# **High-Power Industrial Transistors**

NPN silicon power transistor designed for applications in industrial and commercial equipment including high fidelity audio amplifiers, series and shunt regulators and power switches.

- Collector –Emitter Sustaining Voltage VCEO(sus) = 140 Vdc (Min)
- Excellent Second Breakdown Capability

2N3442

10 AMPERE
POWER TRANSISTOR
NPN SILICON
140 VOLTS
117 WATTS



CASE 1-07 TO-204AA (TO-3)

### \*MAXIMUM RATINGS

| Rating                                                            | Symbol                            | Value       | Unit          |
|-------------------------------------------------------------------|-----------------------------------|-------------|---------------|
| Collector–Emitter Voltage                                         | VCEO                              | 140         | Vdc           |
| Collector–Base Voltage                                            | V <sub>CB</sub>                   | 160         | Vdc           |
| Emitter–Base Voltage                                              | V <sub>EB</sub>                   | 7.0         | Vdc           |
| Collector Current — Continuous<br>Peak                            | lC                                | 10<br>15**  | Adc           |
| Base Current — Continuous Peak                                    | lВ                                | 7.0<br>—    | Adc           |
| Total Power Dissipation @ T <sub>C</sub> = 25°C Derate above 25°C | PD                                | 117<br>0.67 | Watts<br>W/°C |
| Operating and Storage Junction Temperature Range                  | T <sub>J</sub> , T <sub>Stg</sub> | -65 to +200 | °C            |

### THERMAL CHARACTERISTICS

| Characteristic                       | Symbol         | Max | Unit |
|--------------------------------------|----------------|-----|------|
| Thermal Resistance, Junction to Case | $R_{	heta JC}$ | 1.5 | °C/W |

<sup>\*</sup> Indicates JEDEC Registered Data.

<sup>\*\*</sup> This data guaranteed in addition to JEDEC registered data.

## **ELECTRICAL CHARACTERISTICS** ( $T_C = 25^{\circ}C$ unless otherwise noted)

| Characteristic                                                                                                                                                                   | Symbol           | Min       | Max       | Unit |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------|-----------|------|
| OFF CHARACTERISTICS                                                                                                                                                              |                  |           |           |      |
| Collector–Emitter Sustaining Voltage (I <sub>C</sub> = 200 mAdc, I <sub>B</sub> = 0)                                                                                             | VCEO(sus)        | 140       | _         | Vdc  |
| Collector Cutoff Current<br>(V <sub>CE</sub> = 140 Vdc, I <sub>B</sub> = 0)                                                                                                      | ICEO             | _         | 200       | mAdc |
| Collector Cutoff Current<br>(V <sub>CE</sub> = 140 Vdc, V <sub>BE</sub> (off) = 1.5 Vdc)<br>(V <sub>CE</sub> = 140 Vdc, V <sub>BE</sub> (off) = 1.5 Vdc, T <sub>C</sub> = 150°C) | ICEX             | _<br>_    | 5.0<br>30 | mAdc |
| Emitter Cutoff Current<br>(VBE = 7.0 Vdc, I <sub>C</sub> = 0)                                                                                                                    | I <sub>EBO</sub> | _         | 5.0       | mAdc |
| ON CHARACTERISTICS (1)                                                                                                                                                           |                  |           |           |      |
| DC Current Gain (I <sub>C</sub> = $3.0$ Adc, V <sub>CE</sub> = $4.0$ Vdc) (I <sub>C</sub> = $10$ Adc, V <sub>CE</sub> = $4.0$ Vdc)                                               | hFE              | 20<br>7.5 | 70<br>—   | _    |
| Collector–Emitter Saturation Voltage (I <sub>C</sub> = 10 Adc, I <sub>B</sub> = 2.0 Adc)                                                                                         | VCE(sat)         | _         | 5.0       | Vdc  |
| Base–Emitter On Voltage<br>(I <sub>C</sub> = 10 Adc, V <sub>CE</sub> = 4.0 Vdc)                                                                                                  | VBE(on)          | _         | 5.7       | Vdc  |
| DYNAMIC CHARACTERISTICS                                                                                                                                                          |                  |           |           |      |
| Current–Gain — Bandwidth Product (2)<br>(I <sub>C</sub> = 2.0 Adc, V <sub>CE</sub> = 4.0 Vdc, f <sub>test</sub> = 40 kHz)                                                        | fτ               | 80        | _         | kHz  |
| Small–Signal Current Gain (I <sub>C</sub> = 2.0 Adc, V <sub>CE</sub> = 4.0 Vdc, f = 1.0 kHz)                                                                                     | h <sub>fe</sub>  | 12        | 72        | _    |

<sup>\*</sup> Indicates JEDEC Registered Data.

#### NOTES

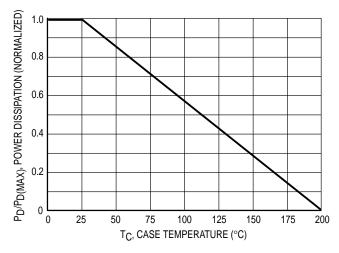



Figure 1. Power Derating

<sup>1.</sup> Pulse Test: Pulse Width = 300  $\mu$ s, Duty Cycle  $\leq$  2.0%.

<sup>2.</sup>  $f_T = |h_{fe}| \bullet f_{test}$ 

### **ACTIVE REGION SAFE OPERATING AREA INFORMATION**




Figure 2. 2N3442

There are two limitations on the power–handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate IC – VCE limits of the transistor that must be observed for reliable operation, i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

The data of Figure 2 is based on  $T_{J(pk)} = 200^{\circ}C$ ;  $T_{C}$  is variable depending on conditions. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown.

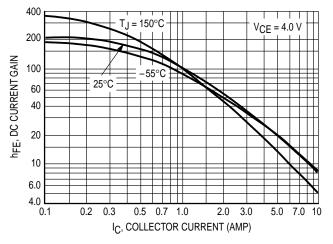



Figure 3. DC Current Gain

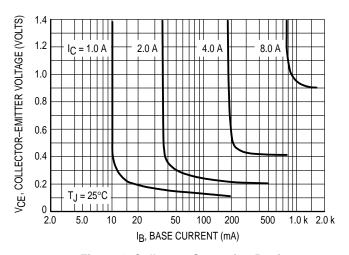
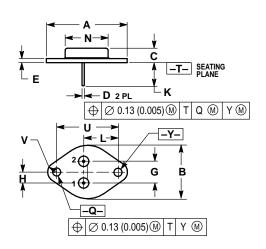




Figure 4. Collector-Saturation Region

#### PACKAGE DIMENSIONS



- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
  2. CONTROLLING DIMENSION: INCH.
- ALL RULES AND NOTES ASSOCIATED WITH
   REFERENCED TO-204AA OUTLINE SHALL APPLY.

|     | INC       | INCHES MILLIMETERS |           |       |
|-----|-----------|--------------------|-----------|-------|
| DIM | MIN       | MAX                | MIN       | MAX   |
| Α   | 1.550 REF |                    | 39.37 REF |       |
| В   | -         | 1.050              |           | 26.67 |
| C   | 0.250     | 0.335              | 6.35      | 8.51  |
| D   | 0.038     | 0.043              | 0.97      | 1.09  |
| Е   | 0.055     | 0.070              | 1.40      | 1.77  |
| G   | 0.430 BSC |                    | 10.92 BSC |       |
| Н   | 0.215 BSC |                    | 5.46 BSC  |       |
| K   | 0.440     | 0.480              | 11.18     | 12.19 |
| L   | 0.665 BSC |                    | 16.89 BSC |       |
| N   |           | 0.830              |           | 21.08 |
| ø   | 0.151     | 0.165              | 3.84      | 4.19  |
| U   | 1.187 BSC |                    | 30.15 BSC |       |
| V   | 0.131     | 0.188              | 3.33      | 4 77  |

STYLE 1: PIN 1. BASE 2. EMITTER CASE: COLLECTOR

**CASE 1-07** TO-204AA (TO-3) **ISSUE Z** 

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and (M) are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1-800-441-2447

MFAX: RMFAX0@email.sps.mot.com - TOUCHTONE (602) 244-6609 INTERNET: http://Design-NET.com

JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC, Toshikatsu Otsuki, 6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan. 03-3521-8315

HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298



