JOS FET # Small switching (60V, 2A) 25K2094 #### Features - 1) Low on-resistance. - 2) High-speed switching. - 3) Wide SOA (safe operating area). - 4) Low-voltage drive (4V). - 5) Easily designed drive circuits. - 6) Easy to use in parallel. #### Structure Silicon N-channel MOSFET transistor #### ●External dimensions (Unit: mm) #### ■Absolute maximum ratings (Ta=25°C) | Parameter | | Symbol | Limits | Unit | |----------------------------------|------------|--------|---------|------| | Drain-source voltage | | Voss | 60 | V | | Gate-source voltage | | Vgss | ±20 | ٧ | | Drain current | Continuous | lo | 2 | Α | | | Pulsed | DP* | 8 | Α | | Drain reverse current | Continuous | lpa | 2 | Α | | | Pulsed | DRP* | 8 | Α | | Total power dissipation(Tc=25°C) | | Рь | 20 | w | | Channel temperature | | Tch | 150 | °C | | Storage temperature | | Tstg | -55~150 | °C | ^{*} Pw≦300 μs, Duty cycle≦2% #### Packaging specifications | Туре | Package name | Bulk | |---------|------------------------------|------| | | Code | TL | | | Basic ordering unit (pieces) | 2500 | | 2SK2094 | | 0 | #### ●Electrical characteristics (Ta=25°C) | Parameter | Symbol | Min. | Тур. | Max. | Unit | Conditions | |----------------------------------|----------|------|------|------|------|--| | Gate leakage current | lass | _ | _ | ±100 | nA | V _{DS} =±20V, V _{DS} =0V | | Drain-source breakdown voltage | V(BR)DSS | 60 | | _ | | Ib=1mA, Vgs=0V | | Drain cutoff current | loss | | | 100 | μΑ | V _{DS} =60V, V _{GS} =0V | | Gate threshold voltage | VGS(th) | 1 | | 2.5 | ٧ | V _{DS} =10V, I _D =1mA | | Drain course on state resistance | RDS(on) | _ | 0.3 | 0.35 | Ω | ID=1A, VGS=10V | | Drain-source on-state resistance | | | 0.4 | 0.5 | | ID=1A, VGS=4V | | Forward transfer admittance | Yts | 1 | _ | _ | S | V _{DS} =10V, I _D =1A | | Input capacitance | Ciss | _ | 400 | | рF | V _{DS} =10V | | Output capacitance | Coss | _ | 150 | | рF | V _{GS} =0V | | Reverse transfer capacitance | Crss | _ | 50 | - | рF | f=1MHz | | Turn-on delay time | td(on) | _ | 10 | _ | ns | lo=1A, Voo≒30V | | Rise time | tr | _ | 20 | — | ns | V _{GS} =10V | | Turn-off delay time | td(off) | - | 100 | _ | ns | RL=30 Ω | | Fall time | tr | _ | 40 | _ | ns | Re=10Ω | | Reverse recovery time | trr | | 100 | _ | ns | IDR=2A, Vgs=0V, di/dt=50A/ μs | #### Electrical characteristic curves Fig.1 Maximum Safe Operating Area Fig.2 Typical Output Characteristics Fig.3 Typical Transfer Characteristics ### IOS FE #### Electrical characteristic curves Fig.4 Gate Threshold Voltage vs. Channel Temperature Fig.5 Static Drain-Source On-State Resistance vs. Drain Current (I) Fig.6 Static Drain-Source On-State Resistance vs. Drain Current (II) Fig.7 Static Drain-Source On-State Resistance vs. Gate-Source Voltage Fig.8 Static Drain-Source On-State Resistance vs. Channel Temperature Fig.9 Forward Transfer Admittance vs. Drain Current Fig.10 Reverse Drain Current vs. Source-Drain Voltage (I) Fig.11 Reverse Drain Current vs. Source-Drain Voltage (I) Fig.12 Typical Capacitance vs. Drain-Source Voltage #### Electrical characteristic curves Fig.13 Switching Characteristics (See Figure. 15 and 16 for measurement circuits) Fig.14 Normalized Transient Thermal Resistance vs. Pulse Width #### Switching characteristics measurement circuit Fig.15 Switching Time Measurement Circuit Fig.16 Switching Time Waveforms #### Notes - The contents described in this catalogue are correct as of March 1997. - No unauthorized transmission or reproduction of this book, either in whole or in part, is permitted. - The contents of this book are subject to change without notice. Always verify before use that the contents are the latest specifications. If, by any chance, a defect should arise in the equipment as a result of use without verification of the specifications, ROHM CO., LTD., can bear no responsibility whatsoever. - Application circuit diagrams and circuit constants contained in this data book are shown as examples of standard use and operation. When designing for mass production, please pay careful attention to peripheral conditions. - Any and all data, including, but not limited to application circuit diagrams, information, and various data, described in this catalogue are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO., LTD., disclaims any warranty that any use of such device shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes absolutely no liability in the event of any such infringement, or arising from or connected with or related to the use of such devices. - Upon the sale of any such devices; other than for the buyer's right to use such devices itself, resell or otherwise dispose of the same; no express or implied right or license to practice or commercially exploit any intellectual property rights or other proprietary rights owned or controlled by ROHM CO., LTD., is granted to any such buyer. The products listed in this catalogue are designed to be used with ordinary electronic equipment or devices (such as audio-visual equipment, office-automation equipment, communications devices, electrical appliances, and electronic toys). Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of which would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers, or other safety devices) please be sure to consult with our sales representatives in advance. #### Notes when exporting - It is essential to obtain export permission when exporting any of the above products when it falls under the category of strategic material (or labor) as determined by foreign exchange or foreign trade control laws. - Please be sure to consult with our sales representatives to ascertain whether any product is classified as a strategic material.