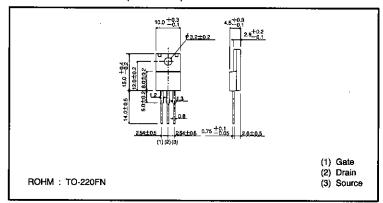
# MOS FET

# Switching (200V, 5A) 25K2459N


#### Features

- 1) Low on-resistance.
- 2) High-speed switching.
- 3) Wide SOA (safe operating area).
- 4) Gate-source voltage guaranteed at V<sub>sss</sub> = ±30V.
- 5) Easily designed drive circuits.
- 6) Easy to use in parallel.

# Structure

Silicon N-channel MOSFET transistor

# External dimensions (Units: mm)



# ●Absolute maximum ratings (Ta = 25°C)

| Parameter Drain-source voltage   |            | Symbol | Limits          | Unit<br>V |
|----------------------------------|------------|--------|-----------------|-----------|
|                                  |            | Voss   | 200             |           |
| Gate-source voltage              |            | Vess   | ±30             | ٧         |
| Deale aureant                    | Continuous | lo     | 5               | Α         |
| Drain current                    | Pulsed     | loe*   | 20              | Α         |
| Drain reverse curren             | Continuous | IDR    | 5               | Α         |
|                                  | Pulsed     | lore*  | 20              | Α         |
| Total power dissipation (Tc=25℃) |            | P□     | 30              | W         |
| Channel temperature Tch          |            | Tch    | 150             | ర         |
| Storage temperature              |            | Tstg   | <b>−55</b> ~150 | ొ         |

<sup>\*</sup> Pw≤10 μs, Duty cycle≤1%

# Packaging specifications

|          | Package                      | Bulk |
|----------|------------------------------|------|
| Type     | Code                         | _    |
|          | Basic ordering unit (pieces) | 500  |
| 2SK2459N |                              | 0    |

Transistors 2SK2459N

# ●Electrical characteristics (Ta = 25℃)

| Parameter                        | Symbol     | Min. | Тур. | Max. | Unit       | Conditions                                 |
|----------------------------------|------------|------|------|------|------------|--------------------------------------------|
| Gate leakage current             | lgss       | _    | _    | ±100 | nΑ         | V <sub>GS</sub> =±30V, V <sub>DS</sub> =0V |
| Drain-source breakdown voltage   | V(BR)DSS   | 200  | _    | -    | ٧          | Ip=1mA, Vgs=0V                             |
| Drain cutoff current             | loss       | _    |      | 100  | μA         | V <sub>DS</sub> =200V, V <sub>GS</sub> =0V |
| Gate threshold voltage           | VGS(th)    | 2    |      | 4    | ٧          | V <sub>DS</sub> =10V, I <sub>D</sub> =1mA  |
| Drain-source on-state resistance | Ros(on)    |      | 0.45 | 0.65 | Ω          | I <sub>D</sub> =2.5A, V <sub>GS</sub> =10V |
| Forward propagation admittance   | Yfs        | 2    | 3.5  | _    | s          | V <sub>DS</sub> =10V, I <sub>D</sub> =2.5A |
| Input capacitance                | Ciss       | _    | 500  | _    | рF         | V <sub>DS</sub> ≕10V                       |
| Output capacitance               | Coss       |      | 150  | _    | р <b>F</b> | V <sub>GS</sub> =0                         |
| Reverse transfer capacitance     | Crss       |      | 35   |      | рF         | f=1MHz                                     |
| Turn-on delay time               | td(on)     | _    | 7    |      | ns         | ID=2.5A, VDD≒100V                          |
| Rise time                        | <b>t</b> r | _    | 15   | _    | ns         | V <sub>GS</sub> =10V                       |
| Turn-off delay time              | td(off)    | _    | 30   | _    | ns         | RL=40Ω                                     |
| Fall time                        | tr         | _    | 25   | _    | ns         | R <sub>G</sub> =10Ω                        |
| Reverse recovery time            | trr        |      | 150  |      | ns         | IDR=5A, VGS=0V                             |
| Reverse recovery load            | Qrr        | _    | 0.7  |      | μC         | di/dt=100A/ μs                             |

# Electrical characteristic curves

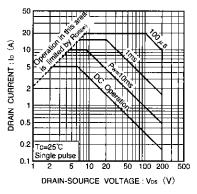



Fig.1 Maximum Safe Operating Area

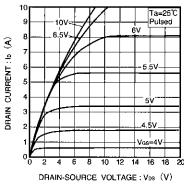



Fig.2 Typical Output Characteristics

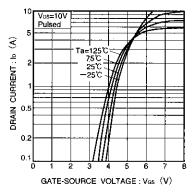



Fig.3 Typical Transfer Characteristics

112

#### Electrical characteristic curves

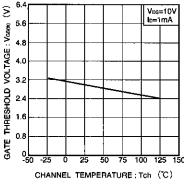



Fig.4 Gate Threshold Voltage vs. Channel Temperature

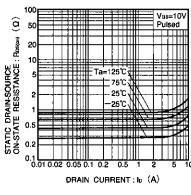



Fig.5 Static Drain-Source On-State Resistance vs. Drain Current

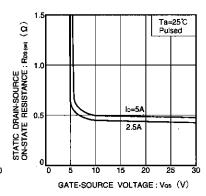



Fig.6 Static Drain-Source On-State Resistance vs. Gate-Source Voltage

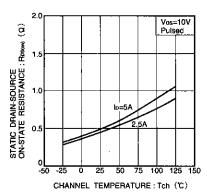



Fig.7 Static Drain-Source On-State Resistance vs. Channel Temperature

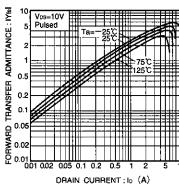



Fig.8 Forward Transfer Admittance vs. Drain Current

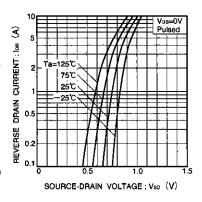



Fig.9 Reverse Drain Current vs. Source-Drain Voltage

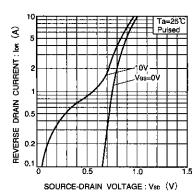



Fig.10 Reverse Drain Current vs. Source-Drain Voltage

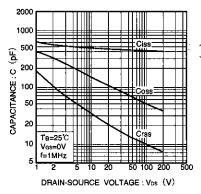



Fig.11 Typical Capacitance vs. Drain-Souce Voltage

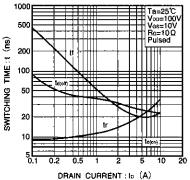



Fig.12 Switching Characteristics (See Figure. 16 and 17 for measurement circuits)

# Electrical characteristic curves

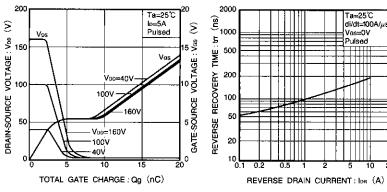



Fig.13 Dynamic Input Characteristics (See Fig. 18 for measurement circuit)

Fig.14 Reverse Recovery Time vs. Reverse Drain Current

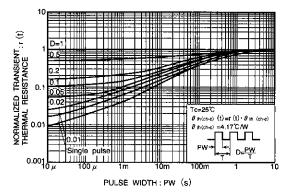



Fig.15 Normalized Transient Thermal Resistance vs. Pulse Width

# Switching characteristics measurement circuit

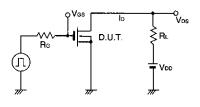



Fig.16 Switching Time Measurement Circuit

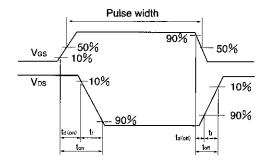



Fig.17 Switching Time Waveforms

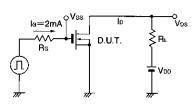



Fig.18 Gate Charge Measurement Circuit

#### Notes

- The contents described in this catalogue are correct as of March 1997.
- No unauthorized transmission or reproduction of this book, either in whole or in part, is permitted.
- The contents of this book are subject to change without notice. Always verify before use that the contents are the latest specifications. If, by any chance, a defect should arise in the equipment as a result of use without verification of the specifications, ROHM CO., LTD., can bear no responsibility whatsoever.
- Application circuit diagrams and circuit constants contained in this data book are shown as examples of standard use and operation. When designing for mass production, please pay careful attention to peripheral conditions.
- Any and all data, including, but not limited to application circuit diagrams, information, and various data, described in this catalogue are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO., LTD., disclaims any warranty that any use of such device shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes absolutely no liability in the event of any such infringement, or arising from or connected with or related to the use of such devices.
- Upon the sale of any such devices; other than for the buyer's right to use such devices
  itself, resell or otherwise dispose of the same; no express or implied right or license to
  practice or commercially exploit any intellectual property rights or other proprietary rights
  owned or controlled by ROHM CO., LTD., is granted to any such buyer.

The products listed in this catalogue are designed to be used with ordinary electronic equipment or devices (such as audio-visual equipment, office-automation equipment, communications devices, electrical appliances, and electronic toys). Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of which would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers, or other safety devices) please be sure to consult with our sales representatives in advance.

#### Notes when exporting

- It is essential to obtain export permission when exporting any of the above products when it falls under the category of strategic material (or labor) as determined by foreign exchange or foreign trade control laws.
- Please be sure to consult with our sales representatives to ascertain whether any product is classified as a strategic material.