}; I_T = 0.1 \text{ A}$ | | | | F | G | | | ·G1 | Jake trigger earrorn | T2+ G+
T2+ G- | - | 5
8 | 35
35 | 25
25 | 50
50 | mA
mA | | | | T2- G-
T2- G+ | - | 11
30 | 35
70 | 25
70 | 50
100 | mA
mA | | I _L | Latching current | $V_D = 12 \text{ V}; I_{GT} = 0.1 \text{ A}$
T2 + G +
T2 + G -
T2 - G - | -
-
- | 7
16
5 | 20
30
20 | 20
30
20 | 30
45
30 | mA
mA
mA | | I _H | Holding current | $V_D = 12 \text{ V}; I_{GT} = 0.1 \text{ A}$ | - | 7
5 | 30
15 | 30
15 | 45
30 | mA
mA | | V_{T} | On-state voltage
Gate trigger voltage | $I_T = 5 \text{ A}$
$V_D = 12 \text{ V}; I_T = 0.1 \text{ A}$
$V_D = 400 \text{ V}; I_T = 0.1 \text{ A};$ | -
-
0.25 | 1.4
0.7
0.4 | | 1.70
1.5
- | | V
V | | I _D | Off-state leakage current | $ \begin{aligned} & T_j = 125 \text{ °C} \\ & V_D = V_{DRM(max)}; \\ & T_j = 125 \text{ °C} \end{aligned} $ | - | 0.1 | | 0.5 | | mA | Triacs BT136X series ### DYNAMIC CHARACTERISTICS T_i = 25 °C unless otherwise stated | SYMBOL | PARAMETER | CONDITIONS | | MIN. | | TYP. | MAX. | UNIT | |-----------------------|--|---|---------|----------------|-----------------|------|------|------| | dV _D /dt | Critical rate of rise of off-state voltage | BT136X- $V_{DM} = 67\% V_{DRM(max)};$ $T_i = 125 °C;$ exponential |
100 | F
50 | G
200 | 250 | - | V/μs | | dV _{com} /dt | Critical rate of change of | waveform; gate open circuit $V_{DM} = 400 \text{ V}; T_j = 95 ^{\circ}\text{C};$ $I_{T(RMS)} = 4 \text{ A};$ $dI_{com}/dt = 1.8 \text{ A/ms}; gate$ | - | - | 10 | 50 | - | V/μs | | t _{gt} | Gate controlled turn-on time | open circuit $I_{TM} = 6 \text{ A}; V_D = V_{DRM(max)};$ $I_G = 0.1 \text{ A}; dI_G/dt = 5 \text{ A}/\mu s$ | - | - | - | 2 | 1 | μs | Fig.1. Maximum on-state dissipation, P_{tot} , versus rms on-state current, $I_{T(RMS)}$, where α = conduction angle. Fig.3. Maximum permissible non-repetitive peak on-state current I_{TSM} , versus number of cycles, for sinusoidal currents, f = 50 Hz. Fig.2. Maximum permissible non-repetitive peak on-state current I_{TSM} , versus pulse width t_p , for sinusoidal currents, $t_p \le 20$ ms. Fig.4. Maximum permissible rms current $I_{T(RMS)}$, versus heatsink temperature T_{hs} . **Triacs** BT136X series Fig.5. Maximum permissible repetitive rms on-state current $I_{T(RMS)}$, versus surge duration, for sinusoidal currents, f = 50 Hz; $T_{hs} \le 92$ °C. Fig.8. Normalised latching current $I_L(T_i)/I_L(25^{\circ}C)$, versus junction temperature T_i . Fig.6. Normalised gate trigger voltage $V_{GT}(T_i)/V_{GT}(25^{\circ}C)$, versus junction temperature T_i . Fig.9. Normalised holding current $I_H(T_i)/I_H(25^{\circ}C)$, versus junction temperature T_i . Fig.7. Normalised gate trigger current $I_{GT}(T_j)/I_{GT}(25^{\circ}C)$, versus junction temperature $T_{j^{\circ}}$ Fig. 10. Typical and maximum on-state characteristic. Triacs BT136X series Fig.12. Typical commutation dV/dt versus junction temperature, parameter commutation dl_{7}/dt . The triac should commutate when the dV/dt is below the value on the appropriate curve for pre-commutation dl_{7}/dt . BT136X series **Triacs** # **MECHANICAL DATA** - Accessories supplied on request: refer to mounting instructions for F-pack envelopes. The improved isolation rating applies only to the SOT186 version A envelope. Triacs BT136X series ### **DEFINITIONS** | Data sheet status | | | | | | | |---------------------------|---|--|--|--|--|--| | Objective specification | This data sheet contains target or goal specifications for product development. | | | | | | | Preliminary specification | This data sheet contains preliminary data; supplementary data may be published later. | | | | | | | Product specification | This data sheet contains final product specifications. | | | | | | | | | | | | | | #### Limiting values Limiting values are given in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of this specification is not implied. Exposure to limiting values for extended periods may affect device reliability. #### **Application information** Where application information is given, it is advisory and does not form part of the specification. #### © Philips Electronics N.V. 1996 All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, it is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent or other industrial or intellectual property rights. #### LIFE SUPPORT APPLICATIONS These products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.