DISCRETE SEMICONDUCTORS

Product specification Supersedes data of April 1991 File under Discrete Semiconductors, SC07 1996 Jul 30

Philips Semiconductors

BF992; BF992R

APPLICATIONS

 VHF applications such as VHF television tuners and FM tuners with 12 V supply voltage. The device is also suitable for use in professional communications equipment.

DESCRIPTION

Depletion type field-effect transistor in a plastic micro-miniature SOT143 or SOT143R package with source and substrate interconnected.

The transistors are protected against excessive input voltage surges by integrated back-to-back diodes between gates and source.

CAUTION

The device is supplied in an antistatic package. The gate-source input must be protected against static discharge during transport or handling.

PINNING

PIN	SYMBOL	DESCRIPTION
1	s,b	source
2	d	drain
3	g 2	gate 2
4	g 1	gate 1

Marking code: M92.

Fig.1 Simplified outline (SOT143) and symbol; BF992.

Marking code: M52.

Fig.2 Simplified outline (SOT143R) and symbol; BF992R.

QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS	TYP.	MAX.	UNIT
V _{DS}	drain-source voltage (DC)		-	20	V
I _D	drain current (DC)		-	40	mA
P _{tot}	total power dissipation	T _{amb} = 60 °C	-	200	mW
Y _{fs}	forward transfer admittance	$ f = 1 \text{ kHz}; I_D = 15 \text{ mA}; V_{DS} = 10 \text{ V}; V_{G2\text{-}S} = 4 \text{ V} $	25	-	mS
C _{ig1-s}	input capacitance at gate 1	$ f = 1 \text{ MHz; } I_D = 15 \text{ mA; } V_{DS} = 10 \text{ V;} $ $ V_{G2-S} = 4 \text{ V} $	4	-	pF
C _{rs}	reverse transfer capacitance	f = 1 MHz; I_D = 15 mA; V_{DS} = 10 V; V_{G2-S} = 4 V	30	-	fF
F	noise figure	$G_{S} = 2 \text{ mS}; I_{D} = 15 \text{ mA}; V_{DS} = 10 \text{ V};$ $V_{G2-S} = 4 \text{ V}; f = 200 \text{ MHz}$	1.2	-	dB
Tj	operating junction temperature		-	150	°C

Product specification

BF992; BF992R

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _{DS}	drain-source voltage		-	20	V
ID	drain current		-	40	mA
±I _{G1}	gate 1 current		-	10	mA
±I _{G2}	gate 2 current		-	10	mA
P _{tot}	total power dissipation	up to T_{amb} = 60 °C; see Fig.3; note 1	-	200	mW
T _{stg}	storage temperature		-65	+150	°C
Tj	operating junction temperature		_	150	°C

Note

1. Device mounted on a ceramic substrate, 8 mm \times 10 mm \times 0.7 mm.

BF992; BF992R

THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	CONDITIONS	VALUE	UNIT
R _{th j-a}	thermal resistance from junction to ambient in free air	note 1		
	BF992		460	K/W
	BF992R		500	K/W

Note

1. Device mounted on a ceramic substrate, 8 mm \times 10 mm \times 0.7 mm.

STATIC CHARACTERISTICS

 $T_i = 25 \ ^{\circ}C$; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
±V _{(BR)G1-SS}	gate 1-source breakdown voltage	$V_{G2-S} = V_{DS} = 0; I_{G1-SS} = \pm 10 \text{ mA}$	8	20	V
±V _{(BR)G2-SS}	gate 2-source breakdown voltage	$V_{G1-S} = V_{DS} = 0$; $I_{G2-SS} = \pm 10 \text{ mA}$	8	20	V
-V _{(P)G1-S}	gate 1-source cut-off voltage	$V_{G2-S} = 4 \text{ V}; V_{DS} = 10 \text{ V}; I_D = 20 \mu\text{A}$	0.2	1.3	V
-V _{(P)G2-S}	gate 2-source cut-off voltage	$V_{G1-S} = 0; V_{DS} = 10 \text{ V}; I_D = 20 \mu\text{A}$	0.2	1.1	V
±I _{G1-SS}	gate 1 cut-off current	$V_{G2-S} = V_{DS} = 0; V_{G1-S} = \pm 7 V$	-	25	nA
±I _{G2-SS}	gate 2 cut-off current	$V_{G1-S} = V_{DS} = 0; V_{G2-S} = \pm 7 V$	-	25	nA

DYNAMIC CHARACTERISTICS

Common source; $T_{amb} = 25 \text{ °C}$; $V_{DS} = 10 \text{ V}$; $V_{G2-S} = 4 \text{ V}$; $I_D = 15 \text{ mA}$; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
y _{fs}	forward transfer admittance		20	25	-	mS
C _{ig1-s}	input capacitance at gate 1	f = 1 MHz	-	4	-	pF
C _{ig2-s}	input capacitance at gate 2	f = 1 MHz	-	1.7	-	pF
C _{os}	output capacitance	f = 1 MHz	-	2	-	pF
C _{rs}	reverse transfer capacitance	f = 1 MHz	-	30	40	fF
F	noise figure	f = 200 MHz; G _S = 2 mS	-	1.2	-	dB

BF992; BF992R

 V_{DS} = 10 V; T_j = 25 °C.

Fig.7 Forward transfer admittance as a function of gate 1-source voltage; typical values.

BF992; BF992R

BF992; BF992R

PACKAGE OUTLINES

BF992; BF992R

DEFINITIONS

Data Sheet Status		
Objective specification	This data sheet contains target or goal specifications for product development.	
Preliminary specification	on This data sheet contains preliminary data; supplementary data may be published later.	
Product specification	ct specification This data sheet contains final product specifications.	
Limiting values		
more of the limiting values may of the device at these or at an	ccordance with the Absolute Maximum Rating System (IEC 134). Stress above one or ay cause permanent damage to the device. These are stress ratings only and operation by other conditions above those given in the Characteristics sections of the specification niting values for extended periods may affect device reliability.	
Application information		

Where application information is given, it is advisory and does not form part of the specification.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.