Complementary Silicon Plastic Power Darlingtons

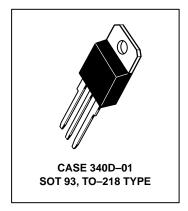
 \ldots for use as output devices in complementary general purpose amplifier applications.

- High DC Current Gain
 HFE = 1000 (min.) @ 5 Adc
- Monolithic Construction with Built-in Base Emitter Shunt Resistors

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector–Emitter Voltage	VCEO	100	Vdc
Collector–Base Voltage	V _{CB}	100	Vdc
Emitter–Base Voltage	V _{EB}	5.0	Vdc
Collector Current — Continuous — Peak	IC	10 20	Adc
Base Current	ΙΒ	0.5	Adc
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	125 1.0	Watts W/°C
Operating and Storage Junction Temperature Range	T _J , T _{Stg}	-65 to +150	°C

THERMAL CHARACTERISTICS


Characteristic	Symbol	Symbol Max	
Thermal Resistance, Junction to Case	θ JC	1.0	°C/W

1.0 0.8 0.6 0.4 0.2 0.0 0.2 0.5 0.6 0.75 100 125 150 T_C, CASE TEMPERATURE (°C)

Figure 1. Power Derating

BDV65B PNP BDV64B

DARLINGTONS
10 AMPERES
COMPLEMENTARY
SILICON
POWER TRANSISTORS
60-80-100-120 VOLTS
125 WATTS

BDV65B BDV64B

ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector–Emitter Sustaining Voltage (1) (IC = 30 mAdc, IB = 0)	VCEO(sus)	100	_	Vdc
Collector Cutoff Current (VCE = 50 Vdc, I _B = 0)	ICEO	_	1.0	mAdc
Collector Cutoff Current $(V_{CB} = 100 \text{ Vdc}, I_{E} = 0)$	ІСВО	_	0.4	mAdc
Collector Cutoff Current (V _{CB} = 50 Vdc, I _E = 0, T _C = 150°C)	ІСВО	_	2.0	mAdc
Emitter Cutoff Current (V _{BE} = 5.0 Vdc, I _C = 0)	IEBO	_	5.0	mAdc
ON CHARACTERISTICS	-			
DC Current Gain (IC = 5.0 Adc, VCE = 4.0 Vdc)	hFE	1000	_	_
Collector–Emitter Saturation Voltage (I _C = 5.0 Adc, I _B = 0.02 Adc)	VCE(sat)	_	2.0	Vdc
Base–Emitter Saturation Voltage (IC = 5.0 Adc, VCE = 4.0 Vdc)	VBE(on)	_	2.5	Vdc

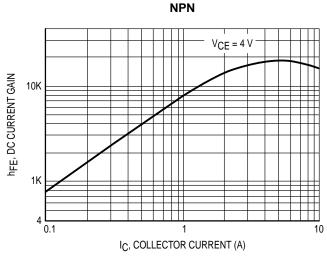


Figure 2. DC Current Gain

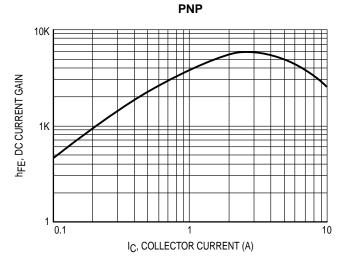


Figure 3. DC Current Gain

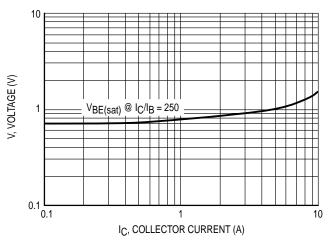


Figure 4. "On" Voltages

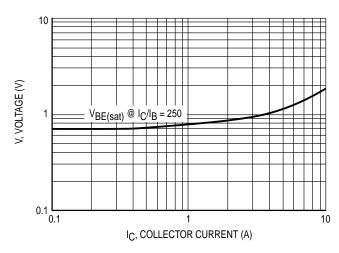


Figure 5. "On" Voltages

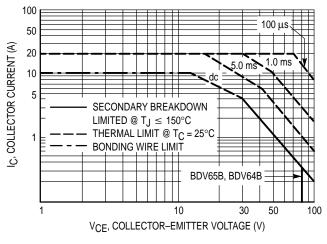


Figure 6. Active Region Safe Operating Area

There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate $I_{\text{C}} - V_{\text{CE}}$ limits of the transistor that must be observed for reliable operation i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

The data of Figure 6 is based on $T_{J(pk)} = 150^{\circ}C$, T_{C} is variable depending on conditions. Second breakdown pulse limits are valid for duty cycles to 10% provided $T_{J(pk)} \le 150^{\circ}C$. $T_{J(pk)}$ may be calculated from the data in Figure 7. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown.

BDV65B BDV64B

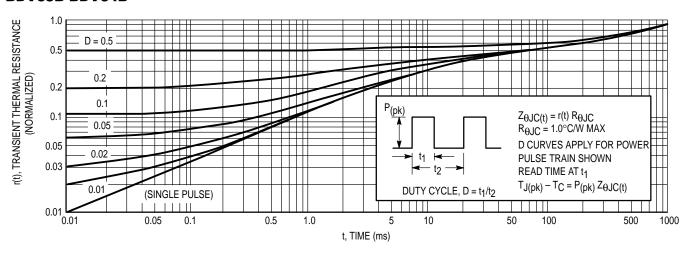
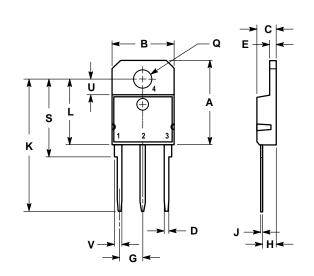



Figure 7. Thermal Response

PACKAGE DIMENSIONS

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: MILLIMETER.

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
Α	19.00	19.60	0.749	0.771
В	14.00	14.50	0.551	0.570
С	4.20	4.70	0.165	0.185
D	1.00	1.30	0.040	0.051
Е	1.45	1.65	0.058	0.064
G	5.21	5.72	0.206	0.225
Н	2.60	3.00	0.103	0.118
_	0.40	0.60	0.016	0.023
K	28.50	32.00	1.123	1.259
Г	14.70	15.30	0.579	0.602
Ø	4.00	4.25	0.158	0.167
S	17.50	18.10	0.689	0.712
C	3.40	3.80	0.134	0.149
۷	1.50	2.00	0.060	0.078

- STYLE 1:
 PIN 1. BASE
 2. COLLECTOR
 3. EMITTER
 4. COLLECTOR

CASE 340D-01 **SOT 93, TO-218 TYPE ISSUE A**

BDV65B BDV64B

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and Figure 1. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447

MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE (602) 244–6609 INTERNET: http://Design-NET.com

JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC, Toshikatsu Otsuki, 6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan. 03-3521-8315

HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298

