

AVR2102: RF4Control - User Guide

Features
• RF4Control is the Atmel ZigBee RF4CE Certified Platform
• Architecture overview
• APIs: RF4CE and serial interface
• Example application: Key Remote Controller and Single Button Controller
• Example application: Terminal Target
• Example application: Serial Interface, ZRC Serial Interface
• Transceiver support – 2.4GHz: Atmel AT86RF231 and Atmel ATmega128RFA1
• Transceiver support – 900MHz: Atmel AT86RF212
• MCU support: ATmega family, such as Atmel ATmega1281, Atmel ATmega128RFA1
• MCU support: AT32UC3A3256S, AT32UC3B1128
• Bootloader support for ATmega128RFA1.
• Watchdog support.
• NVM Multi-write Support for ATmega128RFA1.
• Board configuration to demonstrate implementation w/o 32kHz crystal.

1 Introduction
This document is the user guide for the Atmel® RF4Control software stack. The
RF4Control stack is a ZigBee® RF4CE Certified Platform implementing the ZigBee
RF4CE standard [11].

The RF4Control stack is used with Atmel microcontrollers and IEEE® 802.15.4
transceivers. Some microcontrollers, such as the Atmel ATmega1281 [6], are used
for reference implementations. Other Atmel microcontrollers can be used based on
the application requirements. The ZigBee RF4CE specification makes use of the
2.4GHz band, and Atmel IEEE 802.15.4 transceivers, such as the Atmel
AT86RF231 [4], support the 2.4GHz band. In addition, the RF4Control stack
supports the sub-1GHz bands, as defined in the IEEE 802.15.4-2006 standard [1],
with the Atmel AT86RF212 [3]. For applications requiring the use of a single-chip
implementation (transceiver and microcontroller SoC), the Atmel megaRF family
provides such a single-chip solution. As a reference, the ATmega128RFA1 [5] is
used.

This user guide introduces the RF4Control architecture and its implementation in
section 2. Based on the stack, several example applications are implemented
demonstrating the use of the stack’s functionality and APIs. Chapter 3 describes
the example applications.

Remote controlling is the main application area for RF4CE, and the Example
applications section introduces a few application examples (Terminal Target and
Key Remote Controller). Section 3.2 introduces a Single Button Controller example
application and walks through its implementation. The Key Remote Controller,
which uses the ATmega128RFA1 Radio Controller Board (RCB), is a certified
ZigBee Remote Control application.

8-bit Atmel
MCU Wireless
Solutions

Application Note

Rev. 8357B-AVR-08/11

2 AVR2102
8357A-AVR-8/11

The software stack provides an API that is aligned with the RF4CE network
primitives, and which can be used directly from an application or firmware. A serial
interface API is also provided. The serial interface API can be used for
communication where the Atmel RF4CE stack is hosted on a separated
communication microcontroller and controlled by an additional microcontroller via, for
example, a UART, SPI or I2C serial interface. The serial interface approach is
described in section 3.4. An example application demonstrates using the serial
interface API with an UART interface (see section 3.4.5).

When working with the RF4Control stack, it is highly recommended to use the ZigBee
RF4CE specification version 1.0 [12]. Terms used throughout this document are
based on the ZigBee RF4CE specification. The ZigBee RF4CE also specified a
profile for remote control applications – ZigBee Remote Control Profile (ZRC) [13].
Use this specification also as an additional source of information.

1.1 Remote controlling
Remote controlling is the main application scope of the RF4CE standard. The first
profile published (ZigBee Remote Control profile, ZRC [13]) addresses the remote
controlling of consumer goods.

The RF4Control package contains a remote control example application in which one
board represents a TV (target node) while the other board represents a remote
controller (controller node). The end-user applications on both boards use the ZRC
profile, as defined by the RF4CE specification. A typical RF4CE network example is
shown in Figure 1-1.

Figure 1-1. RF4CE network topology example.

 Source: ZigBee RF4CE [11]

Nodes can be made known to each other using a procedure called pairing. The ZRC
profile specification describes an automated/simplified pairing procedure, called push
button pairing, between a target node and a controller node.

Besides the pairing procedure, the profile points to the HDMI specification [14] for the
actual controller command codes (CEC – Consumer Electronics Control).

 AVR2102

 3

8357A-AVR-8/11

2 RF4Control – Stack implementation

2.1 Architecture
The Atmel RF4Control stack uses the Atmel IEEE 802.15.4 MAC as the underlying
layer. For detailed information about the MAC layer, see the AVR2025 MAC Software
Package [7].

Figure 2-1 shows the software architecture used for RF4Control stack
implementation.

Figure 2-1. RF4Control software stack architecture.

TPS

Hardware Platform (i.e. Microcontroller, Board, Configuration)

PAL
(TRX Access, Timers, GPIO, IRQ, Stream I/O)

Abstraction of
other

Peripherals

TFATAL

MAC
(MCL)

SAL

STB

Resource
Management
(BMM, QMM)

RF4CE NWK

ZRC

End-user Application Vendor data

PBP

The end-user application accesses the RF4CE network layer directly for initialization
and configuration. If the ZRC profile is part of the configuration, the ZRC profile
functions support the initialization and data exchange.

The Atmel MAC software implementation is modular, allowing different hardware to
be used for RF4CE applications. The microcontroller and board are interfaced using
the Platform Abstraction Layer (PAL). The transceiver is interfaced using the
Transceiver Abstraction Layer (TAL). For further information about these layers, see
the MAC software package user guide [7].

4 AVR2102
8357A-AVR-8/11

2.2 ZigBee Remote Control profile
The ZigBee Remote Control (ZRC) profile defines the protocol (structure and
sequence of communication messages) between a ZRC-compliant remote control
(RC) device and a ZRC-compliant target device, such as a TV, DVD, etc.

The ZRC profile is specified by [13]. Compared to the RF4CE network specification
[12], the ZRC profile specification does not define primitives as Service Access Points
(SAP). Therefore the primitives descriptions cannot be used as RF4Control API
descriptions as is done within the network specification. The RF4Control API for the
ZRC profile is described within the following sections. For detailed information about
the API function, see also the reference manual provided in HTML format in section
2.5.

The ZRC profile interfaces to the RF4CE network layer to make use of the network’s
standardized pairing and data transmission mechanisms. The pairing mechanism
specified by the ZRC profile is called push button pairing (PBP), and it includes the
discovery and pairing mechanisms. Push Button Pairing is described in section 2.2.1.

The ZRC profile also defines RC command discovery and RC command handling
procedures. These procedures are described in sections 2.2.2 and 2.2.3,
respectively.

In general, ZRC profile features are included in the firmware build if the
ZRC_PROFILE flag is defined within the Makefile or the IAR™ project file. Section
2.6 provides an overview of the build configuration.

2.2.1 Push button pairing

The push button pairing procedure uses and combines the discovery and pairing
mechanisms of the RF4CE network layer. After getting a user stimulus (Button Press
or PBP API call) on the controller, the PBP procedure automatically starts a discovery
procedure. The target device enters the auto-discovery response mode if triggered by
a Button Press or PBP API call. Once the discovery is successful, it automatically
starts the pairing procedure.

Dedicated PBP API functions are used by the target and controller nodes. Some PBP
API function parameters are used for discovery, and the remaining ones are used for
the actual pairing. Table 2-1 lists them for the target and Table 2-2 lists them for the
controller as implemented by the RF4Control stack. They are declared in the
pb_pairing.c header file.

The PBP functionality is included in the firmware build if the PB_PAIRING flag is
defined within the Makefile or the IAR project file. If the PB_PAIRING flag is set, the
PBP API functions are included and the discovery and pairing API functions are
hidden from the higher layers. The discovery and pairing functions are used by the
PBP implementation. The discovery and pairing API functions are exposed to the
application if PB_PAIRING is not set. Section 2.6 provides an overview of the build
configuration.

 AVR2102

 5

8357A-AVR-8/11

Table 2-1. Push button pairing API – target side.
API function Description
pbp_rec_pair_request
(RecAppCapabilities,
RecDevTypeList,
RecProfileIdList)

Push button pairing recipient request: Initiates the push button
pairing on the target side. Internally, the target starts the auto-
discovery procedure. After successful discovery, it handles the
incoming pairing request.

RecAppCapabilities: The application capabilities of the target
node (the device number and profile type supported by the
target node).

RecDevTypeList: The list of the supported device types.

RecProfileIdList: The list of the supported profile types.

pbp_allow_pairing
(Status, SrcIEEEAddr,
OrgVendorId,
OrgVendorString,
OrgUserString,
KeyExTransferCount)

Push button pairing allow pairing: Provides information to the
target application about the incoming pairing request from the
controller node. The application placed on the target can decide
whether or not to allow pairing based on this information.

Status: Status of the pair indication; here NWK_SUCCESS or
NWK_DUPLICATE_PAIRING.

SrcIEEEAddr: IEEE address of the device (controller) requesting
to pair.

OrgVendorId: Vendor identifier of the device (controller)
requesting to pair.

OrgVendorString: Vendor string of the device (controller)
requesting to pair.

OrgUserString: User string of the device (controller) requesting
to pair.

KeyExTransferCount: Key exchange transfer count of the
incoming pair request.

pbp_pair_confirm
(Status, PairingRef)

Push button pairing confirm: This callback function provides the
status of the push button pairing request.

Status: Status of the push button pairing procedure.

PairingRef: If pairing was successful, it contains the assigned
pairing reference.

6 AVR2102
8357A-AVR-8/11

Table 2-2. Push button pairing API – controller side.
API Function Description

pbp_org_pair_request
(OrgAppCapabilities,
OrgDevTypeList,
OrgProfileIdList,
SearchDevType,
DiscProfileIdListSize,
DiscProfileIdList)

Push button pairing originator pair request: Initiates the push
button pairing on the controller side. Internally, the controller
starts the discovery procedure. After a successful discovery, it
automatically sends the pairing request to the target.

OrgAppCapabilities: Application capabilities of the controller
node.

OrgDevTypeList: The list of the supported device types.

OrgProfileIdList: The list of the supported profile types.

SearchDevType: The device type that the controller is looking
for (i.e., a TV).

DiscProfileIdListSize: The size of the DiscProfileIdList (the next
parameter).

DiscProfileIdList: The list of profile identifiers against which
profile identifiers contained in the received discovery response
will be matched.

pbp_pair_confirm
(Status, PairingRef)

Push button pairing pair confirm: This callback function provides
the status of the push button pairing request.

Status: Status of the push button pairing procedure.

PairingRef: If pairing was successful, PairingRef contains the
assigned pairing reference.

2.2.2 Command discovery

The command discovery procedure enables a target or controller to query the CEC
commands supported by the other node. The other node can respond by sending a
command discovery response frame containing a bitmap of its supported CEC
commands. The command discovery API is described in Table 2-3.

The command discovery functionality is included in the firmware build if the
ZRC_CMD_DISCOVERY flag is defined within the Makefile or the IAR project file.
Section 2.6 provides an overview of the build configuration.

Table 2-3. ZigBee remote control command discovery APIs.
API Function Description

zrc_cmd_disc_request
(PairingRef)

Sends command discovery request command to other node.

PairingRef: The pairing reference for the other node obtained
during the push button pairing procedure.

zrc_cmd_disc_confirm
(Status, PairingRef,
SupportedCmd

This callback function provides the status and supported
command information from the other node.

Status: Status of the command discovery request.

SupportedCmd: The CEC commands that the responding node
supports.

zrc_cmd_disc_indication
(PairingRef)

Indicates to the sending device that a command discovery
request is received.

PairingRef: The pairing reference of the originator node.

 AVR2102

 7

8357A-AVR-8/11

API Function Description

zrc_cmd_disc_response
(PairingRef,
SupportedCmd)

Allows a device to respond to an incoming command discovery
request frame.

PairingRef: The pairing reference of the originator node.

SupportedCmd: The CEC commands that this node supports.

2.2.3 RC command handling

RC command handling allows a controller node to send the RC command (CEC) to a
target node to perform the specified operation. For example, when a user presses a
“channel up” button on the remote controller, it sends a command over the air to the
target device (such as a TV) to increment the channel.

Three types of over-the-air commands are defined in the ZRC specification:

1. PRESSED command – When a user presses an RC button, the PRESSED
command is sent to the target

2. REPEATED command – If the user holds down a remote key for some time,
multiple REPEATED commands can be sent to the target

3. RELEASED command – To stop the operation of a target device (TV, for
example), the user releases the pressed RC button and a RELEASED command
is sent

The KEY_RC application example supports all three command types, while the Single
Button Controller application example uses only the PRESSED command type.

The REPEATED and RELEASED functionality is excluded from the firmware build if
the ZRC_BASIC_PRESS_ONLY flag is defined within the Makefile or the IAR project
file. If the ZRC_BASIC_PRESS_ONLY compiler switch is set, only the basic
PRESSED functionality is supported by the implementation. Section 2.6 provides an
overview of the build configuration.

The API for sending the commands is shown in Table 2-4.

Table 2-4. RC command APIs.
API Function Description

zrc_cmd_request
(PairingRef, VendorId,
CmdCode, CmdLength,
Cmd, TxOptions)

Initiates the RC command request (key code) by the
application.

PairingRef: The pairing reference for the other node.

VendorId: Vendor identifier; only use if vendor data transmit
option is set.

CmdCode: Specifies a command code. This could be a
PRESSED command (device menu, for example) or a
REPEATED command (volume up, for example).

CmdLength: Length of the command payload.

Cmd: Contains the CEC command and payload (if anything).

TxOptions: Tx options, as defined in the RF4CE network layer
specification.

8 AVR2102
8357A-AVR-8/11

API Function Description

zrc_cmd_confirm (Status,
PairingRef, RcCmd)

Provides the confirmation of a command request to application.

Status: Status of the RC command request.

PairingRef: The pairing reference for the other node.

RcCmd: The RC (CEC) command to be sent.

zrc_cmd_indication
(PairingRef, nsduLength,
nsdu, RxLinkQuality,
RxFlags)

Indicates that an RC command request command has been
received.

PairingRef: The pairing reference of the originator node.

nsduLength: The length of the received RC command.

nsdu: RC command payload.

RxLinkQuality: Received link quality.

RxFlags: Rx flags, as defined in the RF4CE network layer
specification.

2.3 Channel agility
The RF4CE standard’s frequency agility mechanism can be used to overcome a
jammed RF channel scenario. Although, the standard specification refers to
frequency agility, in reality channel agility is meant. In the context of the RF4Control
stack, the term “channel agility” is used.

The following paragraphs describe the design constraints and the implementation /
usage of the channel agility mechanism to supplement the RF4CE standard.

To detect a channel compromised by an external source of interference, a
mechanism called energy detection (ED) is employed. This functionality is provided
by the MAC layer, and is operated via ED scans. During ED scans the device cannot
receive any frames. Long or frequent scans result in dead times. To avoid long offline
durations, the most recently used channel (BaseChannel) is scanned first. If the
measured channel energy exceeds the maximum ED threshold, all three channels
are scanned in sequence, and the channel with the lowest energy is set as the new
BaseChannel.

The Atmel RF4Control stack provides a set of API functions allowing the user to
control the usage and behavior of the ED scans in the context of channel agility.
Table 2-5 lists the API functions and their parameters that can be used to control the
channel agility mechanism. The channel agility feature needs to be started by the
application using the nwk_ch_agility_request() API function, and it is then handled
automatically by the stack.

The channel agility API functions are included in the build process if the
CHANNEL_AGILITY compiler switch is defined within the Makefile or the IAR project
file. Section 2.6 provides an overview of the build configuration.

 AVR2102

 9

8357A-AVR-8/11

Table 2-5. Channel agility API functions.
API Function Description

nwk_ch_agility_request
(AgilityMode)

Enables or disables the channel agility mode.

AgilityMode:
AG_ONE_SHOT - starts single scanning
AG_PERIODIC - starts periodic scanning
AG_STOP - stops periodic scanning

nwk_ch_agility_confirm
(Status, ChannelChanged,
LogicalChannel)

Confirms the previous call of the above request.

Status: Status of the request.

ChannelChanged: True if the channel has changed, else false.

LogicalChannel: Current logical channel.

nwk_ch_agility_indication
(LogicalChannel)

If the channel is changed during the periodic mode, this
indication informs the application about it.

LogicalChannel: New/current logical channel.

nlme_set_request
(NIBAttribute,
NIBAttributeIndex,
NIBAttributeValue)

Sets the configuration parameters (NIBAttribute), such as
nwkPrivateChAgScanInterval: Channel agility scan interval, set
to 60s for example applications;
nwkPrivateChAgEdThreshold: Channel agility ED threshold
value, set to 10 (-80dBm) for example applications;
nwkScanDuration: duration of a single scanning operation, set
to 6 (~1s) for example applications.

For more details of the actual API functions, see the HTML-based reference manual;
section 2.5.

2.4 Vendor-specific data handling
The RF4CE profiles define standard behavior to ensure compatibility between
different vendors. But some application requirements are not covered by the profile.
These requirements can be handled by application-specific frames. The RF4CE
standard allows transmitting application-specific frames using vendor data frames.

The Atmel RF4Control stack supports mechanisms (application hooks) for a
dedicated vendor data exchange. These mechanisms ensure the correct data
handling without any impact on the standard profile-specific data handling. Table 2-6
shows the API functions for vendor data handling. The function prototypes can be
found in the vendor_data.h header file located in the RF4CE/Inc directory.

The vendor-specific API functions are included in the build process if the
VENDOR_DATA compiler switch is defined within the Makefile or the IAR project file.
Section 2.6 provides an overview of the build configuration.

10 AVR2102
8357A-AVR-8/11

Table 2-6. Vendor data handling API functions.
API Function Description

vendor_data_request
(uint8_t PairingRef,
profile_id_t ProfileId,
uint16_t VendorId, uint8_t
nsduLength, uint8_t *nsdu,
uint8_t TxOptions)

Initiates a vendor data specific transmission.

PairingRef: The pairing reference for the other node.

ProfileId: Profile identifier used for the transmission.

VendorId: The vendor identifier. If this parameter is equal to
0x0000, the vendor identifier of the stack is used.

nsduLength: The number of octets contained in the
payload/nsdu.

Nsdu: Payload of the data frame.

TxOptions: Transmission options for this command; see Table
3-3 for further details.

vendor_data_ind
(uint8_t PairingRef,
profile_id_t ProfileId,
uint16_t VendorId, uint8_t
nsduLength, uint8_t *nsdu,
uint8_t RxLinkQuality,
uint8_t RxFlags);

Indicates an incoming vendor specific data frame

PairingRef: The pairing reference of the originator node.

ProfileId: Profile identifier used for the transmission.

VendorId: The vendor identifier used by the originator.

nsduLength: The number of octets contained in the
payload/nsdu.

nsdu: Payload of the data frame.

RxLinkQuality: Link quality of the incoming frame.

RxFlags: Information about the transmit modes used.

vendor_data_confirm
(nwk_enum_t Status, uint8_t
PairingRef);

Provides the status of the last vendor data request.

Status: Status of the data transmission.

PairingRef: The pairing reference used for the transmission.

The application needs to define and handle the semantics of the vendor data payload.

Some example applications, such as the Single Button Controller (section 3.2.5.10) in
combination with the Terminal Target application, demonstrate the use of the vendor
data exchange.

The ZRC Target (section 3.3) application example reveals the concept of vendor data
exchange by implementing a firmware over-the-air (FOTA) upgrade feature.

2.5 RF4Control firmware API
The Atmel RF4Control stack API is documented using Doxygen-style comments. See
the HTML-based reference manual provided within the release package:

..\Reference_Manual\RF4Control\html\index.html

2.6 Stack configuration
The RF4Control stack can be configured to match end-user application requirements.
The configuration ensures that only functionality that is actually needed by the
application is included into the stack and that the footprint meets the desired or
minimum values.

 AVR2102

 11

8357A-AVR-8/11

The configuration is done in the same way as it is within the MAC software package
[7]; see its user guide for general information about stack configuration.

The Atmel RF4Control stack can be configured by build/compiler switches. It is
defined within the app_config.h file, and is applicable to source code package
releases only.

Table 2-7. Compiler/build switches.
API Function Description

RF4CE_PLATFORM If set, stack supports all device types. The actual device
type needs to be configured by the application. This
compiler switch includes also the build switch
RF4CE_SECURITY.

RF4CE_TARGET If set, stack supports functionality that is required to operate
a target node. If not set, the stack only supports functionality
that is required to operate a controller node.

RF4CE_SECURITY If set (default), security is supported. If not set, the stack
does not support security and the footprint is smaller.
If set, the compiler switch STB_ON_SAL is required too.

RSSI_TO_LQI_MAPPING If set (default), LQI calculation is based on RSSI value, as
defined by [12].

MAC_USER_BUILD_CONFIG If set (default), MAC user build configuration is enforced.
Only MAC primitives required by the RF4CE network layer
are included in the build process.

NWK_USER_BUILD_CONFIG If set, the nwk_user_build_config.h file is included during the
firmware build process. The header file contains compiler
switches to enable or disable network layer features that are
required or not required by the application. The Makefile /
IAR project file needs to include the path to the
nwk_user_build_config.h file.

TFA_BAT_MON If included in the Makefile or IAR project file, the supply
voltage measurement feature is available.

VENDOR_DATA If included in the Makefile or IAR project file, the hooks to
handle vendor specific data are available.

FLASH_SUPPORT If included in the Makefile or IAR project file, functionality for
self programming the flash are available.

ZRC_PROFILE If included in the Makefile or IAR project file, the ZRC profile
layer is included in the build process.

ZRC_CMD_DISCOVERY If included in the Makefile or IAR project file, the command
discovery functionality is available.

PB_PAIRING If included in the Makefile or IAR project file, the push button
functionality is available. This build switch needs to be set if
ZRC_PROFILE is set.

CHANNEL_AGILITY If included in the Makefile or IAR project file, the channel
agility feature is included to the build process.

12 AVR2102
8357A-AVR-8/11

API Function Description

ZRC_BASIC_PRESS_ONLY If included in the Makefile or IAR project file, the ZRC profile
supports only the PRESSED command code. REPEATED
and RELEASED are not available.

ENABLE_PWR_SAVE_MODE If included in the Makefile or IAR project file, receiver is set
to power save mode.

USE_TIMER1_AS_SYSTIME If included in the Makefile or IAR project file, timer 1 will be
enabled as the system time base. This is used to
demonstrate the implementation w/o 32KHz crystal on
Single Button Controller application.

STORE_NIB If included in the Makefile or IAR project file, NIB is stored in
the flash memory instead of EEPROM.

NVM_MULTI_WRITE If included in the Makefile or IAR project file, frame-counter
is stored in the flash memory instead of EEPROM.

WATCHDOG If included in the Makefile or IAR project file, watchdog
feature is enabled.

WATCHDOG_TIMER If included in the Makefile or IAR project file, watchdog is
enabled in the interrupt mode.

BOOT_FLASH If included in the Makefile or IAR project file, bootloader
support will be enabled and functionality for self
programming the flash will be available through bootloader.

Compiler/build switches others than those listed in Table 2-7 configure the underlying
MAC layer and its transceiver and platform abstraction. See [7] for further information
on MAC layer configuration.

Note: With the release of AVR2102 version 1.3.x, the AVR32 family (32-bit) is also
supported for some of the applications. The kits supported on AVR32 Family are
RZ600 (AT32UC3A3256s), STK600 (AT32UC3B1128). For detailed information
about these platforms, see the section 10.4.10 and section 10.4.11 of AVR2025 MAC
Software Package [7].

Some special stack configurations are described below –

2.6.1 Omitting the 32kHz crystal

The megaRF device can be operated using different oscillators such as the 16MHz
and the 32 kHz crystal.

The RF4Control stack uses as the default CPU clock 16 MHz while be run on a
megaRF device. Depending on the application requirements the CPU clock can be
reduced (from the default 16MHz operation) to 4 or 8 MHz by setting the define
F_CPU to 4000000 or 8000000 in the pal_config.h file. Reducing the CPU clock has
impact to the execution speed of the entire application.

If a low BoM is desired and timing accuracy is not required, the 32kHz crystal can be
omitted.

If the 32kHz is omitted from the board design, the symbol counter cannot be used as
basis for a system time tick. Another timer unit of the megaRF device should be used
to maintain the system time for the stack.

 AVR2102

 13

8357A-AVR-8/11

If no 32kHz crystal is in place, the RF4Control stack uses timer unit 1 as the system
timer base. The compiler switch USE_TIMER1_AS_SYSTIME in the Makefile or IAR
project file enables timer 1 as the system time base. The file pal_timer_1.c contains
the implementation of the timer 1 to use as the system time. This file needs to be
included to the build process.

The CPU clock is configured in the pal_config.h file by setting the F_CPU define. By
default, this value is set to 16MHz. To achieve the correct timer clock, the
TIMER1_FACTOR is used. The RF4Control stack requires a system time tick of
1MHz. Since the different prescaler settings do not allow a 1MHz tick, the
TIMER1_FACTOR is used to adjust the tick to 1MHz.

Since period wakeup from sleep is supported by the symbol counter by default, while
using timer 1 as the system time base another feature of the megaRF needs to be
enabled. To support period wakeups from sleep with timer 1, the watchdog timer is
used. The watchdog timer is enabled by including the WATCHDOG_TIMER define in
the Makefile or IAR project file. The period wakeup duration is defined in the file
app_config.h by the WDT_WAKEUP_INTERVAL define. As an example, this value is
set to one second.

The traditional watchdog, i.e. system reset, is enabled by including the WATCHDOG
in the Makefile or IAR project file. The watchdog timeout is configured by the
WDT_TIMEOUT_PERIOD in the app_config.h file. A an example configuration, this
value is set to eight seconds.

The board configuration RCB_6_3_PLAIN_NO_32KHZ_CRYSTAL is used by the
Single Button Controller application to demonstrate the megaRF operation without
using the 32kHz crystal. The Makefile and IAR project files are located in the following
directory:
\Applications\RF4CE_Examples\Single_Button_Controller\ATMEGA128RFA1_RCB_
6_3_PLAIN_NO_32KHZ_CYRSTAL\

2.6.2 NVM multi-write and Store NIB feature

Flash memory can also be used to store NIB and frame-counter for two reasons. First
is that storing the NIB to EEPROM requires significant duration, since all bytes are
written one-by-one (if they differ from previous contents). Secondly, the size of flash is
more than EEPROM. To demonstrate that NIB and frame-counter can also be written
in the Flash instead of EEPROM, NVM multi-write and Store NIB features are
enabled.

Currently nib is stored in the flash memory location just above the bootloader area.
One need to ensure that NIB storage location does not overlap with the bootloader
area or firmware image. The size of nib may vary depending on the pairing table size.
Please refer the flash memory layout (Figure 2-2) to set the nib storage location.

To set the nib size and flash area to store the nib is defined in app_config.h. Currently
following values are set

#define NIB_SIZE (1024) /* bytes */
#define BOOT_LOADER_SIZE (4096) /* bytes */
#define NIB_FLASH_ADDR (FLASHEND - BOOT_LOADER_SIZE - NIB_SIZE + 1)

14 AVR2102
8357A-AVR-8/11

The frame-counter is stored in the flash memory area just above the area that is used
to store the nib and bootloader. For each device (pairing table entries and self), 2
pages of flash memory is required to store the frame-counter variable in order to
increase the effective write-cycles.

To set the flash area location to store the frame-counters can be defined in
app_config.h (Please refer Figure 2-2). Currently following values are set.

#define NVM_MULTI_WRITE_NUM_PG_PER_VAR (2)

#define NVM_NUM_VARS (NWKC_MAX_PAIRING_TABLE_ENTRIES + 1)
#define NVM_MULTI_WRITE_SIZE (NVM_NUM_VARS * SPM_PAGESIZE
 NVM_MULTI_WRITE_NUM_PG_PER_VAR *)
#define NVM_MULTI_WRITE_START (NIB_FLASH_ADDR - NVM_MULTI_WRITE_SIZE)

Figure 2-2. Flash memory layout example

2.6.3 WATCHDOG

ATmega128RFA1 has a Watchdog module whose basic purpose is to trigger a
system reset and start executing from the boot vector in case the program hangs due

 AVR2102

 15

8357A-AVR-8/11

to some fault condition. When the system is running fine it regularly services the
Watchdog timer by clearing it periodically.

In order to enable the usage of Watchdog, this feature needs to be enabled explicitly
by setting WATCHDOG build switch during compilation.

2.7 Stack porting
This user guide describes how to use the Atmel RF4Control stack using a few
example boards. For a customer- or application-specific design, the existing stack
usually needs to be ported to a new hardware platform. The RF4Control stack is
designed in a way that abstracts the hardware-specific characteristics through lower
layers (Platform Abstraction Layer – PAL, Figure 2-1).

Because the higher layers, such as the MAC, network, and profile layers, are
implemented independently from the underlying hardware platform, no changes are
usually required to these layers.

It is recommended to use an existing hardware platform and software application as a
basis for customer development. The application examples provided in chapter 3 are
a good starting point for your own application development.

The “Platform Porting” section of the AVR2025 user guide [7] describes how to port
from one hardware platform to another.

3 Example applications
The RF4Control stack package contains some example applications that can be used
for demonstration purposes and for getting familiar with the implementation for
customer application development. For demonstration purposes, the release package
includes pre-compiled firmware binary files (in .hex file format using the GCC
compiler or .d90/.a90 file format using the IAR compiler). These can be used out of
the box.

3.1 Key Remote Controlling example application

3.1.1 Introduction

The remote controlling example application implements a remote controller and its
target, which represents a TV, DVD, STB, or similar device.

For the remote controller, Atmel uses designated hardware called a Key Remote
Controller (see section 3.1.2), or just a plain RCB without any additional base board.
The counterpart of the remote controller is the Terminal Target or ZRC Target
application. See 0 for further information about the Terminal Target setup, and section
3.3 for information about the ZRC Target application.

The Terminal Target’s user interface is realized by using a standard terminal
program, such as Windows® HyperTerminal. The target is controlled via the terminal
program, and the received remote control commands are printed to the terminal
program.

The handling of the Key Remote Controller example application is described in
section 3.1.4. The simpler remote controller application, called a Single Button
Controller, is described in section 3.2.

16 AVR2102
8357A-AVR-8/11

3.1.2 Key Remote Controller board setup

The remote controller setup consists of two boards connected together: (1) the Key
Remote Controller board (KEY_RC) and (2) the Radio Controller Board (RCB). The
KEY_RC board holds the buttons, LEDs, and the display. Button control and RF
communication are handled by the RCB.

Figure 3-1 shows the Key Remote Controller board with a Radio Controller Board.
See [18] for further information about the Atmel ATmega128RFA1 RCB.

The KEY_RC board, with its connected ATmega128RFA1 RCB using
the pre-complied Key Remote Controller application, is a certified
ZigBee Remote Control product.

Figure 3-1. A KEY_RC board with its RCB connected.

Currently, the following RCBs are supported for connection to the Key Remote
Controller board (KEY_RC).

• Radio Controller Board with Atmel ATmega128RFA1; RCB_6_3
• Radio Controller Board with Atmel AT86RF231 and Atmel ATmega1281;

RCB_4_0
If the example application is to be used in the sub-1 GHz band, the following board is
supported:

• Radio Controller Board with Atmel AT86RF212 and ATmega1281; RCB_5_3

Board Setup

Insert batteries into the battery holder of the RCB, plug the RCB to the Key_RC board
expansion socket, and connect the antenna if an SMA connector is available. For
firmware programming, connect the JTAGICE [10] to the 10-pin JTAG header

 AVR2102

 17

8357A-AVR-8/11

connector on the Key Remote Controller board. The RCB needs to be powered for
firmware programming.

The necessary firmware for the Key Remote Controller application is located in the
directory:
Applications\RF4CE_Examples\Key_Remote_Controller\<board_name>\GCC

or
Applications\RF4CE_Examples\Key_Remote_Controller\<board_name>\IAR\Exe

where <board_name> represents the hardware configuration used, such as
ATMEGA128RFA1_RCB_6_3_KEY_RC.

The AVR2025 User Guide ([7], section 7.3) provides further information about
firmware programming using Atmel AVR Studio®.

For correct operation, it is required to store a valid IEEE address in the first eight
bytes of the microcontroller EEPROM.

In case the IEEE address of the node is stored in the internal EEPROM of the
microcontroller perform as follows:

• After successful download of the application check whether a valid IEEE
address (different from 0xFFFFFFFF) is stored in the internal EEPROM.
Select menu “View” item “Memory”.

• If the IEEE address is not set properly, write the correct IEEE to the first 8
octets of the EEPROM (see picture below).

• Start the application by pressing “F5” or clicking the “Run” button.

Figure 3-2. AVR Studio 4 – Verifying and setting of IEEE address

It is recommended to check the MCU fuses: Table 3-1 lists the recommended fuse
settings. For further information about fuse settings, see [7] and the device datasheet.

18 AVR2102
8357A-AVR-8/11

Table 3-1. Recommended fuse settings.

Fuse settings can also be specified in terms of bytes as given below -

Extended : 0xFE

High : 0x91

Low : 0xC2

3.1.3 Terminal target setup

The Terminal Target example application, which represents a TV, DVD, etc., can be
operated using several boards. The pre-compiled firmware for the supported boards
is located in the directory:
Applications\RF4CE_Examples\Terminal_Target\Target\<board_name>\GCC

or
Applications\RF4CE_Examples\Terminal_Target\Target\<board_name>\IAR\Exe

where <board_name> represents the used hardware configuration, such as
ATMEGA128RFA1_RCB_6_3_SENS_TERM_BOARD.

The AVR2025 User Guide ([7], section 7.3) provides further information about
firmware programming using AVR Studio.

For correct operation, it may be necessary to store a valid IEEE address in the first
eight bytes of the microcontroller EEPROM. Table 3-1 contains information about the
recommended MCU fuse settings.

The board used for the Terminal Target application needs to be connected to a
PC/laptop via a serial interface; that is, an RS232/UART or USB interface. The
required USB drivers can be found here:

• FTDI USB driver used with Sensor Terminal board: [15]
At the PC/laptop, a terminal program (Windows HyperTerminal, for example) is used
to control the Terminal Target application. Figure 3-3 shows the configuration of the
HyperTerminal program used for the example application.

Parameter Value for RCB

BODLEVEL Brown-out detection at VCC = 1.8V

OCDEN Disabled

JTAGEN Enabled

SPIEN Enabled

WDTON Disabled

EESAVE Enabled

BOOTSZ Boot flash size = 4096 words; start address = $F000

BOOTRST Disabled

CKDIV8 Disabled

CKOUT Disabled

SUT_CKSEL Internal RC oscillator start-up time = 6CK + 0ms

 AVR2102

 19

8357A-AVR-8/11

Figure 3-3. HyperTerminal settings.

3.1.4 Remote controlling operations

3.1.4.1 Terminal target functions

Once the Terminal Target application is powered up, open the terminal program and
press any key to print the menu to the terminal window. Figure 3-4 shows the terminal
window with the application menu.

Figure 3-4. Terminal Target example application menu.

20 AVR2102
8357A-AVR-8/11

The following actions can be triggered from the menu by entering a letter in the
HyperTerminal window.

(R) Perform a cold reset of the target device; NIB will be reset to default values and
stored in EEPROM

(S) Start the target device
(P) Start the pairing procedure on target device
(A) All-in-one start-up. Perform all three previous steps; that is, reset, start, and

pairing
(W) Perform a warm reset of the target device
(T) Print the pairing table
(U) Unpair a device and remove pairing entry from the pairing table of target
(C) Enable channel/frequency agility on the target device
(O) Open a sub-menu to configure channel agility
(B) Set the base channel on the target device
(Y) Toggle the standby mode of the target device. Target will sleep and then wake

up for 16.8ms every second. If target receives any data in 16.8ms window, it will
come out of standby mode

(D) Request the battery status from the controller. The target sends a battery status
request to the controller. The controller will send the response. The target sends
the request command continuously for one second (multi-channel mode) until
the controller wakes up (16.8ms window) to receive the data

(V) Request the firmware version from the remote controller. The target sends a
battery status request to the controller. The controller replies with the response.
The target sends the request command continuously for one second (multi-
channel mode) until the controller wakes up (16.8ms window) to receive the
data

(Z) Request the remote controller life status. The target sends an alive request to
the controller. The controller replies with the response. The target sends the
request command continuously for one second (multi-channel mode) until the
controller wakes up (16.8ms window) to receive the data. The LEDs on the
controller will blink for some time indicating that an alive request is received

3.1.4.2 Remote controller clearing

The remote controller might have stored any data to the microcontroller EEPROM
from previous operations. Therefore, it is recommended to clear any data that is
stored in the EEPROM and reset any previously stored pairing information. The
pairing table is stored in the MCU EEPROM.

The remote controller application including EEPROM is cleared by executing a cold
start reset. The cold start reset is initiated by holding down the SEL button while
switching on the RCB. The application indicates that it is ready for clearing when only
the LED next to the SEL button turns on. Releasing the SEL button clears all stored
data. The clearing procedure is completed when all LEDs are flashing. After clearing
all previously stored data (expect IEEE address), the remote controller application
sets itself to sleep mode for power saving. The RCB should be switched off.

In all other scenarios, flashing of all LEDs indicates that a problem has been
detected. For example, the application detects that it is not paired to any other device.

3.1.4.3 Pairing

In order to control the Terminal Target by the Key Remote Controller board, it is
necessary to pair both boards with one another. The pairing procedure, called push
button pairing, is defined by the ZigBee RF4CE Remote Control profile specification.

 AVR2102

 21

8357A-AVR-8/11

Using the example application, the easiest way to execute push button pairing is as
follows:

Step 1: Enter ‘A’ at the terminal program to execute an “All-in-one start.” This
includes the reset of the node, initialization of the ZRC profile, start of the
network layer, and the auto-discovery procedure as part of the push pairing
sequence. The terminal program indicates that it is ready for the push button
pairing procedure by printing “Press the push button pairing button at the
remote controller now,” and by flashing all the LEDs.

Step 2: Start the push button pairing procedure on the remote controller board by
holding down one of the color-coded function keys while switching on the
RCB power supply. The output of a successful pairing sequence is shown in
Figure 3-5.

The information stored into the Terminal Target pairing table can be listed by
selecting ‘T’ from the target menu.

Now the Key Remote Controller can be used to send commands to the target.

The remote controller board can be used to control different targets. For example, the
red function key can be used to control a TV and a green function key can be used to
control another target, like a DVD. The function key pressed during the pairing
procedure determines the target node to be controlled.

If the all-in-one start is not used to establish the pairing, the manual sequence needs
to be as follows: Reset, start, and then push button pairing.

Figure 3-5. Terminal Target example application output – successful pairing.

In order to control another target device by the same remote controller, the push
button pairing procedure needs to be repeated with another Terminal Target
application using a different color function key.

22 AVR2102
8357A-AVR-8/11

An additional remote controller can be paired to a target using the push button pairing
(option P). In comparison to the all-in-one start option A, option P does not remove
other entries from the pairing table.

The Terminal Target example application is limited to three paired devices/controllers
at a time.

3.1.4.4 Operation

After successful pairing of the two boards (target and controller), the Key Remote
Controller board can be used to control the Terminal Target application. The
command code (HDMI CEC [14]) of a key that is pressed at the Key Remote
Controller board is sent to the Terminal Target application and printed in the terminal
window. The LED of the paired function is illuminated while the Key Remote
Controller board is in operation. If a data frame is received by the target, it flashes the
data LED. All LEDs are flashed once if the Remote Controller Board does not get an
acknowledgement from the target node. This can be used to check the coverage of
the implementation. Pressing two push buttons simultaneously is not supported.

The color function keys can be used to switch between different target devices. In
order to do so, press the SEL button first, check that the LED next to the SEL button
is switched on, and then press the desired function key that was used during the
pairing procedure. If a function key is selected that has not been used for a pairing
procedure with a terminal target application, all LEDs will flash to indicate a
malfunction. Wait until the LED flashing has stopped before continuing.

The Key_RC boards support all three command types: PRESSED, REPEATED, and
RELEASED (section 2.2.3). Table 3-2 shows the KEY_RC board buttons and their
corresponding ZRC command codes.

Table 3-2. KEY_RC board ZRC command codes.
Button Command code

PWR PRESSED

F1, F2, F3, F4 PRESSED

Numbers 0 – 9 PRESSED

OK PRESSED

L+, L-, R+, R-, <, >, ^, ν PRESSED, REPEATED, RELEASED

If power to the remote controller board is momentarily disconnected, the active
function needs to be reselected by pressing the SEL button followed by the function
button that was used previously during the pairing procedure.

From the terminal output, menu item C, channel agility, can be used to toggle (enable
or disable) the periodic channel agility mechanism at the target node. See section 2.2
for further information about channel agility. The current status (enabled or disabled)
of the periodic channel agility mode is printed to the terminal program (“Channel
agility (periodic mode) enabled,” for example).

Channel agility becomes very useful in noisy channel environments. When the noise
level on the current operating channel become too great (for demonstration purposes,
the noise threshold level was set to -80dBm) and the adjacent channels yield better
noise performance, the channel with the lowest noise energy will be selected as the
new base channel. The parameters used for the channel agility mechanism can be
configured using the menu item O, channel agility configuration.

 AVR2102

 23

8357A-AVR-8/11

If it is desired to demonstrate channel agility when the noise situation would not
ordinarily warrant changing the current channel, menu entry B, base channel change,
can be used to force a base channel change.

Menu item Y, standby, sets the Terminal Target application’s transceiver to power
save mode. During power save mode, the receiver is set periodically to sleep and
wake up again. The transmit mechanisms of RF4CE allow the target to wake up
during the power save mode by sending a command from the remote controller.

3.1.5 RF frame capture

Over-the-air RF frames that are exchanged between both nodes during startup,
pairing, and remote control operation can be captured and displayed on the screen by
using an RF sniffer.

Figure 3-6 shows an example of the RF frames exchanged during startup, discovery,
and pairing between the Terminal Target and the Key Remote Controller applications.
The security is enabled at both nodes, and the KeyExTransferCount parameter is set
to its minimum value of 3.

Figure 3-6. RF sniffer snapshot.

Target device: 0x00 04 25 FF FF 17 53 0C

Controller device: 0x00 04 25 FF FF 17 53 A5

3.2 Single Button Controller example application
To understand how to use the RF4Control API (see section 2.2 and section 2.5) in a
user-defined application, a simple Single Button Controller is introduced. It is simpler
than the Key Remote Controller application. It makes use of only a single button, and
can be operated as one module. It needs an adapter board only for programming.

24 AVR2102
8357A-AVR-8/11

The following description uses the Atmel ATmega128RFA1 RCB, called
RCB_6_3_PLAIN [18]. Besides the RCB_6_3_PLAIN board, the Atmel
ATmega128RFA1-EK1 [17] board can be used to run this application.

3.2.1 Hardware

Figure 3-7. ATmega128RF1 – RCB_6_3_PLAIN.

The Atmel ATmega128RFA1 RCB_6_3_PLAIN board contains three general purpose
LEDs (D1, D2 and D3) and one push button for application control. Status LED D5 to
the right of the button displays the Atmel ATmega128RFA1 reset state. LEDs and
button are shown on the bottom side of Figure 3-7. For correct operation, the antenna
needs to be connected to the RCB’s SMA connector, and two batteries (AAA) need to
be inserted into the RCB’s battery holder. For further information about the RCB, see
[18].

3.2.2 Firmware programming

The AVR2102 package contains pre-compiled binaries providing an out-of-the-box
experience. The firmware for the Single Button Controller can be located here:

Applications\RF4CE_Examples\Single_Button_Controller\
ATmega128RFA1_RCB_6_3_PLAIN\GCC

The AVR2025 User Guide ([7], section 7.3) provides further information about
firmware programming using AVR Studio. Table 3-1 contains information about the
recommended MCU fuse settings.

For debugging and programming purposes, a JTAG [10] is required. The JTAG is
connected to the RCB via a Breakout Board (BB) [16], Sensor Terminal board [15] or
Key_RC board.

3.2.3 Application handling

Once the firmware is downloaded to the ATmega128RFA1 device and the JTAG pod
and BB are disconnected, the application can be started. The RCB communication
peer is the Terminal Target application (see section 0).

 AVR2102

 25

8357A-AVR-8/11

3.2.3.1 Cold start

The cold-start reset and push button pairing procedure is initiated by pushing the
button on the controller and entering 'A’ on the HyperTerminal menu on the Terminal
Target. Either device can start the push button pairing procedure.

In order to pair the Single Button Controller with the Terminal Target, the push button
pairing procedure is used. At the Terminal Target application, the push button pairing
procedure is started by entering ‘A’ at the HyperTerminal menu on the Terminal
Target. The device is reset and started. Then the Terminal Target application displays
the ready message to the terminal window: “Press the push button pairing button at
the remote controller now.”

To start the push button pairing procedure, the RCB push button needs to be pressed
as the board is switched on. The board LEDs show the current status of the pairing
procedure:

LED 0 (D2): application reset and initialization; or error indication

LED 1 (D3): push button pairing (discovery and pairing); or error indication

LED 2 (D4): error indication

If the push button pairing procedure has been completed successfully, all three LEDs
are switched on for about one second. The Single Button Controller has limited error
handling capability. Blinking LEDs indicate that an error has occurred during
discovery or pairing.

After successful pairing, the Atmel ATmega128RFA1 device is set to sleep. Pressing
the push button wakes the MCU and sends an RF4CE frame
(POWER_TOGGLE_FUNCTION command) to the paired device, that is, to the
Terminal Target application. The Terminal Target application toggles its LED 1 and
the relay 1 if the POWER_TOGGLE_FUNCTION command is received. If the
Terminal Target application does not send an acknowledgement to the Single Button
Controller, all three controller LEDs are switched on for about two seconds.

3.2.3.2 Warm start - Reinstating existing pairing table

The pairing information is stored to the non-volatile memory (NVM) of the
ATmega128RFA1. The RCB can be switched off using the power switch (see left side
in Figure 3-7). If the push button is not pressed during power up of the RCB, a warm
start is performed. During the warm start, the pairing information is read from the
NVM as the Single Button Controller is powered up again. The pairing table used in
the last session is reinstated on power-up. All three LEDs are switched on at the
same time and switched off in sequence, indicating that the warm start reset has
been completed.

3.2.4 Development environment

Two different development environments are supported by the included project or
Makefile files:

• IAR Embedded Workbench® for AVR;
http://www.iar.com

• Atmel AVR Studio_5
 http://www.atmel.com/microsite/avr_studio_5

http://www.iar.com/�
http://www.atmel.com/microsite/avr_studio_5�

26 AVR2102
8357A-AVR-8/11

• Atmel AVR Studio 4 with WinAVR™
http://www.atmel.com/avrstudio
http://sourceforge.net/projects/winavr

Using IAR, the project files are located in the following folder:

Applications\RF4CE_Examples\Single_Button_Controller\
ATmega128RFA1_RCB_6_3_PLAIN\IAR

The AVR Studio project file and its Makefile are located in the following folder:
Applications\RF4CE_Examples\Single_Button_Controller\
ATmega128RFA1_RCB_6_3_PLAIN\GCC

3.2.5 Application implementation

Using the library release package, the entire implementation of the Single Button
Controller application requires only a few files:

• Project file/Makefile:
For IAR: Single_Button_Controller.eww and Single_Button_Controller.ewp
For AVR Studio: Single_Button_Controller.aps and Makefile

• RF4Control library:
For IAR:
\RF4CE\ZRC_Lib\ATMEGA128RFA1_RCB_6_3_PLAIN\IAR\Controller_lib.r90
For AVR Studio / WinAVR-GCC:
\RF4CE\ZRC_Lib\ATMEGA128RFA1_RCB_6_3_PLAIN\GCC\lib_Controller.a

• main.c:
\Applications\RF4CE_Examples\Single_Button_Controller_Lib\Src\main.c
Application handling and stack control

• vendor_data.c:
\Applications\RF4CE_Examples\Single_Button_Controller_Lib\Src\vendor_data.c
Vendor specific data handling

3.2.5.1 Program flowchart

The program flow of the Single Button Controller application is shown by Figure 3-8.

http://www.atmel.com/avrstudio�
http://sourceforge.net/projects/winavr�

 AVR2102

 27

8357A-AVR-8/11

Figure 3-8. Single Button Controller program flowchart.

Stack init

Button pressed
on power-up

Power up

Handle reset
request

YES No

Cold start Warm start

Set MCU to
sleep mode

Reset Confirm

Handle start
request

call start request

Start Confirm

issues reset
confirm

issues start
confirm

RF4Control stack

Handle PBP
request

call PBP request

PBP Confirm issues PBP
confirm

Cmd disc.
confirm

Handle
RxEnable req

call RxEnable request

RxEnable
Confirm

issues RxEnable
confirm

Handle reset
request

RF4Control stack

call reset request (false)call reset request (true)

Reset Confirmissues reset
confirm

Handle
RxEnable

call RxEn request

Set MCU to
sleep mode

Handle Cmd
disc request

call Cmd disc request

node_status = IDLE

node_status =
COLD_START

node_status =
WARM_START

node_status = IDLE

RxEnable
Confirm

issues RxEnable
confirm

issues Cmd disc
confirm

The following paragraphs describe the source code implementation of the Single
Button Controller example application. It is recommended having the HTML-based
API documentation handy while walking through the implementation (see section 2.5).

3.2.5.2 Application and stack initialization

The Single Button Controller application and RF4Control stack are initialized within
the main() function. Its example is shown in Listing 3-1.

28 AVR2102
8357A-AVR-8/11

Listing 3-1. main() function.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

int main(void)
{
 /* Initialize all layers */
 if (nwk_init() != NWK_SUCCESS)
 {
 // something went wrong during initialization
 while (1)
 {
 indicate_fault_behavior();
 }
 }

 /*
 * The stack is initialized above,
 * hence the global interrupts are enabled here.
 */
 pal_global_irq_enable();

 /* Initialize buttons and LEDs */
 pal_button_init();
 pal_led_init();

 button_state_t button = pal_button_read(BUTTON_0);
 // Force button press for debugging
 //button = BUTTON_PRESSED;
 if (button == BUTTON_PRESSED)
 {
 // Force push button pairing
 /* Cold start */
 pal_led(LED_0, LED_ON);
 node_status = COLD_START;
 nlme_reset_request(true);
 }
 else
 {
 /* Warm start */
 node_status = WARM_START;
 nlme_reset_request(false);
 }

 /* Endless while loop */
 while (1)
 {
 app_task(); /* Application task */
 nwk_task(); /* RF4CE network layer task */
 }
}

In line 4, the network layer is initialized. The function nwk_init() initializes the network
layer itself and all other components, including the MAC. The application-specific
peripherals, including the LEDs and push button switch, are initialized in lines 20 and
21. Function pal_button_read() returns the current push button status. The return
value is used to determine if a cold or warm start needs to be executed. A basic
application state machine is implemented by the node_status variable. This code
example sets node_status to the COLD_START or WARM_START value, depending
on the push button status.

An endless while loop, shown in lines 42-46, handles the application-specific tasks
and the nwk_task() function. The nwk_task() function (see section 3.2.5.8) takes care
of all stack-related functionality, including low-layer features (timers, for example),
MAC features (CSMA, for example), and RF4CE features (security, for example).

 AVR2102

 29

8357A-AVR-8/11

3.2.5.3 Cold start reset

During the cold start, the RF4CE layer sets the NIB attributes to their default values
using nlme_reset_request(true); see line 32. For a warm start reset, the NIB attributes
are not reset to their default values using the nlme_reset_request(false), see line 38.
For a warm start, the NIB values are read from the NVM (EEPROM).

The RF4Control stack handles nlme_reset_request(), and then calls the
nlme_reset_confirm() function (see Listing 3-2).

Listing 3-2. nlme_reset_confirm().

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

void nlme_reset_confirm(nwk_enum_t Status)
{
 if (Status != NWK_SUCCESS)
 {
 while (1)
 {
 // endless while loop!
 indicate_fault_behavior();
 }
 }

 if (node_status == COLD_START)
 {
 pairing_ref = 0xFF;
 nlme_start_request();
 }
 else // warm start
 {
 pairing_ref = 0;
 /* Set power save mode */
 nlme_rx_enable_request(nwkcMinActivePeriod);
 }
}

The nlme_reset_confirm() function provides the Status argument about the success
of the previous request. In case of any value not equal to NWK_SUCCESS, the
application indicates the malfunction by flashing of all three LEDs (lines 3-10).

If a cold start (node_status == COLD_START) has been forced by pressing the push
button during power up, the node needs to start the RF4Control stack. The stack is
started in the nlme_reset_confirm() function by issuing a nlme_start_request() (line
15).

If a warm start is executed (node_status == WARM_START), no further activities are
required because all settings, like pairing information, are loaded during the warm
reset procedure. The node_status is set to power save mode (line 21).

For further information about the network primitive API functions, such as
nlme_reset_request() and nlme_reset_confirm(), see the reference manual, section
2.5.

3.2.5.4 Network layer start

During the cold start procedure, the RF4Control stacks handles the
nlme_start_request() function and then calls the nlme_start_confirm() function,
providing the status of the start handling using the Status parameter. Listing 3-3
shows the implementation of the nlme_start_confirm() function.

30 AVR2102
8357A-AVR-8/11

Listing 3-3. nlme_start_confirm().

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

void nlme_start_confirm(nwk_enum_t Status)
{
 if (Status != NWK_SUCCESS)
 {
 while (1)
 {
 indicate_fault_behavior();
 }
 }

 pal_led(LED_0, LED_OFF);
 pal_led(LED_1, LED_ON);

 dev_type_t OrgDevTypeList[1];;
 profile_id_t OrgProfileIdList[1];
 profile_id_t DiscProfileIdList[1];

 OrgDevTypeList[0] = DEV_TYPE_REMOTE_CONTROL;
 OrgProfileIdList[0] = PROFILE_ID_ZRC;
 DiscProfileIdList[0] = PROFILE_ID_ZRC;

 pbp_org_pair_request(APP_CAPABILITIES, OrgDevTypeList, OrgProfileIdList,
 DEV_TYPE_WILDCARD, NUM_SUPPORTED_PROFILES, DiscProfileIdList);
}

The nlme_start_confirm() function provides the Status to the application from the
stack. The Status provides information about the success of the previous request. In
case of any value not equal to NWK_SUCCESS, the application indicates the
malfunction by flashing of all three LEDs (lines 3-10).

Furthermore, the application provides its own status indication to the user by setting
LED 0 off and LED 1 on to indicate handling of the push button pairing procedure.

3.2.5.5 Push button pairing

After the stack has been started, push button pairing can be triggered by calling the
pbp_org_pair_request() function within nlme_start_confirm() (see line 22 in Listing
3-3). For further information about the push button pairing API, see section 2.2.1.

The stack starts the discovery procedure. If the discovery procedure is successful, it
will automatically continue with the pairing procedure. The result of the entire push
button pairing is provided by the callback function pbp_pair_confirm(). Listing 3-4
shows the implementation of the pbp_pair_confirm() function.

 AVR2102

 31

8357A-AVR-8/11

Listing 3-4. pbp_pair_confirm().

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

void pbp_pair_confirm(nwk_enum_t Status, uint8_t PairingRef)
{
 if (Status != NWK_SUCCESS)
 {
 while(1)
 {
 indicate_fault_behavior();
 }
 }

 pairing_ref = PairingRef;

 /* Start timer to send the cmd discovery request */
 pal_timer_start(T_LED_TIMER,
 aplcMinTargetBlackoutPeriod_us,
 TIMEOUT_RELATIVE,
 (FUNC_PTR)start_cmd_disc_cb,
 NULL);

 /* Keep receiver on to receive command discovery request */
 nlme_rx_enable_request(RX_ON_DURING_CMD_DISCOVERY_SYM);
}

If a pair could be established successfully, the pairing reference provided from the
stack is stored by the application (line 11).

3.2.5.6 Command discovery

To discover which commands are supported by the controller, the target and the
controller send out a discovery command request after the successful pairing
procedure. To prevent the controller and target from transmitting their command
discovery frames at the same time, the controller transmits the command discovery
after the aplcMinTargetBlackoutPeriod duration. In lines 14-18, the timer is started to
trigger the command discovery request transmission.

For further information about the command discovery API, see section 2.2.2.

When the target command discovery request is received by the controller, the stack
issues the zrc_cmd_disc_indication() callback to the application. Listing 3-5 shows
the implementation of this function.

Listing 3-5. zrc_cmd_disc_indication().

1
2
3
4
5
6
7

void zrc_cmd_disc_indication(uint8_t PairingRef)
{
 /* Send back the response */
 uint8_t cec_cmds[32];
 PGM_READ_BLOCK(cec_cmds, supported_cec_cmds, 32);
 zrc_cmd_disc_response(PairingRef, cec_cmds);
}

Once the stack is notified by the zrc_cmd_disc_indication() function of the incoming
command discovery request, it answers by calling the zrc_cmd_disc_response()
function (see Listing 3-5). The command discovery response sends back the list of
controller supported commands to the target node.

On the controller, once the aplcMinTargetBlackoutPeriod timer expires, the stack
issues the start_cmd_disc_cb() callback shown in Listing 3-6.

32 AVR2102
8357A-AVR-8/11

Listing 3-6. start_cmd_disc_cb().

1
2
3
4
5
6
7

static void start_cmd_disc_cb(void *callback_parameter)
{
 zrc_cmd_disc_request(pairing_ref);

 /* Keep compiler happy */
 callback_parameter = callback_parameter;
}

The command discovery request is sent by calling the zrc_cmd_disc_request()
function, line 3. As a parameter, it uses the pairing reference provided during the
push button pairing procedure.

Upon completion of the discovery request, the stack issues the
zrc_cmd_disc_confirm() callback shown in Listing 3-7.

Listing 3-7. zrc_cmd_disc_confirm().

1
2
3
4
5
6
7
8
9

10
11

void zrc_cmd_disc_confirm(nwk_enum_t Status, uint8_t PairingRef, uint8_t
*SupportedCmd)
{
 /* Enable transceiver Power Save Mode */
 nlme_rx_enable_request(nwkcMinActivePeriod);

 /* Keep compiler happy */
 Status = Status;
 PairingRef = PairingRef;
 SupportedCmd = SupportedCmd;
}

The zrc_cmd_disc_confirm()function provides the target supported commands using
the SupportedCmd parameter.

 AVR2102

 33

8357A-AVR-8/11

3.2.5.7 Entering Power Save mode

To save energy during normal operation, the transceiver can be put to sleep and
woken up periodically to receive and transmit data using Power Save mode by calling
the nlme_rx_enable_request() function. This is shown in Listing 3-7, line 5, of
zrc_cmd_disc_confirm() function.

The stack confirms by issuing the nlme_rx_enable_confirm() callback shown in Listing
3-8.

Listing 3-8. nlme_rx_enable_confirm().

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

void nlme_rx_enable_confirm(nwk_enum_t Status)
{
 if (Status != NWK_SUCCESS)
 {
 while(1)
 {
 indicate_fault_behavior();
 }
 }

 if (node_status == COLD_START)
 {
 node_status = IDLE;

 /* LED handling */
 pal_led(LED_0, LED_ON);
 pal_led(LED_1, LED_ON);
 pal_led(LED_2, LED_ON);
 extended_delay_ms(1000);
 pal_led(LED_0, LED_OFF);
 pal_led(LED_1, LED_OFF);
 pal_led(LED_2, LED_OFF);
 }
 else if (node_status == WARM_START)
 {
 node_status = IDLE;

 /* LED handling */
 pal_led(LED_0, LED_ON);
 pal_led(LED_1, LED_ON);
 pal_led(LED_2, LED_ON);
 extended_delay_ms(250);
 pal_led(LED_2, LED_OFF);
 extended_delay_ms(250);
 pal_led(LED_1, LED_OFF);
 extended_delay_ms(250);
 pal_led(LED_0, LED_OFF);
 }
}

node_status is set to IDLE in lines 13 and 26. node_status must be set to IDLE to
allow further handling within the app_task() function.

The end of the cold start procedure is indicated by switching on all the LEDs on for
one second and then switching them off again. This is shown in lines 16-22.

The end of a warm start procedure is indicated by switching all the LEDs on and then
switching off one LED at a time in increments of 250ms until all LEDs are off (see line
29-37).

34 AVR2102
8357A-AVR-8/11

3.2.5.8 Application task

The endless while loop shown in Listing 3-1, lines 42-46, handles the application-
specific tasks and execution of the nwk_task() function. Once the pairing procedure is
completed and the transceiver is set to sleep, node_status defines further application
processing. The application state machine is implemented by the app_task() function
using the node_status variable. This is shown in Listing 3-9.

After node_status is set to IDLE, the app_task() function checks the button status,
and if the button is pressed, a data frame is sent (line 29). To avoid a continuous
transmission of frames, a check mechanism is used to keep a minimum duration of
about one second between frames (see lines 14-25).

LED 0 is switched on before the data transmission is started.

Listing 3-9. app_task().

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

static void app_task(void)
{
 switch (node_status)
 {
 case IDLE:
 {
 button_state_t button;
 static uint32_t current_time;
 static uint32_t previous_button_time;

 button = pal_button_read(BUTTON_0);
 if (button == BUTTON_PRESSED)
 {
 /* Check time to previous transmission. */
 pal_get_current_time(¤t_time);
 if ((current_time - previous_button_time)
 < INTER_FRAME_DURATION_US)
 {
 return;
 }
 else
 {
 /* Store current time */
 previous_button_time = current_time;
 }
 pal_led(LED_0, LED_ON);
 node_status = TRANSMITTING;
 uint8_t cmd = POWER_TOGGLE_FUNCTION;
 zrc_cmd_request(pairing_ref, 0x0000,
 USER_CONTROL_PRESSED, 1, &cmd, TX_OPTIONS);
 }
 else //(button == BUTTON_OFF)
 {
 /* Set MCU to sleep */
 pal_pwr_mode(SYSTEM_SLEEP);
 /* MCU is awake again */
 }
 }
 break;

 default:
 break;
 }
}

 AVR2102

 35

8357A-AVR-8/11

3.2.5.9 Data/command transmission

Data transmission is started using the zrc_cmd_request() function (lines 29-30). The
app_task() processing stops as node_status is set to TRANSMITTING in line 27.

Table 3-3 shows the arguments used with the zrc_cmd_request() function.

Table 3-3. zrc_cmd_request() arguments.
Argument
name Description

Value used by this
application

uint8_t
PairingRef

Reference into the pairing table, which
contains the information required to
transmit the NSDU.

pairing_ref = 0

uint16_t
VendorId

If the TxOptions parameter specifies
that the data is vendor-specific, this
parameter specifies the vendor
identifier. If this parameter is equal to
0x0000, the vendor identifier should be
set to nwkcVendorIdentifier.

0x0000

zrc_cmd_code_t
CmdCode

ZRC command code
(USER_CONTROL_PRESSED/USER
_CONTROL_RELEASED)

USER_CONTROL_PRESSED

uint8_t
CmdLength

The number of octets contained in the
command.

1

Transmission options for this
command.

For b0 (transmission mode):
1 = broadcast transmission
0 = unicast transmission

TXO_UNICAST

For b1 (destination addressing mode):
1 = use destination IEEE address
0 = use destination network address

TXO_DST_ADDR_NET

For b2 (acknowledgement mode):
1 = acknowledged transmission
0 = unacknowledged transmission

TXO_ACK_REQ

For b3 (security mode):
1 = transmit with security
0 = transmit without security

TXO_SEC_REQ

For b4 (channel agility mode):
1 = use single channel operation
0 = use multiple channel operation

TXO_MULTI_CH

For b5 (channel normalization mode):
1 = specify channel designator
0 = do not specify channel designator

TXO_CH_NOT_SPEC

uint8_t
TxOptions

For b6 (payload mode):
1 = data is vendor-specific
0 = data is not vendor-specific

TXO_VEND_NOT_SPEC

For further information about the command transmission API, see section 2.2.3.

The Single Button Controller application example uses only the
USER_CONTROL_PRESSED command code.

36 AVR2102
8357A-AVR-8/11

The stack handles the data request, and provides the result by calling the
nlde_data_confirm() function. If the Status parameter of the nlde_data_confirm()
function is set to NWK_SUCCESS, LED 0 is switched off again; otherwise, all LEDs
are flashed for about two seconds, indicating a malfunction. Then node_status is set
to IDLE.

If the app_task() function is called and the push button is not pressed, the MCU is set
to sleep mode (line 35). If the user presses the push button, the MCU awakens and
continues to execute code after line 35.

3.2.5.10 Vendor-specific data exchange

For vendor-specific data exchange, the RF4Control stack provides vendor-specific
data handling API functions (see section 2.4). Every application can define the
semantics of the vendor-specific data. The Single Button Controller application uses
vendor-specific data exchange to implement the following features:

• Battery status request/response
• Alive request/response
• Firmware version request/response
• RxEnable request/response
• Firmware request/response for firmware over-the-air (FOTA) update
• Firmware swap
For this application, the request messages are sent by the target node (Terminal
Target or ZRC Target application), and the controller node (Single Button Controller)
answers the request with a response message.

Example: The user initiates a battery status request by entering option D on the
Terminal Target menu. The target node sends the battery status request frame using
multi-channel transmission to the controller node. The controller, operating in power
save mode, switches its receiver on every second for a short duration. During this
window, the controller receives this request frame. The controller stack analyzes the
frame and calls the vendor data indication callback function vendor_data_ind(). Within
the vendor_data_ind() function, the payload is parsed and a battery status request is
identified. The controller measures its voltage level and replies with the battery
response message frame.

The vendor-specific data handling is implemented in the vendor_data.c file located in
the Applications/RF4CE_Examples/Single_Button_Controller_Lib/Src directory.

3.3 ZRC Target example application
The ZRC Target application is a basic DOS application in which an option menu
similar to the one implemented using a HyperTerminal window is implemented in the
DOS shell. The handling and appearance are almost identical to the Terminal Target
application’s (section 3.1.4.1), but it has an extended menu to also support the over-
the-air firmware upgrade option.

The Firmware Over-The-Air (FOTA) upgrade menu option is used to perform a
remote firmware upgrade of the controller node. First, the new firmware image data
file is transmitted via the serial link from the host PC to the client target node, and
then on, via the wireless link, to the controller node to perform the remote firmware
upgrade.

 AVR2102

 37

8357A-AVR-8/11

The application can be built using a GCC compiler such as the one provided by
MinGW [19]. To build the application, execute the make command in the ZRC_Target
directory.

Once the DOS application is up and running, a serial connection to the Sensor
Terminal board can be established by opening a serial communication port.

The ZRC Target application implementation somewhat differs from the Terminal
Target application. The Terminal Target application is based on the RF4Control stack
with the Terminal Target API to support the HyperTerminal communication between
the host and the client. On the other hand, ZRC Target application uses a dedicated
firmware module to control the serial communication between the host and client.
This serial interface handles all data exchange between the DOS shell host and the
client hardware (Sensor Terminal board), such as displaying the options menu and
issuing commands to the client. This interface is also capable of transmitting large
data files during remote firmware upgrade via the client-to-controller node.

Because the implementation of the ZRC Target is very basic, a new firmware upgrade
image for the controller must be pre-compiled using new_firmware.hex as the file
name and placed in the ZRC_Target directory.

To demonstrate the FOTA feature, the existing implementation of the alive request
feature is changed. The alive request is sent from the target node to the controller.
The controller indicates alive request reception by a running light of its LEDs.

The alive request callback is coded in the vendor_app_alive_req() function in the
main.c file of the KEY_RC or SBC application. The received “Alive request” vendor
command calls the vendor_app_alive_req() function. By default, this function
implements a running light that toggles the LEDs from left to right. In the main.c file, if
the source line “#if 1” is changed to “#if 0,” then the direction of the running light is
reversed; that is, the LEDs are toggled from right to left. After compiling the changed
application, the hex file created needs to be renamed to new_firmware.hex, and it
needs to be copied to the directory from which the ZRC Target application is
executed.

The example communication sequence between the target and the controller to
download the new firmware image to a controller is shown in Figure 3-9 for the
KEY_RC or SBC applications. The ZRC Target application represents the target
application that communicates with the ZRC Serial Interface application that is
operated on a Sensor Terminal board. The ZRC Target application is understood as
the main application host, and the ZRC Serial Interface application is the RF4CE
client (target) (see section 3.4.1).

38 AVR2102
8357A-AVR-8/11

Figure 3-9. FOTA implementation example.

Duty cycle mode

Target App Target Controller AppController

Get firmware
version FwVersionReq

FwVersionConf
Firmware version

Get battery
status BatStatusReq

BatStatusConf
Battery status

Switch Rx on
RxEnableReq

RxEnableConfRxEnable
confirm

Firmware data
#1 FwDataReq #0

FwDataConf #0

Firmware data
#1 .

.

.

Firmware data
#n FwDataReq #n

FwDataConf #n

Firmware data
#n

Firmware swap
FwSwapReq

FwSwapConf
FailureFirmware

swapped

RxEnable

Duty cycle mode

Verify firmware
FwVerifyReq

FwVerifyConf
Firmware verified

Swap image and
reset

Vendor-specific data
frames

Switch Rx off
RxEnableReq

RxEnableConfRxEnable
confirm

 AVR2102

 39

8357A-AVR-8/11

The steps can be triggered from the ZRC Target menu. In general, the
communication between the target and the controller for the FOTA feature uses
vendor-specific data frames.

To determine if a newer firmware needs to be downloaded to the controller, the target
asks for the current firmware version using the firmware version request command.
The target application uses the firmware version provided by the firmware version
response frame to determine if newer firmware is available for the controller. The
ZRC Target application does not actually check the firmware version; it only provides
the hooks to do so. The vendor data frames are sent from the target node using multi-
channel mode. This ensures that the frames can be received when the controller
enables its receiver during the active period of the power save or duty cycle mode.

The new firmware image is stored in the MCU flash. This is done by the self-
programming method. Because self-programming fails if the supply voltage drops
below its minimum, verifying the supply voltage is recommended. The controller’s
supply voltage can be retrieved by sending the battery status request. The controller
answers with the battery status response, which contains the supply voltage in
millivolts. During the firmware download, the controller’s receiver is kept on, and so it
is recommended to have a reasonable battery status to avoid voltage drops below the
value needed for self-programming. See the device datasheet for further information
about self-programming.

To accelerate the actual receiving of the new firmware image, the controller receiver
is enabled. To leave the power save mode, the target sends the Rx Enable request
command.

Now the new firmware can be downloaded from the target to the controller. The target
uses firmware data request frames to send the data packets, and the received data
packets are stored to the flash of the controller. After each packet is received and
stored into the flash buffer or flash respectively, the controller sends a firmware data
response command to indicate that it is ready for the next firmware packet.

Once the entire new firmware image is sent from the target to the controller, the target
sets the controller to the power save mode again by sending the Rx Enable request
command.

The new firmware image can be verified by using the firmware verify request. If the
firmware could be verified by the controller, the controller sends the firmware verify
response. Methods for verifying that the correct firmware is received (signature check,
for example) is beyond the scope of the example application. The application
examples do not provide this feature.

Finally, the new image can be swapped with the application code. This is triggered
from the target by sending the firmware swap request. The controller copies the entire
image to the application code area. This requires about five seconds. After this
duration, the controller needs to be power cycled.

After power cycling the controller, the alive request feature can be used to check
whether the firmware upgrade was successful or not. If the new_firmware.hex file
contains the changed implementation of the running light, it can be verified now.

The active function needs to be set before sending remote control commands from
the controller (see section 3.1.4.4).

40 AVR2102
8357A-AVR-8/11

3.4 Serial Interface example application

3.4.1 Introduction

The Atmel RF4Control stack provides a Serial Interface example application that can
be used for any inter-processor communication between a host controller running the
main application and a client controller handling the RF4CE communication over the
air. Both controllers use a serial interface to communicate. The host controller can be
implemented as a standalone microcontroller, or it can also be a personal computer.
Figure 3-10 shows a communication scenario example.

The client receives commands from the host, such as data transfer requests. The
client indicates received data over the air from its communication peer by returning
data indications to its host.

Figure 3-10. Communication scenario example.

Main
application

host

RF4CE
client

(target /
controller)

Serial Interface
e.g. UART, I2C

The physical interface between the main application controller and the RF4CE client
can be manifold, including:

• UART
• USB
• I2C (TWI)
• Proprietary interface
The Serial Interface example application uses a UART (RS-232) or USB for the serial
interface. The physical interface handling is implemented by the PAL; see AVR2025
MAC Software Package [7] for further information about the PAL.

The logical interface is handled by the example application within the file
“serial_interface.c”. This file implements the logical protocol used for the
communication between the main application host and the RF4CE client application.
The same protocol scheme is used for host-to-client and client-to-host
communications.

3.4.2 Message structure

The message structure of the logical protocol is described by the following table.

Table 3-4. Logical protocol message structure (in bytes).

Message header Message payload Message
trailer

SOT Length of
payload

Message
code data, byte 0 data, byte 1 … data, byte

LEN - 1 EOT

0x01 LEN 0x… 0x… 0x… 0x… 0x04

The message consists of the message header, message payload, and message
trailer.

 AVR2102

 41

8357A-AVR-8/11

The start-of-text symbol (SOT) and the length of payload field form the message
header. The value of the length field indicates how many bytes are contained in the
actual message payload; that is, the number of message payload bytes before the
message trailer end-of-text (EOT) symbol is expected. The message payload is
appended after the message header. The message payload starts with the message
code followed by the message data fields. The length and the code of each message
are listed in Table 3-5.

The order of the payload bytes is aligned to the RF4CE primitive specification [12]. If
more than one parameter is used by the primitive, the parameters are concatenated
to the end of a byte stream in the message payload. Parameters whose size is longer
than 8 bits in length are sent with the least-significant byte first. Parameters with 24-
bit lengths are encoded as 32-bit values where the most-significant byte contains a
dummy value and is ignored by the serial interface. Parameter lists such as
DevTypeList and ProfileIdList, which have a variable length based on the primitive
specification, consist of a fixed length when using the serial interface protocol. The
serial interface protocol sets the maximum length for each list; that is, the size of
DevTypeList is set to 3 and size of ProfileIdList is set to 7. List values of unused
entries are ignored, but need to be present.

The following examples introduce this concept.

3.4.2.1 Message structure example 1: NLME-RESET.request primitive

If the main application host wants to reset the network layer of the RF4CE application,
it sends the NLME-RESET.request command to the RF4CE client. See [12] for further
information about the NLME-RESET.request primitive. This request command
requires the SetDefaultNIB parameter. Following this example, the value of the
SetDefaultNIB value is set to true (1). Using the Serial Interface application, the
NLME-RESET.request is encoded and sent as a byte stream via the serial link as
follows:

Listing 3-10. NLME-RESET.request command byte stream.

Byte stream from application host to RF4CE client via serial interface:

0x01 0x02 0x2A 0x01 0x04

Data interpretation:

0x01: SOT

0x02: Length field value

0x2A: Message code for NLME-RESET.request

0x01: Message parameter SetDefaultNIB; here 0x01 = true

0x04: EOT

42 AVR2102
8357A-AVR-8/11

The RF4CE client answers a NLME-RESET.request with a NLME-RESET.confirm
primitive. Using the Serial Interface application, the NLME-RESET.confirm message
is encoded and sent as a byte stream via the serial link as follows:

Listing 3-11. NLME-RESET.confirm command byte stream.

Byte stream from RF4CE client to application host via serial interface:

0x01 0x02 0x3D 0x00 0x04

Data interpretation

0x01: SOT

0x02: Length field value

0x3D: Message code for NLME-RESET.confirm

0x00: Message parameter status; here 0x00 = SUCCESS

0x04: EOT

3.4.2.2 Message structure example 2: NLME-AUTO-DISCOVERY.confirm primitive

The RF4CE client application generates a NLME-AUTO-DISCOVERY.confirm
primitive as the result of the NLME-AUTO-DISCOVERY.request. Listing 3-12 shows
the NLME-AUTO-DISCOVERY.confirm primitive message that is forwarded from the
RF4CE client application to the main application host.

Listing 3-12. NLME-AUTO-DISCOVERY.confirm message.

Byte stream from RF4CE client to application host via serial interface:

0x01 0x0A 0x36 0x00 0x08 0x07 0x06 0x05 0x04 0x03 0x02 0x01 0x04

Data interpretation:

0x01: SOT

0x0A: Length field value

0x36: Message code for NLME-AUTO-DISCOVERY.confirm

0x00: Message parameter “Status”; here 0x00 = SUCCESS

0x08 … 0x01: Message parameter “SrcIEEEAddr”; here
0x0102030405060708

0x04: EOT

3.4.2.3 Message structure exception

As described, the message data payload is aligned to the RF4CE primitive order and
size, in general. There are two exceptions to this rule, however: (1) the NLDE-
DATA.request and (2) the NLDE-DATA.indication primitive messages. The parameter
order for these primitives is changed in comparison to the RF4CE specification.

Listed below are the primitives with their own parameter order for the Serial Interface
application example:

• NLDE-DATA.request parameter order:
PairingRef, ProfileId, VendorId, TxOptions, nsduLength, nsdu

• NLDE-DATA.indication:
PairingRef, ProfileId, vendorId, RxLinkQuality, RxFlags, nsduLength, nsdu

 AVR2102

 43

8357A-AVR-8/11

3.4.3 Message codes

Table 3-5 lists the message codes and message lengths supported by the Serial
Interface protocol.

Table 3-5. Message codes and message lengths (bytes).
RF4CE Network Primitive Message code Message length

NLDE-DATA.request 0x24 ≥7 + data len

NLDE-DATA.indication 0x34 ≥8 + data len

NLDE-DATA.confirm 0x35 3

NLME-AUTO-DISCOVERY.request 0x25 15

NLME-AUTO-DISCOVERY.confirm 0x36 10

NLME-COMM-STATUS.indication 0x37 14

NLME-DISCOVERY.request 0x26 29

NLME-DISCOVERY.indication 0x38 48

NLME-DISCOVERY.response 0x27 22

NLME-DISCOVERY.confirm 0x39
4 + n * 49
n ≥1

NLME-GET.request 0x2B 3

NLME-GET.confirm 0x3A ≥5

NLME-PAIR.request 0x28 24

NLME-PAIR.indication 0x3B 50

NLME-PAIR.response 0x29 24

NLME-PAIR.confirm 0x3C 38

NLME-RESET.request 0x2A 2

NLME-RESET.confirm 0x3D 2

NLME-RX-ENABLE.request 0x2C 5

NLME-RX-ENABLE.confirm 0x3E 2

NLME-SET.request 0x2D ≥4

NLME-SET.confirm 0x3F 4

NLME-START.request 0x2E 1

NLME-START.confirm 0x40 2

NLME-UNPAIR.request 0x2F 2

NLME-UNPAIR.indication 0x41 2

NLME-UNPAIR.response 0x30 2

NLME-UNPAIR.confirm 0x42 3

NLME-UPDATE-KEY.request 0x31 18

NLME-UPDATE-KEY.confirm 0x43 3

NWK_CH_AGILITY_REQUEST 0x32 2

NWK_CH_AGILITY_INDICATION 0x44 2

NWK_CH_AGILITY_CONFIRM 0x45 4

For better readability, the Atmel RF4Control stack uses the header file
nwk_msg_code.h to assign symbolic names to the message codes. For functional

44 AVR2102
8357A-AVR-8/11

compatibility, enumeration and assigned numbers should not be changed in this
header file.

3.4.4 Protocol adaption

The message structure described here is an example implemented by the Serial
Interface application. The protocol or message structure can easily be adapted to the
end-user’s application needs. For example, a checksum, such as CRC, can be added
to detect and correct errors that might occur over the serial link.

3.4.5 Serial interface usage

As introduced in section 3.4.1, the Serial Interface application can be used in a
scenario where the Atmel RF4CE stack in hosted on one microcontroller and the
main application processor controls it via a serial interface. The following section
explains how to use the Serial Interface application to set up a communication link.
The following figure shows such a setup.

Figure 3-11. Application setup using serial interface.

Main
application

host A

RF4CE
client A

Serial
Interface

Main
application

host B

RF4CE
client B

Serial
Interface

Target node
0x00 04 25 FF FF 17 4A CE

Controller node
0x00 04 25 FF FF 17 4A DF

The main application microcontroller A hosts an application, such as a TV, controlling
the RF4CE client A. The other main application microcontroller B hosts an
application, such as a remote controller, controlling the RF4CE client B. The main
application microcontrollers use a serial interface to communicate with their RF4CE
clients.

The application hosts send commands to their RF4CE clients to configure the RF4CE
communication. The charts below show a typical scenario of commands that establish
an RF4CE link and send a data frame to the target.

The data communication between the host and the client serial interface is described
in section 3.4.2.

A typical RF4CE network application can be realized using the following hypothetical
operating scenario:

• Step1: Node initialization: Each client is configured (reset, set capabilities, set
LQI threshold, etc.)

• Step 2: Discovery and pairing. Each client is directed to start discovery and
pairing procedures

• Step 3: Data transmission. Each client is controlled to transmit and receive
RF4CE application data

 AVR2102

 45

8357A-AVR-8/11

3.4.5.1 Step 1 – Initialization

Host A Client A Client B Host B

Reset request
Reset confirm

Reset request
Reset confirm

Set node capabilities
Set confirm

Set node capabilities
Set confirm

Set disc. LQI threshold
Set confirm

Set disc. repetition interval
Set confirm

Set max. disc. repetitions
Set confirm

Start request
Start confirm

Start request
Start confirm

Over the air

Set max. report. node
Set confirm

Command / Message Description Byte stream over serial
interface (message payload)

Reset request Resets the RF4CE stack
and underlying layers

0x2a 0x01

Reset confirm Returns the results of the
reset request

0x3d 0x00

Set node capabilities Sets the capabilities of the
RF4CE client, such as node
type (target or controller)
and security support

Target node:
0x2d 0x73 0x00 0x01 0x0f

Controller node:
0x2d 0x73 0x00 0x01 0x0c

Set confirm / node
capabilities

Returns the result of the
previous set confirm

0x3f 0x00 0x73 0x00

Set disc. LQI threshold Sets the LQI threshold for
the incoming discovery
requests; here: 0x01

0x2d 0x62 0x00 0x01 0x01

Set confirm / disc. LQI
threshold

Returns the result of the
previous set confirm

0x3f 0x00 0x62 0x00

Set disc. repetition
interval

Sets the duration of the
discovery repetition interval;
here: 0x00044AA2 symbols
or 4.5 second

0x2d 0x63 0x00 0x04 0xa2 0x4a
0x04 0x00

Set confirm / disc.
repetition interval

Returns the result of the
previous set confirm

0x3f 0x00 0x63 0x00

Set max. disc. repetitions Sets maximum number of
discovery repetitions; here:
0x1E

0x2d 0x69 0x00 0x01 0x1e

46 AVR2102
8357A-AVR-8/11

Command / Message Description Byte stream over serial
interface (message payload)

Set confirm / max. disc.
repetitions

Returns the result of the
previous set confirm

0x3f 0x00 0x69 0x00

Set max report nodes Sets the maximum number
of node descriptors that
should be reported during
discovery

0x2d 0x6c 0x00 0x01 0x01

Set confirm / max report
nodes

Returns the result of the
previous set confirm

0x3f 0x00 0x6c 0x00

Start request Starts the RF4CE client 0x2e

Start confirm Returns the result of the
start confirm

0x40 0x00

There is no specific order required for the commands during configuration, but the
start request command should not be issued before setting the node capabilities.

3.4.5.2 Step 2 – Discovery and pairing

Host A Client A Client B Host B

Auto disc. request

Auto disc. confirm

Disc. request

Disc. confirm

Pair response
Pair confirm

Discovery

Over the air

Pair. request
Pair. indication Pairing

Comm status indication

Command / Message Description Byte stream over serial
interface (message payload)

Auto disc. request Starts the auto discovery
procedure

0x25 0x12 0x02 0x00 0x00 0x01
0x00 0x00 0x00 0x00 0x00 0x00
0x38 0x9c 0x1c 0x00

Auto disc. confirm Returns the result of the
auto discovery procedure

0x36 0x00 0xdf 0x4a 0x17 0xff
0xff 0x25 0x04 0x00

Disc. request Starts the discovery
procedure

0x26 0xff 0xff 0xff 0xff 0x12 0x01
0x00 0x00 0x01 0x00 0x00 0x00
0x00 0x00 0x00 0x02 0x01 0x01
0x00 0x00 0x00 0x00 0x00 0x00
0x12 0x7a 0x00 0x00

 AVR2102

 47

8357A-AVR-8/11

Command / Message Description Byte stream over serial
interface (message payload)

Disc. confirm Returns the result of the
discovery procedure

0x39 0x00 0x01 0x31 0x00 0x0f
0x20 0x1e 0xce 0x4a 0x17 0xff
0xff 0x25 0x04 0x00 0x0f 0x34
0x12 0x00 0x00 0x00 0x00 0x00
0x00 0x00 0x12 0x4b 0x49 0x02
0x18 0x39 0x01 0x21 0x58 0x11
0x5b 0x9f 0xef 0x22 0x91 0x40
0x02 0xa2 0xbd 0x01 0x8c 0xc3
0xe4 0xf6 0xe7 0xe5 0x94

Pair request Starts the pair procedure;
parameters are used from
the discovery result

0x28 0x0f 0x20 0x1e 0xce 0x4a
0x17 0xff 0xff 0x25 0x04 0x00
0x12 0x01 0x00 0x00 0x01 0x00
0x00 0x00 0x00 0x00 0x00 0x03

Pair indication Indicates a pairing request 0x3b 0x00 0xff 0xff 0xdf 0x4a
0x17 0xff 0xff 0x25 0x04 0x00
0x0c 0x34 0x12 0x00 0x00 0x00
0x00 0x00 0x00 0x00 0x12 0x94
0x78 0x60 0xc4 0x35 0xf2 0x16
0x16 0x2a 0x05 0x00 0x00 0x00
0x03 0xfe 0x01 0x0c 0x34 0x01
0x00 0x00 0x00 0x00 0x00 0x00
0x03 0x00

Pair response Responses to the pairing
request, such as allowing to
pair

0x29 0x00 0xff 0xff 0xdf 0x4a
0x17 0xff 0xff 0x25 0x04 0x00
0x12 0x02 0x00 0x00 0x01 0x00
0x00 0x00 0x00 0x00 0x00 0x00

Pair confirm Returns the result of the pair
request

0x3c 0x00 0x00 0x34 0x12 0x00
0x00 0x00 0x00 0x00 0x00 0x00
0x12 0x09 0xe9 0xce 0x29 0x1e
0xc9 0xc5 0xf3 0x07 0x47 0x08
0x79 0x72 0x87 0x6f 0x02 0x63
0x9a 0x01 0xbb 0xcb 0x0f 0xf4
0x10 0x9d

Comm status indication Returns the result of the last
response, here: pair
response

0x37 0x00 0x00 0xff 0xff 0x01
0xdf 0x4a 0x17 0xff 0xff 0x25
0x04 0x00

There is no need to synchronize the auto discovery request on the target node and
the discovery request on the controller node because the discovery request
commands are sent by the RF4CE client several times, depending of the discovery
repetition interval and the maximum discovery repetitions. The target node (Client A)
is ready for the discovery request from the controller node and it is based on the
duration parameter used for the auto discovery request command.

48 AVR2102
8357A-AVR-8/11

3.4.5.3 Step 3 – Data transmission

Host A Client A Client B Host B

Data indication
Data request

Data confirm

Data
transmission

Over the air

Command / Message Description Byte stream over serial
interface (message payload)

Data request Requests to send a data
frame

0x24 0x00 0x01 0xf1 0xff 0x0c
0x02 0x12 0x34

Data indication Indicates the reception of a
data frame

0x34 0x00 0x01 0x1e 0x16 0x94
0x02 0x02 0x12 0x34

Data confirm Returns the result of the
data request

0x35 0x00 0x00

3.5 ZigBee Remote Control serial interface
The RF4Control stack provides a ZRC Serial Interface application that is similar to
Serial Interface application. The major differences are that the ZRC Serial Interface
application supports:

• push button pairing API instead of the normal discovery and pairing mechanism
• remote control command discovery
• RC command handling instead of normal data transfer
• vendor-specific commands
• a controller and target configuration instead of a generic platform configuration

3.5.1 ZRC Serial Interface message codes

The underlying architecture and message structure of the ZRC Serial Interface
application remain the same as those of the Serial Interface application described in
section 3.4.

Table 3-6 lists the message codes and message lengths supported by ZRC Serial
Interface protocol.

Table 3-6. Message codes and message lengths for the ZRC API.
ZRC API functions Message codes Message lengths

pbp_org_pair_request 0x46 21

pbp_rec_pair_request 0x47 12

pbp_pair_confirm 0x48 3

zrc_cmd_disc_request 0x4C 2

zrc_cmd_disc_indication 0x4D 2

zrc_cmd_disc_confirm 0x4E 34

zrc_cmd_disc_response 0x4F 35

 AVR2102

 49

8357A-AVR-8/11

ZRC API functions Message codes Message lengths

zrc_cmd_request 0x49 6 + payload_length

zrc_cmd_indication 0x4A 5 + payload_length

zrc_cmd_confirm 0x4B 4

vendor_data_request 0x50 7 + Payload_length

vendor_cmd_indication 0x51 8 + Payload_length

vendor_data_confirm 0x52 3

3.5.2 ZRC Serial Interface usage

This section describes the usage of the ZRC Serial Interface. The description is
divided into five steps.

1. Initialization
2. Push button pairing
3. RC command discovery
4. RC command handling
5. Vendor-specific data handling

3.5.2.1 Step 1 – Initialization

Host A
(Target)

Client A
(Target)

Client B
(Controller)

Host B
(Controller)

Reset Confirm

Reset RequestReset Request

Set Confirm

Set Node Capabilities

Set Confirm

Set
aplKeyRepeatWaitTime

Start Confirm

Start request

Reset Confirm

Set Node Capabilities

Set Confirm

Set aplKeyRepeatInterval

Set Confirm

Start request

Start Confirm

The initialization step also provides a way to assign values to parameters that need to
be set differently than their default values. The table below shows setting the example
values.

Command / Message Description Byte stream over serial
interface (message payload)

Reset request Resets the RF4CE stack
and underlying layers

0x2a 0x01

Reset confirm Returns the results of the
reset request

0x3d 0x00

50 AVR2102
8357A-AVR-8/11

Command / Message Description Byte stream over serial
interface (message payload)

Set node capabilities Sets the capabilities of the
RF4CE client, such as node
type (target or controller)
and security support

Target node: 0x2d 0x73 0x00
0x01 0x0f

Controller node: 0x2d 0x73 0x00
0x01 0x0c

Set confirm / node
capabilities

Returns the result of the
previous set confirm

0x3f 0x00 0x73 0x00

Set aplKeyRepeatInterval Sets the key repeat interval
time on controller

0x2d 0x80 0x00 0x01 0x64

Set Confirm /
aplKeyRepeatInterval

Returns the result of the
previous set request

0x3f 0x00 0x80 0x00

Set
aplKeyRepeatWaitTime

Sets KeyRepeatWaitTime
on target

0x2d 0x81 0x00 0x01 0xc8

Set Confirm /
aplKeyRepeatWaitTime

Returns the result of the
previous set request

0x3f 0x00 0x81 0x00

Set
aplResponseWaitTime

Sets aplResponseWaitTime 0x2d 0x6c 0x04 0x00 0x00 0x6a
0x18

Set Confirm /
aplResponseWaitTime

Returns the result of the
previous set request

0x3f 0x00 0x6d 0x00

Start request Starts the RF4CE client 0x2e

Start confirm Returns the result of the
start confirm

0x40 0x00

There is no specific order required for the commands, but the start request command
should not be issued before setting the node capabilities.

 AVR2102

 51

8357A-AVR-8/11

3.5.2.2 Step 2 – Push button pairing

Host A
(Target)

Client A
(Target)

Client B
(Controller)

Host B
(Controller)

pbp_org_pair_requestpbp_rec_pair_request

pbp_pair_confirm

zrc_cmd_disc_confirm

zrc_cmd_disc_request

zrc_cmd_disc_indication

zrc_cmd_disc_response

pbp_pair_confirm

zrc_cmd_disc_response

zrc_cmd_disc_indication

zrc_cmd_disc_request

zrc_cmd_disc_confirm

Over the Air

Discovery

Pairing

Command
Discovery

Command
Discovery

Command / Message Description Byte stream over serial
interface (message payload)

pbp_org_pair_request Starts the push button
pairing procedure at
controller

0x47 0x13 0x01 0x00 0x00 0x01
0x00 0x00 0x00 0x00 0x00 0x00
0x02 0x01 0x01 0x00 0x00 0x00
0x00 0x00 0x00

pbp_rec_pair_request Starts the push button
pairing procedure at target

0x46 0x13 0x02 0x00 0x00 0x01
0x00 0x00 0x00 0x00 0x00 0x00

pbp_pair_confirm Push button pairing status
on controller and target

0x48 0x00 0x00

3.5.2.3 Step 3 – RC command discovery

RC command discovery is used to exchange information about the supported
commands. After pairing, the target sends the RC command discovery request to the
controller. The controller answers back to the target with a response message. After a
blackout period, the controller sends the command discovery to the target, and the
target sends the response back to controller.

52 AVR2102
8357A-AVR-8/11

Command / Message Description Byte stream over serial
interface (message payload)

zrc_cmd_disc_request Sends the RC command
discovery request

0x4c 0x00

zrc_cmd_disc_indication Indication on the receiver
of the command discovery

0x4d 0x00

zrc_cmd_disc_response Sends back the response
to originator

0x4f 0x00 0x1f 0x06 0x00 0xe0
0xff 0x03 0x13 0x00 0x0f 0x00
0x00 0x00 0x00 0x00 0x1e 0x00
0x00 0x00 0x00 0x00 0x00 0x00
0x00 0x00 0x00 0x00 0x00 0x00
0x00 0x00 0x00 0x00

zrc_cmd_disc_confirm The status of the command
discovery request

0x4e 0x00 0x00 0x1f 0x06 0x00
0xe0 0xff 0x03 0x13 0x00 0x0f
0x00 0x00 0x00 0x00 0x00 0x1e
0x00 0x00 0x00 0x00 0x00 0x00
0x00 0x00 0x00 0x00 0x00 0x00
0x00 0x00 0x00 0x00 0x00

3.5.2.4 Step 4 – RC command handling

Host A
(Target)

Client A
(Target)

Client B
(Controller)

Host B
(Controller)

zrc_cmd_indication
zrc_cmd_request

Zrc_cmd_confirm

Data
transmission

Over the air

Command / Message Description Byte stream over serial
interface (message payload)

zrc_cmd_request Sends the RC command
from controller to target

0x49 0x00 0xfa 0xff 0x01 0x0c
0x01 0x30

zrc_cmd_indication Indication on the target for
the RC command

0x4a 0x00 0x2e 0x02 0x02 0x01
0x30

zrc_cmd_confirm The status of the previous
RC command

0x4b 0x00 0x00 0x30

 AVR2102

 53

8357A-AVR-8/11

4 Serial bootloader support
The serial bootloader firmware is capable of programming (flashing) the device
program memory with a new program application image without using a device
programmer (e.g. JTAGICEII).

4.1 Functionality Overview
This feature is supported on ATmega128RFA1 using Sensor Terminal Board and Red
Key Remote Control Board. The supported harware (ATMega128RFA1 with Sensor
Terminal Board and Red Key Remote Control Board) are also provided with the
RF4CE Evaluation kit available at [20]

RF4CE-EK development kit devices come with a preprogrammed bootloader program
placed in the bootloader program memory section. The bootloader program is also
availble at \PAL\Board_Utils\ATMEGA128RFA1_RCB\bootloader.hex

Note: In case, if bootloader firmware needs to be programmed using device
programmer, then following fuse settings needs to be used

Table 4-1. Recommended fuse settings for applications using serial bootloader

Fuse settings can also be specified in terms of bytes as given below -

Extended : 0xFE

High : 0x92

Low : 0x42

Serial bootloader consists of two parts: embedded bootstrap code that should be
loaded to the flash memory of ATmega128RFA1 and PC based application that
sends data to the embedded bootstrap over serial link. Embedded bootstrap code
uses the received data to program the internal flash memory of the MCU. A simple
communication protocol is used to ensure proper programming. Motorola S-record
(SREC) format files are supported as source images for the serial bootloader PC part.

Parameter Value for RCB

BODLEVEL Brown-out detection at VCC = 1.8V

OCDEN Disabled

JTAGEN Enabled

SPIEN Enabled

WDTON Disabled

EESAVE Enabled

BOOTSZ Boot flash size = 2048 words; start address = $F800

BOOTRST Enabled

CKDIV8 Enabled

CKOUT Disabled

SUT_CKSEL Internal RC oscillator start-up time = 6CK + 0ms

54 AVR2102
8357A-AVR-8/11

To upload (flash) the new image (.srec extension) into device program application
memory (flash), a dedicated serial bootloader PC application (either a GUI or
console) is executed on the host. This application is part of BitCloud SDK for megaRF
and available at [21].

For more details on serial bootloader programming to flash the image through serial
bootloader application, please refer AVR2054 – Serial Bootloader User Guide [21].

5 Appendix

5.1 Applications along with the supported platforms

S.No Application Supported Platforms

1 Key Remote Controller
application

AT86RF212_ATMEGA1281_RCB_5_3_KEY_RC

AT86RF231_ATMEGA1281_RCB_4_0_KEY_RC

ATMEGA128RFA1_RCB_6_3_KEY_RC

2 Serial Interface application -
Platform

AT86RF212_AT32UC3A3256S_RZ600

AT86RF212_AT32UC3B1128_REB_5_0_STK600_USB0

AT86RF212_ATMEGA1281_RCB_5_3_SENS_TERM_BOARD

AT86RF231_AT32UC3A3256S_RZ600

AT86RF231_AT32UC3B1128_REB_4_0_STK600_USB0

AT86RF231_ATMEGA1281_RCB_4_0_SENS_TERM_BOARD

AT86RF231_ATMEGA1281_REB_4_0_STK500_STK501

ATMEGA128RFA1_EK1

ATMEGA128RFA1_RCB_6_3_SENS_TERM_BOARD

3 Single Button Controller
application

ATMEGA128RFA1_EK1

ATMEGA128RFA1_RCB_6_3_PLAIN

ATMEGA128RFA1_RCB_6_3_PLAIN_NO_32KHZ_CRYSTAL

4 Terminal Target application AT86RF212_AT32UC3A3256S_RZ600

AT86RF212_AT32UC3B1128_REB_5_0_STK600_USB0

AT86RF212_ATMEGA1281_RCB_5_3_SENS_TERM_BOARD

AT86RF231_AT32UC3A3256S_RZ600

AT86RF231_AT32UC3B1128_REB_4_0_STK600_USB0

AT86RF231_ATMEGA1281_RCB_4_0_SENS_TERM_BOARD

AT86RF231_ATMEGA1281_REB_4_0_STK500_STK501

ATMEGA128RFA1_EK1

 AVR2102

 55

8357A-AVR-8/11

ATMEGA128RFA1_RCB_6_3_SENS_TERM_BOARD=

5 ZRC Serial Interface application -
Controller

AT86RF212_AT32UC3A3256S_RZ600

AT86RF212_AT32UC3B1128_REB_5_0_STK600_USB0

AT86RF231_AT32UC3A3256S_RZ600

AT86RF231_AT32UC3B1128_REB_4_0_STK600_USB0

ATMEGA128RFA1_EK1

ATMEGA128RFA1_RCB_6_3_SENS_TERM_BOARD

6 ZRC Serial Interface application -
Target

AT86RF212_AT32UC3A3256S_RZ600

AT86RF212_AT32UC3B1128_REB_5_0_STK600_USB0

AT86RF212_ATMEGA1281_RCB_5_3_SENS_TERM_BOARD

AT86RF231_AT32UC3A3256S_RZ600

AT86RF231_AT32UC3B1128_REB_4_0_STK600_USB0

AT86RF231_ATMEGA1281_RCB_4_0_SENS_TERM_BOARD

AT86RF231_ATMEGA1281_REB_4_0_STK500_STK501

ATMEGA128RFA1_EK1

ATMEGA128RFA1_RCB_6_3_SENS_TERM_BOARD

56 AVR2102
8357A-AVR-8/11

6 References
[1] IEEE Standard 802.15.4TM-2006: Wireless Medium Access Control (MAC) and

Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area
Networks (WPANs)
http://standards.ieee.org/getieee802/download/802.15.4-2006.pdf

[2] Atmel RF4Control – ZigBee RF4CE Certified Platform
http://www.atmel.com/dyn/products/tools_card_mcu.asp?tool_id=4712

[3] Atmel AT86RF212, 700/800/900 MHz transceiver for IEEE 802.15.4
http://www.atmel.com/dyn/products/product_card.asp?part_id=4349

[4] Atmel AT86RF231; Low Power 2.4 GHz Transceiver for IEEE 802.15.4
http://www.atmel.com/dyn/products/product_card.asp?part_id=4338

[5] Atmel Atmega128RFA1; Microcontroller with Low Power 2.4GHz Transceiver for
ZigBee™ and IEEE 802.15.4™
http://www.atmel.com/dyn/products/product_card_mcu.asp?part_id=4692

[6] Atmel AVR ATmega1281
http://www.atmel.com/dyn/products/product_card.asp?part_id=3630

[7] AVR2025: IEEE 802.15.4 MAC Software Package for AVR Z-Link
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=4373&family_id=676

[8] Atmel ATAVRRZ541 AVR Z-Link 2.4 GHz Packet Sniffer Kit
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=4187

[9] Atmel AVR Studio 4, IDE for writing and debugging AVR applications
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=2725

[10] Atmel AVR JTAGICE mkII
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=3353

[11] ZigBee RF4CE
http://www.zigbee.org/rf4ce

[12] ZigBee RF4CE Specification Version 1.00; http://www.zigbee.org
094945r00ZB_RF4CE-Specification.pdf

[13] ZigBee RF4CE ZRC Profile Specification; http://www.zigbee.org
094946r00ZB_RF4CE-CERC-Profile-Specification.pdf

[14] High-Definition Multimedia Interface, Specification Version 1.3a
http://www.hdmi.org

[15] Sensor Terminal Board, Dresden Elektronik GmbH
http://www.dresden-elektronik.de/shop/prod75.html

[16] RCB Breakout Board, Dresden Elektronik GmbH
http://www.dresden-elektronik.de/shop/prod84.html

[17] ATmega128RFA1 Evaluation Kit (EK1)
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=4677

[18] AVR2044: RCB128RFA1 – Hardware User Manual
http://www.atmel.com/dyn/products/app_notes.asp?family_id=676

[19] Minimalist GNU for Windows
http://www.mingw.org or http://sourceforge.net/projects/mingw/

http://standards.ieee.org/getieee802/download/802.15.4-2006.pdf�
http://www.atmel.com/dyn/products/tools_card_mcu.asp?tool_id=4712�
http://www.atmel.com/dyn/products/product_card.asp?part_id=4349�
http://www.atmel.com/dyn/products/product_card.asp?part_id=4338�
http://www.atmel.com/dyn/products/product_card_mcu.asp?part_id=4692�
http://www.atmel.com/dyn/products/product_card.asp?part_id=3630�
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=4373&family_id=676�
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=4187�
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=2725�
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=3353�
http://www.zigbee.org/rf4ce�
http://www.zigbee.org/�
http://www.zigbee.org/�
http://www.hdmi.org/�
http://www.dresden-elektronik.de/shop/prod75.html�
http://www.dresden-elektronik.de/shop/prod84.html�
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=4677�
http://www.atmel.com/dyn/products/app_notes.asp?family_id=676�
http://www.mingw.org/�
http://sourceforge.net/projects/mingw/�

 AVR2102

 57

8357A-AVR-8/11

[20] RF4CE Evaluation Kit
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=4835

[21] BitCloud SDK for megaRF and AVR2054 Serial Bootloader User Guide
http://www.atmel.com/bitcloud

http://www.atmel.com/dyn/products/tools_card.asp?tool_id=4835�
http://www.atmel.com/bitcloud�

58 AVR2102
8357A-AVR-8/11

7 Document revision history

Please note that the referring page numbers in this section are referring to this
document. The referring revisions in this section are referring to the document
revision.

7.1 Rev. 8357B-MCU Wireless-08/11
Released with version AVR2102_RF4Control_v_1_3_0

Section ‘serial bootloader support’ added.

Section ‘special stack configuration’ added

7.2 Rev. 8357A-MCU Wireless-01/11
Released with version AVR2102_RF4Control_v_1_0_1-1_2.1

Editorial changes of the RF4Control user guide

User guide document number changed

7.3 Rev. 2102C-MCU Wireless-11/10
Released with version AVR2102_RF4Control_v_1_0_1-1_2

ZRC profile layer introduced including sections describing ZRC features and handling

Push button pairing added as separate layer

Vendor data handling added

ZRC Target application added

ZRC Serial Interface application added

ATmega128RFA1-EK1 support added

7.4 Rev. 2102B-MCU Wireless-04/10
Released with version AVR2102_RF4Control_v_1_0_1-1_1_Lib.zip

Section “Serial interface usage” added

Table “Message codes and message lengths for the ZRC API.” updated

Section “Channel agility” added

Section “Single Button Controller example application” added

7.5 Rev. 2102A-MCU Wireless-12/09
Initial Version: Internal hex file release

Released with version AVR2102_RF4Control_v_1_0_1-1_0.zip

 AVR2102

 59

8357A-AVR-8/11

8 Table of Contents
AVR2102: RF4Control - User Guide .. 1
Features... 1
1 Introduction .. 1

1.1 Remote controlling .. 2
2 RF4Control – Stack implementation .. 3

2.1 Architecture ... 3
2.2 ZigBee Remote Control profile .. 4

2.2.1 Push button pairing ... 4
2.2.2 Command discovery.. 6
2.2.3 RC command handling .. 7

2.3 Channel agility ... 8
2.4 Vendor-specific data handling ... 9
2.5 RF4Control firmware API .. 10
2.6 Stack configuration.. 10

2.6.1 Omitting the 32kHz crystal... 12
2.6.2 NVM multi-write and Store NIB feature.. 13
2.6.3 WATCHDOG ... 14

2.7 Stack porting.. 15
3 Example applications .. 15

3.1 Key Remote Controlling example application ... 15
3.1.1 Introduction.. 15
3.1.2 Key Remote Controller board setup .. 16
3.1.3 Terminal target setup... 18
3.1.4 Remote controlling operations... 19
3.1.5 RF frame capture .. 23

3.2 Single Button Controller example application ... 23
3.2.1 Hardware... 24
3.2.2 Firmware programming ... 24
3.2.3 Application handling .. 24
3.2.4 Development environment... 25
3.2.5 Application implementation.. 26

3.3 ZRC Target example application... 36
3.4 Serial Interface example application ... 40

3.4.1 Introduction.. 40
3.4.2 Message structure... 40
3.4.3 Message codes ... 43
3.4.4 Protocol adaption .. 44
3.4.5 Serial interface usage.. 44

3.5 ZigBee Remote Control serial interface .. 48
3.5.1 ZRC Serial Interface message codes.. 48
3.5.2 ZRC Serial Interface usage ... 49

4 Serial bootloader support ... 53

60 AVR2102
8357A-AVR-8/11

4.1 Functionality Overview .. 53
5 Appendix... 54

5.1 Applications along with the supported platforms... 54
6 References.. 56
7 Document revision history.. 58

7.1 Rev. 8357B-MCU Wireless-08/11 ... 58
7.2 Rev. 8357A-MCU Wireless-01/11 ... 58
7.3 Rev. 2102C-MCU Wireless-11/10... 58
7.4 Rev. 2102B-MCU Wireless-04/10 ... 58
7.5 Rev. 2102A-MCU Wireless-12/09 ... 58

8 Table of Contents... 59

8357A-AVR-8/111

 Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: (+1)(408) 441-0311
Fax: (+1)(408) 487-2600
www.atmel.com

 Atmel Asia Limited
Unit 01-5 & 16, 19F
BEA Tower, Milennium City 5
418 Kwun Tong Road
Kwun Tong, Kowloon
HONG KONG
Tel: (+852) 2245-6100
Fax: (+852) 2722-1369

 Atmel Munich GmbH
Business Campus
Parkring 4
D-85748 Garching b. Munich
GERMANY
Tel: (+49) 89-31970-0
Fax: (+49) 89-3194621

 Atmel Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chou-ku, Tokyo 104-0033
JAPAN
Tel: (+81) 3523-3551
Fax: (+81) 3523-7581

 © 2011 Atmel Corporation. All rights reserved.

Atmel®, Atmel logo and combinations thereof, AVR®, AVR Studio®, IAR Embedded Workbench® and others are registered trademarks of
Atmel Corporation or its subsidiaries. Windows® and others are registered trademarks of Microsoft Corporation in U.S. and or other
countries. Other terms and product names may be trademarks of others.

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to
any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL
TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS
ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE
LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION,
DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO
USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or
warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and
product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically
provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended, authorized, or
warranted for use as components in applications intended to support or sustain life.

http://atmel.com/�

	1 Introduction
	1.1 Remote controlling

	2 RF4Control – Stack implementation
	2.1 Architecture
	2.2 ZigBee Remote Control profile
	2.2.1 Push button pairing
	2.2.2 Command discovery
	2.2.3 RC command handling

	2.3 Channel agility
	2.4 Vendor-specific data handling
	2.5 RF4Control firmware API
	2.6 Stack configuration
	2.6.1 Omitting the 32kHz crystal
	2.6.2 NVM multi-write and Store NIB feature
	2.6.3 WATCHDOG

	2.7 Stack porting

	3 Example applications
	3.1 Key Remote Controlling example application
	3.1.1 Introduction
	3.1.2 Key Remote Controller board setup
	3.1.3 Terminal target setup
	3.1.4 Remote controlling operations
	3.1.5 RF frame capture

	3.2 Single Button Controller example application
	3.2.1 Hardware
	3.2.2 Firmware programming
	3.2.3 Application handling
	3.2.4 Development environment
	3.2.5 Application implementation

	3.3 ZRC Target example application
	3.4 Serial Interface example application
	3.4.1 Introduction
	3.4.2 Message structure
	3.4.3 Message codes
	3.4.4 Protocol adaption
	3.4.5 Serial interface usage

	3.5 ZigBee Remote Control serial interface
	3.5.1 ZRC Serial Interface message codes
	3.5.2 ZRC Serial Interface usage

	4 Serial bootloader support
	4.1 Functionality Overview

	5 Appendix
	5.1 Applications along with the supported platforms

	6 References
	7 Document revision history
	7.1 Rev. 8357B-MCU Wireless-08/11
	7.2 Rev. 8357A-MCU Wireless-01/11
	7.3 Rev. 2102C-MCU Wireless-11/10
	7.4 Rev. 2102B-MCU Wireless-04/10
	7.5 Rev. 2102A-MCU Wireless-12/09

	8 Table of Contents

