DISCRETE SEMICONDUCTORS

Product specification

August 1986

BLW97

DESCRIPTION

N-P-N silicon planar epitaxial transistor designed for use in class-A, AB and B operated high-power industrial and military transmitting equipment in the h.f. band.

The transistor offers excellent performance as a linear amplifier in s.s.b. applications. It is resistance stabilized and is made to withstand severe load-mismatch conditions. All leads are isolated from the flange.

The transistors are supplied in matched h_{FE} groups.

QUICK REFERENCE DATA

R.F. performance up to $T_h = 25 \ ^{\circ}C$

MODE OF OPERATION	V _{CE}	I _{C(ZS)}	f	P _L	G _p	ղ _{dt}	d₃	d₅
	V	A	MHz	W	dB	%	dB	dB
s.s.b. (class-AB)	28	0,1	1,6 – 28	175 (PEP)	> 11,5	> 40	< -30	< -30

PIN CONFIGURATION

PRODUCT SAFETY This device incorporates beryllium oxide, the dust of which is toxic. The device is entirely safe provided that the BeO disc is not damaged.

PINNING - SOT121B.

PIN	DESCRIPTION			
1	collector			
2	emitter			
3	base			
4	emitter			

BLW97

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Collector-emitter voltage (peak value)				
$V_{BE} = 0$	V _{CESM}	max.	65	V
open base	V _{CEO}	max.	33	V
Emitter-base voltage (open collector)	V _{EBO}	max.	4	V
Collector current				
average	I _{C(AV)}	max.	15	А
peak value; f > 1 MHz	I _{CM}	max.	50	А
Total d.c. power dissipation at $T_h = 25^{\circ}C$	P _{tot(d.c.)}	max.	190	W
R.F. power dissipation				
$f > 1 MHz; T_h = 25^{\circ}C$	P _{tot(rf)}	max.	230	W
Storage temperature	T _{stg}	–65 to	o + 150	°C
Operating junction temperature	Тj	max.	200	°C

THERMAL RESISTANCE

(dissipation = 120 W; T_h = 25 °C i.e. T_mb = 49 °C)

From junction to mounting base			
(d.c. dissipation)	R _{th j-mb(dc)}	=	0,63 K/W
From junction to mounting base			
(r.f. dissipation)	R _{th j-mb(rf)}	=	0,48 K/W
From mounting base to heatsink	R _{th mb-h}	=	0,20 K/W

BLW97

$\begin{array}{llllllllllllllllllllllllllllllllllll$	CHARACTERISTICS				
$\begin{array}{cccc} V_{BE} = 0; \ l_{C} = 50 \ \text{mA} & V_{(BR)CES} & > & 65 \ \text{V} \\ l_{C} = 100 \ \text{mA}; \ \text{open base} & V_{(BR)CEO} & > & 33 \ \text{V} \\ \hline \\ \text{Emitter-base breakdown voltage} & & & & & & \\ l_{E} = 20 \ \text{mA}; \ \text{open collector} & V_{(BR)EBO} & > & 4 \ \text{V} \\ \hline \\ \text{Collector cut-off current} & & & & & & \\ V_{CE} = 33 \ \text{V}; \ V_{BE} = 0 & & & & & \\ V_{CE} = 33 \ \text{V}; \ V_{BE} = 0 & & & & \\ \text{Collector cut-off current} & & & & & \\ V_{CE} = 33 \ \text{V}; \ V_{BE} = 0 & & & & \\ \text{Collector gene base} & & & & \\ \text{Second breakdown energy; } L = 25 \ \text{mH}; \ \text{f} = 50 \ \text{Hz} & & & \\ \text{open base} & & & & \\ \text{Second breakdown energy; } L = 25 \ \text{mH}; \ \text{f} = 50 \ \text{Hz} & & & \\ \text{open base} & & & \\ \text{Second breakdown energy; } L = 25 \ \text{mH}; \ \text{f} = 50 \ \text{Hz} & & \\ \text{open base} & & & \\ \text{Second breakdown energy; } L = 25 \ \text{mH}; \ \text{f} = 50 \ \text{Hz} & & \\ \text{open base} & & \\ \text{Second breakdown energy; } L = 25 \ \text{mH}; \ \text{f} = 50 \ \text{Hz} & & \\ \text{open base} & & \\ \text{Second breakdown energy; } L = 25 \ \text{mH}; \ \text{f} = 50 \ \text{Hz} & & \\ \text{for a singent of matched devices}^{(1)} & & \\ \text{hgen singent of matched devices}^{(1)} & & \\ \text{hgen singent of matched devices}^{(1)} & & \\ \text{l}_{C} = 10 \ \text{A}; \ \text{V}_{CE} = 5 \ \text{V} & \text{hgen singent on voltage}^{(1)} & & \\ \text{l}_{C} = 25 \ \text{A}; \ \text{l}_{B} = 5 \ \text{A} & & \\ \text{Vclessat} & & \\ \text{transition frequency at f = 100 \ \text{MHz}^{(2)} & & \\ \text{-l}_{E} = 10 \ \text{A}; \ \text{V}_{CB} = 28 \ \text{V} & & \\ \text{fr} & & \\ \text{transition frequency at f = 1 \ \text{MHz}} & & \\ \text{l}_{E} = \text{i}_{e} = 0; \ \text{V}_{CB} = 28 \ \text{V} & & \\ \text{fr} & & \\ \text{transition capacitance at f = 1 \ \text{MHz}} & & \\ \text{l}_{E} = \text{i}_{e} = 0; \ \text{V}_{CB} = 28 \ \text{V} & & \\ \text{fr} & & \\ \text{transition capacitance at f = 1 \ \text{MHz}} & & \\ \text{l}_{C} = 0; \ \text{V}_{CE} = 28 \ \text{V} & & \\ \text{fr} & & \\ \text{fr} & & \\ \text{fr} & & \\ \text{transition capacitance at f = 1 \ \text{MHz}} & & \\ \text{l}_{C} = 0; \ \text{V}_{CE} = 28 \ \text{V} & & \\ \text{fr} & & \\ f$	$T_j = 25 \ ^{\circ}C$ unless otherwise specified				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Collector-emitter breakdown voltage				
$\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$	V _{BE} = 0; I _C = 50 mA	V _{(BR)CES}	>	65	V
$\begin{array}{c c c c c c } I_E = 20 \text{ mA; open collector} & V_{(BR)EBO} & > & 4 \ V\\ \hline Collector cut-off current & & & & & & & & & & & & & & & & & & &$	I _C = 100 mA; open base	V _{(BR)CEO}	>	33	V
	Emitter-base breakdown voltage				
$\begin{array}{c c c c c c c c } V_{CE} = 33 \ V; \ V_{BE} = 0 & I_{CES} & < & 20 \ \text{mA} \\ \hline \\ Second breakdown energy; \ L = 25 \ \text{mH}; \ f = 50 \ \text{Hz} & & & & & & & & & & & & & & & & & & &$	I _E = 20 mA; open collector	V _{(BR)EBO}	>	4	V
	Collector cut-off current				
$\begin{array}{cccc} \mbox{open base} & E_{SBO} & > & 20 \ \mbox{mJ} \\ R_{BE} = 10 \ \Omega & E_{SBR} & > & 20 \ \mbox{mJ} \\ \mbox{D.C. current gain^{(1)}} & typ. & 30 \\ \mbox{l}_{C} = 10 \ A; \ V_{CE} = 5 \ V & h_{FE} & 15 \ \ to \ \ 50 \\ \mbox{D.C. current gain ratio of matched devices^{(1)}} \\ \mbox{l}_{C} = 10 \ A; \ V_{CE} = 5 \ V & h_{FE} & h_{FE2} & < & 1,2 \\ \mbox{Collector-emitter saturation voltage^{(1)}} & & & & & \\ \mbox{l}_{C} = 25 \ A; \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$V_{CE} = 33 V; V_{BE} = 0$	I _{CES}	<	20	mA
$\begin{array}{cccccc} R_{BE} = 10 \ \Omega & E_{SBR} & > & 20 \ \text{mJ} \\ \hline R_{BE} = 10 \ \Omega & typ. & 30 \\ \hline D.C. \ current \ gain^{(1)} & typ. & 30 \\ \hline I_C = 10 \ A; \ V_{CE} = 5 \ V & h_{FE} & 15 \ to \ 50 \\ \hline D.C. \ current \ gain \ ratio \ of \ matched \ devices^{(1)} & \\ \hline I_C = 10 \ A; \ V_{CE} = 5 \ V & h_{FE1}/h_{FE2} & < & 1,2 \\ \hline Collector-emitter \ saturation \ voltage^{(1)} & \\ \hline I_C = 25 \ A; \ I_B = 5 \ A & V_{CEsat} & V_{CEsat} & typ. & 2,4 \ V \\ \hline Transition \ frequency \ at \ f = 100 \ \text{MHz}^{(2)} & \\ \hline -I_E = 10 \ A; \ V_{CB} = 28 \ V & f_T & typ. & 230 \ \text{MHz} \\ \hline -I_E = 20 \ A; \ V_{CB} = 28 \ V & f_T & typ. & 235 \ \text{MHz} \\ \hline Collector \ capacitance \ at \ f = 1 \ \text{MHz} & \\ \hline I_E = \ i_e = 0; \ V_{CB} = 28 \ V & C_c & typ. \ 380 \ \text{pF} \\ \hline Feedback \ capacitance \ at \ f = 1 \ \text{MHz} & \\ \hline I_C = 0; \ V_{CE} = 28 \ V & C_{re} & typ. \ 235 \ \text{pF} \\ \hline \end{array}$	Second breakdown energy; L = 25 mH; f = 50 Hz				
$\begin{array}{cccc} \text{D.C. current gain}^{(1)} & \text{typ.} & 30 \\ \text{I}_{C} = 10 \text{ A}; \text{ V}_{CE} = 5 \text{ V} & \text{h}_{FE} & 15 & \text{to} & 50 \\ \hline \text{D.C. current gain ratio of matched devices}^{(1)} & & & & \\ \text{I}_{C} = 10 \text{ A}; \text{ V}_{CE} = 5 \text{ V} & \text{h}_{FE1}/\text{h}_{FE2} & < & 1,2 \\ \hline \text{Collector-emitter saturation voltage}^{(1)} & & & & \\ \text{I}_{C} = 25 \text{ A}; \text{ I}_{B} = 5 \text{ A} & \text{V}_{CEsat} & \text{typ.} & 2,4 \text{ V} \\ \hline \text{Transition frequency at f = 100 \text{ MHz}^{(2)} & & & \\ -\text{I}_{E} = 10 \text{ A}; \text{ V}_{CB} = 28 \text{ V} & \text{f}_{T} & \text{typ.} & 230 \text{ MHz} \\ -\text{I}_{E} = 20 \text{ A}; \text{ V}_{CB} = 28 \text{ V} & \text{f}_{T} & \text{typ.} & 235 \text{ MHz} \\ \hline \text{Collector capacitance at f = 1 \text{ MHz}} & & & \\ \text{I}_{E} = \text{i}_{e} = 0; \text{ V}_{CB} = 28 \text{ V} & \text{C}_{c} & \text{typ.} & 380 \text{ pF} \\ \hline \text{Feedback capacitance at f = 1 \text{ MHz}} & & & \\ \text{I}_{C} = 0; \text{ V}_{CE} = 28 \text{ V} & \text{Cree} & \text{typ.} & 235 \text{ pF} \\ \hline \end{array}$	open base	E _{SBO}	>	20	mJ
$\begin{array}{cccc} & & & & & & & & & & & & & & & & & $	R _{BE} = 10 Ω	E _{SBR}	>	20	mJ
D.C. current gain ratio of matched devices ⁽¹⁾ h_{FE1}/h_{FE2} $<$ $1,2$ $I_C = 10 A; V_{CE} = 5 V$ h_{FE1}/h_{FE2} $<$ $1,2$ Collector-emitter saturation voltage ⁽¹⁾ V_{CEsat} $typ.$ $2,4 V$ $I_C = 25 A; I_B = 5 A$ V_{CEsat} $typ.$ $2,4 V$ Transition frequency at f = 100 MHz ⁽²⁾ f_T $typ.$ $230 MHz$ $-I_E = 10 A; V_{CB} = 28 V$ f_T $typ.$ $235 MHz$ $-I_E = 20 A; V_{CB} = 28 V$ f_T $typ.$ $235 MHz$ Collector capacitance at f = 1 MHz $I_E = i_e = 0; V_{CB} = 28 V$ C_c $typ.$ $380 pF$ Feedback capacitance at f = 1 MHz $I_C = 0; V_{CE} = 28 V$ C_{re} $typ.$ $235 pF$	D.C. current gain ⁽¹⁾		typ.	30	
$\begin{array}{c} I_{C} = 10 \ \text{A}; \ V_{CE} = 5 \ \text{V} & h_{FE1}/h_{FE2} & < & 1,2 \\ \hline \text{Collector-emitter saturation voltage}^{(1)} & & \\ I_{C} = 25 \ \text{A}; \ I_{B} = 5 \ \text{A} & V_{CEsat} & \text{typ.} & 2,4 \ \text{V} \\ \hline \text{Transition frequency at } f = 100 \ \text{MHz}^{(2)} & & \\ -I_{E} = 10 \ \text{A}; \ V_{CB} = 28 \ \text{V} & f_{T} & \text{typ.} & 230 \ \text{MHz} \\ -I_{E} = 20 \ \text{A}; \ V_{CB} = 28 \ \text{V} & f_{T} & \text{typ.} & 235 \ \text{MHz} \\ \hline \text{Collector capacitance at } f = 1 \ \text{MHz} & & \\ I_{E} = i_{e} = 0; \ V_{CB} = 28 \ \text{V} & C_{c} & \text{typ.} & 380 \ \text{pF} \\ \hline \text{Feedback capacitance at } f = 1 \ \text{MHz} & & \\ I_{C} = 0; \ V_{CE} = 28 \ \text{V} & C_{re} & \text{typ.} & 235 \ \text{pF} \\ \hline \end{array}$	$I_{C} = 10 \text{ A}; V_{CE} = 5 \text{ V}$	h _{FE}	15	to 50	
Collector-emitter saturation voltage ⁽¹⁾ $I_C = 25 A; I_B = 5 A$ V_{CEsat} typ.2,4 VTransition frequency at f = 100 MHz ⁽²⁾ T_T typ.230 MHz $-I_E = 10 A; V_{CB} = 28 V$ f_T typ.235 MHz $-I_E = 20 A; V_{CB} = 28 V$ f_T typ.235 MHzCollector capacitance at f = 1 MHz C_c typ.380 pFFeedback capacitance at f = 1 MHz C_{re} typ.235 pF	D.C. current gain ratio of matched devices ⁽¹⁾				
$\begin{array}{c} I_{C} = 25 \ \text{A}; \ I_{B} = 5 \ \text{A} & V_{CEsat} & typ. & 2,4 \ \text{V} \\ \hline \text{Transition frequency at f = 100 \ \text{MHz}^{(2)} & & f_{T} & typ. & 230 \ \text{MHz} \\ -I_{E} = 10 \ \text{A}; \ \text{V}_{CB} = 28 \ \text{V} & f_{T} & typ. & 230 \ \text{MHz} \\ -I_{E} = 20 \ \text{A}; \ \text{V}_{CB} = 28 \ \text{V} & f_{T} & typ. & 235 \ \text{MHz} \\ \hline \text{Collector capacitance at f = 1 \ \text{MHz}} & & & \\ I_{E} = i_{e} = 0; \ \text{V}_{CB} = 28 \ \text{V} & C_{c} & typ. & 380 \ \text{pF} \\ \hline \text{Feedback capacitance at f = 1 \ \text{MHz}} & & & \\ I_{C} = 0; \ \text{V}_{CE} = 28 \ \text{V} & C_{re} & typ. & 235 \ \text{pF} \\ \hline \end{array}$	$I_{C} = 10 \text{ A}; V_{CE} = 5 \text{ V}$	h _{FE1} /h _{FE2}	<	1,2	
Transition frequency at f = 100 MHz^{(2)} $-I_E = 10 \text{ A}; V_{CB} = 28 \text{ V}$ f_T typ.230 MHz $-I_E = 20 \text{ A}; V_{CB} = 28 \text{ V}$ f_T typ.235 MHzCollector capacitance at f = 1 MHz $I_E = i_e = 0; V_{CB} = 28 \text{ V}$ C_c typ.380 pFFeedback capacitance at f = 1 MHz $I_C = 0; V_{CE} = 28 \text{ V}$ C_{re} typ.235 pF	Collector-emitter saturation voltage ⁽¹⁾				
$\begin{array}{cccc} -I_{E} = 10 \ \text{A}; \ V_{CB} = 28 \ \text{V} & f_{T} & \text{typ.} & 230 \ \text{MHz} \\ -I_{E} = 20 \ \text{A}; \ V_{CB} = 28 \ \text{V} & f_{T} & \text{typ.} & 235 \ \text{MHz} \\ \hline \text{Collector capacitance at } f = 1 \ \text{MHz} & & & \\ I_{E} = i_{e} = 0; \ V_{CB} = 28 \ \text{V} & C_{c} & \text{typ.} & 380 \ \text{pF} \\ \hline \text{Feedback capacitance at } f = 1 \ \text{MHz} & & & \\ I_{C} = 0; \ V_{CE} = 28 \ \text{V} & C_{re} & \text{typ.} & 235 \ \text{pF} \end{array}$	I _C = 25 A; I _B = 5 A	V _{CEsat}	typ.	2,4	V
$-I_{E} = 20 \text{ A}; V_{CB} = 28 \text{ V} \qquad f_{T} \qquad typ. \qquad 235 \text{ MHz}$ Collector capacitance at f = 1 MHz $I_{E} = i_{e} = 0; V_{CB} = 28 \text{ V} \qquad C_{c} \qquad typ. \qquad 380 \text{ pF}$ Feedback capacitance at f = 1 MHz $I_{C} = 0; V_{CE} = 28 \text{ V} \qquad C_{re} \qquad typ. \qquad 235 \text{ pF}$	Transition frequency at $f = 100 \text{ MHz}^{(2)}$				
Collector capacitance at f = 1 MHzCtyp.380 pF $I_E = i_e = 0; V_{CB} = 28 V$ Ctyp.380 pFFeedback capacitance at f = 1 MHzCtyp.235 pF	$-I_E = 10 \text{ A}; V_{CB} = 28 \text{ V}$	f⊤	typ.	230	MHz
$I_{E} = i_{e} = 0; V_{CB} = 28 V C_{c} typ. 380 pF$ Feedback capacitance at f = 1 MHz $I_{C} = 0; V_{CE} = 28 V C_{re} typ. 235 pF$	$-I_{E} = 20 \text{ A}; V_{CB} = 28 \text{ V}$	f⊤	typ.	235	MHz
Feedback capacitance at f = 1 MHz $I_C = 0; V_{CE} = 28 V$ C_{re} typ.235 pF	Collector capacitance at f = 1 MHz				
$I_{\rm C} = 0; V_{\rm CE} = 28 \text{ V}$ $C_{\rm re}$ typ. 235 pF	$I_E = i_e = 0; V_{CB} = 28 V$	Cc	typ.	380	pF
	Feedback capacitance at f = 1 MHz				
Collector-flange capacitance C _{cf} typ. 4,5 pF	$I_{C} = 0; V_{CE} = 28 V$	C _{re}	typ.	235	pF
	Collector-flange capacitance	C _{cf}	typ.	4,5	pF

Notes

1. Measured under pulse conditions: $t_p = 500 \ \mu s$.

2. Measured under pulse conditions: t_p = 300 µs; δ = 0,02.

BLW97

HF power transistor

MGP705 MGP706 260 50 V_{CB} = 28 V fT V_{CE} = 28 V $^{h}\mathsf{FE}$ (MHz) 220 15 V 40 typ 180 15 V 5 V 30 140 typ 5 V 20 └─ 0 100 10 20 0 10 I_C (A) 30 $-I_{\mathsf{E}}(\mathsf{A})$ 20 Fig.4 $T_j = 25 \circ C$. Fig.5 T_j = 25 °C; f = 100 MHz; t_p = 300 μ s. MGP707 MGP708 10 1000 C_C (pF) I_C (A) 800 T_h = 70 °C 25 °C 1 600 typ 10⁻¹ typ 400 200 └_ 0 10⁻² 20 900 1300 40 V_{BE} (mV) $V_{CB}(V)$ Fig.6 $I_E = i_e = 0$; f = 1 MHz; T_j = 25 °C. Fig.7 V_{CE} = 28 V.

BLW97

APPLICATION INFORMATION

R.F. performance in s.s.b. class-AB operation (linear power amplifier). V_{CE} = 28 V; T_h = 25 °C; f₁ = 28,000 MHz; f₂ = 28,001 MHz.

OUTPUT POWER	Gp	η _{dt}	Ιc	d ₃ ⁽¹⁾	d ₅ ⁽¹⁾	I _{C(ZS)}
W	dB	%	A	dB	dB	A
175 (PEP)	> 11,5 typ. 13,0	> 40 typ. 50	< 7,8 typ. 6,3	< -30 typ34	< -30 typ38	0,1

Note

1. The stated intermodulation distortion levels are referred to the according level of either of the equal amplified tones. Relative to the according peak envelope powers these figures should be increased by 6 dB.

BLW97

List of components:

- C1 = 47 pF (500 V) multilayer ceramic chip capacitor⁽¹⁾
- C2 = 100 pF film dielectric trimmer
- C3 = $2 \times 130 \text{ pF}$ (300 V) multilayer ceramic chip capacitors in parallel⁽¹⁾
- C4 = 280 pF film dielectric trimmer
- C5 = 10 nF (50 V) multilayer ceramic chip capacitor 2222 856 13103
- C6 = $2 \times 180 \text{ pF}$ (300 V) multilayer ceramic chip capacitors in parallel⁽¹⁾
- C7 = 100 nF (50 V) multilayer ceramic chip capacitor 2222 856 48104
- C8 = 10 nF (50 V) multilayer ceramic chip capacitor 2222 856 13103
- C9 = $2,2 \,\mu\text{F} 63 \,\text{V}$ solid aluminium electrolytic capacitor
- C10 = $5 \times 82 \text{ pF}$ (500 V) multilayer ceramic chip capacitors in parallel⁽¹⁾
- C11 = 250 pF air dielectric trimmer
- C12 = 5×33 pF ceramic feed-through capacitors mounted in parallel on a brass plate
- C13 = 100 pF air dielectric trimmer
- C14 = $3 \times 91 \text{ pF}$ (500 V) multilayer ceramic chip capacitors in parallel⁽¹⁾
- R1 = 0,7 Ω 7 W (7 × 4,7 Ω 1 W carbon resistors in parallel)
- R2 = $27 \Omega 0,25$ W carbon resistor
- R3 = $4,7 \Omega 0,25$ W carbon resistor
- L1 = 73 nH; 4 turns Cu wire (1,5 mm); int. dia. 7 mm; length 9,4 mm; leads 2 × 5 mm
- L2 = Ferroxcube wide-band h.f. choke grade 3B (cat. no. 4312 020 36640); 6 leads in parallel
- L3 = 70,4 nH; 4 turns Cu wire (2 mm); int. dia. 7 mm; length 14,8 mm; leads 2 × 5 mm
- L4 = 83,5 nH; 4 turns Cu wire (2 mm); int. dia. 8 mm; length 15 mm; leads 2 × 5 mm
- L5 = Ferroxcube wide-band h.f. choke grade 3 B (cat. no. 4312 020 36640) with 6 leads in parallel

Note

1. American Technical Ceramics capacitor or capacitor of same quality.

MGP710 -20 $\mathsf{d}_3, \mathsf{d}_5$ d3 (dB) typ d5 -40 -60 -80 0 120 240 P_I (W) P.E.P. $\begin{array}{l} V_{CE} = 28 \; V; \; I_{C(ZS)} \; = 0,1 \; A; \; f_1 = 28,000 \; MHz; \\ f_2 = 28,001 \; MHz; \; T_h = 25 \; ^\circ C. \end{array}$ Intermodulation distortion (see note on Fig.9 preceding page).

MGP711 80 16 $\eta_{c_{\text{dt}}}$ GP GP (%) (dB) 12 60 η_{cdt} typ 8 40 4 20 0 0 0 120 240 P_L (W) P.E.P. $\begin{array}{l} V_{CE} = 28 \ V; \ I_{C(ZS)} = 0,1 \ A; \ f_1 = 28,000 \ MHz; \\ f_2 = 28,001 \ MHz; \ T_h = 25 \ ^\circ C. \end{array}$

Fig.10 Power gain and double-tone efficiency.

RUGGEDNESS

The BLW97 is capable of withstanding full load mismatch (VSWR = 50 through all phases) up to 150 W (P.E.P.) or a load mismatch (VSWR = 5 through all phases) up to 175 W (P.E.P.) under the following conditions:

 V_{CE} = 28 V; f = 28 MHz; T_{h} = 25 °C; $R_{th\,mb\text{-}h}$ = 0,2 K/W.

Figures 11 and 12 t typical curves which are valid for one transistor of a push-pull amplifier in s.s.b. class-AB operation.

BLW97

BLW97

PACKAGE OUTLINE

Flanged ceramic package; 2 mounting holes; 4 leads

BLW97

BLW97

DEFINITIONS

Data Sheet Status					
Objective specification	This data sheet contains target or goal specifications for product development.				
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.				
Product specification	This data sheet contains final product specifications.				
Limiting values					
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.					

Application information

Where application information is given, it is advisory and does not form part of the specification.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.