
DISCRETE SEMICONDUCTORS

DATA SHEET

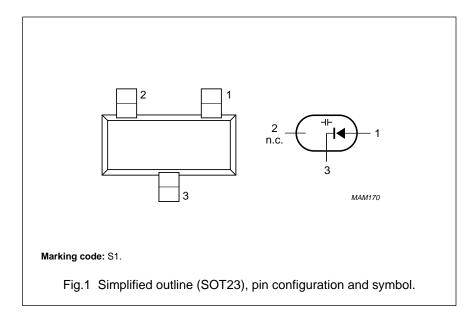
BBY31 UHF variable capacitance diode

Product specification Supersedes data of November 1993 File under Discrete Semiconductors, SC01 1996 May 03

UHF variable capacitance diode

BBY31

FEATURES


- Excellent linearity
- Small plastic SMD package
- C28: 1.9 pF; ratio: 8.3.

APPLICATIONS

- Electronic tuning in UHF television tuners
- VCO.

DESCRIPTION

The BBY31 is a variable capacitance diode, fabricated in planar technology, and encapsulated in the SOT23 small plastic SMD package.

LIMITING VALUES

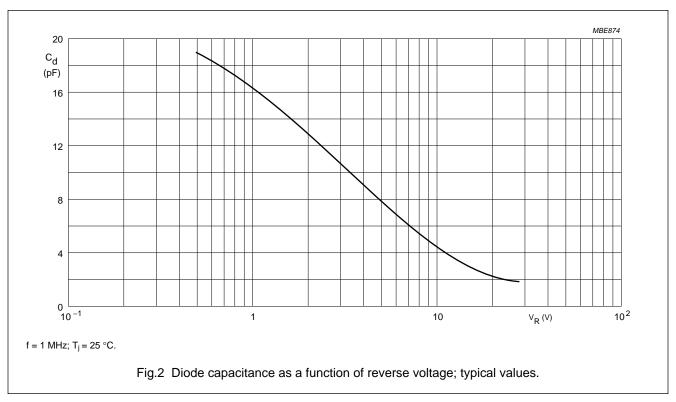
In accordance with the Absolute Maximum Rating System (IEC 134).

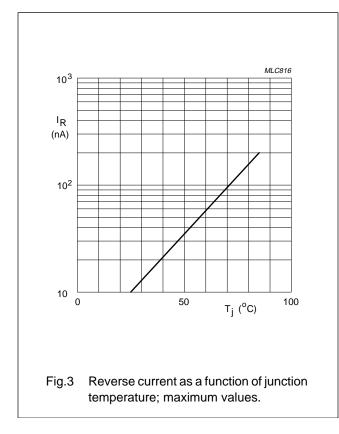
SYMBOL	PARAMETER	MIN.	MAX.	UNIT
V _R	continuous reverse voltage	_	30	V
I _F	continuous forward current		20	mA
T _{stg}	storage temperature		+150	°C
T _j	operating junction temperature	-55	+125	°C

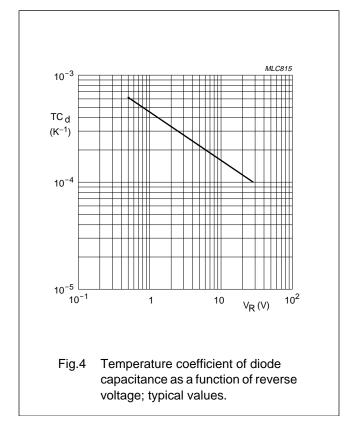
ELECTRICAL CHARACTERISTICS

 $T_i = 25$ °C; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
I _R	reverse current	V _R = 28 V; see Fig.3	_	_	10	nA
		$V_R = 28 \text{ V; } T_j = 85 \text{ °C; see Fig.3}$	_	_	200	nA
rs	diode series resistance	f = 470 MHz; note 1	_	_	1.2	Ω
C _d	diode capacitance	$V_R = 1 V$; $f = 1 MHz$; see Figs 2 and 4	_	16.5	_	pF
		$V_R = 28 \text{ V}$; f = 1 MHz; see Figs 2 and 4	1.6	-	2	pF
$\frac{C_{d(1V)}}{C_{d(28V)}}$	capacitance ratio	f = 1 MHz	_	8.3	_	

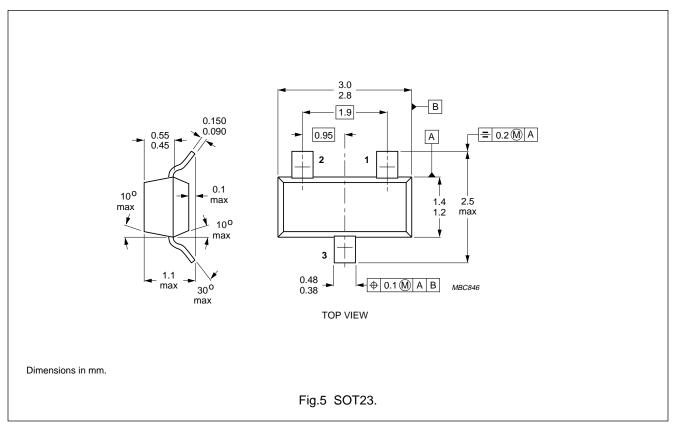

Note


1. V_R is the value at which $C_d = 9$ pF.


UHF variable capacitance diode

BBY31

GRAPHICAL DATA



Philips Semiconductors Product specification

UHF variable capacitance diode

BBY31

PACKAGE OUTLINE

DEFINITIONS

Data sheet status				
Objective specification	This data sheet contains target or goal specifications for product development.			
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.			
Product specification	This data sheet contains final product specifications.			
Limiting values				

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and does not form part of the specification.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

1996 May 03