
32001A–AVR32–06/06

32-bit AVR®
Microcontroller

AVR32 AP
Technical
Reference
Manual
Feature Summary
• 32-bit load/store AVR32B RISC architecture
• 15 general-purpose 32-bit registers
• 32-bit Stack Pointer, Program Counter and Link Register reside in register file
• Fully orthogonal instruction set
• Pipelined architecture allows one instruction per clock cycle for most instructions
• Byte, half-word, word and double word memory access
• Shadowed interrupt context for INT3 and multiple interrupt priority levels
• Privileged and unprivileged modes enabling efficient and secure Operating Systems
• Full MMU allows for operating systems with memory protection
• Instruction and data caches
• Innovative instruction set together with variable instruction length ensuring industry

leading code density
• DSP extention with saturating arithmetic, and a wide variety of multiply instructions
• SIMD extention for media applications
• Dynamic branch prediction and return address stack for fast change-of-flow
• Powerful On-Chip Debug system
• Coprocessor interface

1. Introduction
AVR®32 is a new high-performance 32-bit RISC microprocessor core, designed for cost-sensi-
tive embedded applications, with particular emphasis on low power consumption and high code
density. In addition, the instruction set architecture has been tuned to allow for a variety of
microarchitectures, enabling the AVR32 to be implemented as low-, mid- or high-performance
processors.

1.1 The AVR family
The AVR family was launched by Atmel® in 1996 and has had remarkable success in the 8-and
16-bit flash microcontroller market. AVR32 complements the current AVR microcontrollers.
Through the AVR32 family, the AVR is extended into a new range of higher performance appli-
cations that is currently served by 32- and 64-bit processors

To truly exploit the power of a 32-bit architecture, the new AVR32 architecture is not binary com-
patible with earlier AVR architectures. In order to achieve high code density, the instruction
format is flexible providing both compact instructions with 16 bits length and extended 32-bit
instructions. While the instruction length is only 16 bits for most instructions, powerful 32-bit
instructions are implemented to further increase performance. Compact and extended instruc-
tions can be freely mixed in the instruction stream.

1.2 The AVR32 Microprocessor Architecture
The AVR32 is a new innovative microprocessor architecture. It is a fully synchronous synthesi-
sable RTL design with industry standard interfaces, ensuring easy integration into SoC designs
with legacy intellectual property (IP). Through a quantitative approach, a large set of industry
recognized benchmarks have been compiled and analyzed to achieve the best code density in
its class of microprocessor architectures. In addition to lowering the memory requirements, a
compact code size also contributes to the core’s low power characteristics. The processor sup-
ports byte and half-word data types without penalty in code size and performance.

Memory load and store operations are provided for byte, half-word, word and double word data
with automatic sign- or zero extension of half-word and byte data. The C-compiler is closely
linked to the architecture and is able to exploit code optimization features, both for size and
speed.

In order to reduce code size to a minimum, some instructions have multiple addressing modes.
As an example, instructions with immediates often have a compact format with a smaller imme-
diate, and an extended format with a larger immediate. In this way, the compiler is able to use
the format giving the smallest code size.

Another feature of the instruction set is that frequently used instructions, like add, have a com-
pact format with two operands as well as an extended format with three operands. The larger
format increases performance, allowing an addition and a data move in the same instruction in a
single cycle.
2
32001A–AVR32–06/06

AVR32

AVR32
Load and store instructions have several different formats in order to reduce code size and
speed up execution:

• Load/store to an address specified by a pointer register

• Load/store to an address specified by a pointer register with postincrement

• Load/store to an address specified by a pointer register with predecrement

• Load/store to an address specified by a pointer register with displacement

• Load/store to an address specified by a small immediate (direct addressing within a small
page)

• Load/store to an address specified by a pointer register and an index register.

The register file is organized as 16 32-bit registers and includes the Program Counter, the Link
Register, and the Stack Pointer. In addition, one register is designed to hold return values from
function calls and is used implicitly by some instructions.

The AVR32 architecture defines several microarchitectures in order to capture the entire range
of applications. The microarchitectures are named AVR32A, AVR32B and so on. Different
microarchitectures are suited to different end applications, allowing the designer to select a
microarchitecture with the optimum set of parameters for a specific application.

1.3 Event handling
The AVR32 incorporates a powerful event handling scheme. The different event sources, like
“Illegal opcode” and external interrupt requests, have different priority levels, ensuring a well-
defined behavior when multiple events are received simultaneously. Additionally, pending
events of a higher priority class may preempt handling of ongoing events of a lower priority
class. Each priority class has dedicated registers to keep the return address and status register
thereby removing the need to perform time-consuming memory operations to save this
information.

There are four levels of external interrupt requests, all executing in their own context. An inter-
rupt controller does the priority handling of the external interrupts and provides the prioritized
interrupt vector to the processor core.

1.4 Java Support
The AVR32 architecture defines a Java® hardware acceleration option, in the form of a Java Vir-
tual Machine hardware implementation.
3
32001A–AVR32–06/06

1.5 Microarchitectures
The AVR32 architecture defines different microarchitectures. This enables implementations that
are tailored to specific needs and applications. The microarchitectures provide different perfor-
mance levels at the expense of area and power consumption. The following microarchitectures
are defined:

1.5.1 AVR32A
The AVR32A microarchitecture is targeted at cost-sensitive, lower-end applications like smaller
microcontrollers. This microarchitecture does not provide dedicated hardware registers for shad-
owing of register file registers in interrupt contexts. Additionally, it does not provide hardware
registers for the return address registers and return status registers. Instead, all this information
is stored on the system stack. This saves chip area at the expense of slower interrupt handling.

Upon interrupt initiation, registers R8-R12 are automatically pushed to the system stack. These
registers are pushed regardless of the priority level of the pending interrupt. The return address
and status register are also automatically pushed to stack. The interrupt handler can therefore
use R8-R12 freely. Upon interrupt completion, the old R8-R12 registers and status register are
restored, and execution continues at the return address stored popped from stack.

The stack is also used to store the status register and return address for exceptions and scall.
Executing the rete or rets instruction at the completion of an exception or system call will pop
this status register and continue execution at the popped return address.

1.5.2 AVR32B
The AVR32B microarchitecture is targeted at applications where interrupt latency is important.
The AVR32B therefore implements dedicated registers to hold the status register and return
address for interrupts, exceptions and supervisor calls. This information does not need to be
written to the stack, and latency is therefore reduced. Additionally, AVR32B allows hardware
shadowing of the registers in the register file. The INT0 to INT3 contexts may have dedicated
versions of the registers in the register file, allowing the interrupt routine to start executing
immediately.

The scall, rete and rets instructions use the dedicated status register and return address regis-
ters in their operation. No stack accesses are performed.
4
32001A–AVR32–06/06

AVR32

AVR32
1.6 The AVR32 AP implementation
The first implementation of the AVR32B microarchitecture is designed as an application proces-
sor and called AVR32 AP. This implementation targets high-performance applications in the
DSP, multimedia and wireless segment, and provides:

• Advanced OCD system.

• Efficient data and instruction caches.

• Full MMU.

• Java acceleration is implemented in hardware.

• Fast interrupt handling is provided through shadowed register banks for interrupt priority 3.

• SIMD extension.

• DSP extension.

• Service Access Port (SAP) that gives an external JTAG controller access to memories and
registers inside the AVR32 AP core.

Figure 1-1 on page 5 displays the contents of AVR32 AP:

Figure 1-1. Overview of AVR32 AP.

AVR32 AP CPU pipeline with Java accelerator

Dcache
controller

High Speed
bus master

Icache
controller

High Speed
bus master

32
-e

nt
ry

 T
LB

8-
en

try
 u

TL
B

4-
en

try
 u

TL
B

MMU

H
ig

h
S

pe
ed

 B
us

H
ig

h
S

pe
ed

 B
us

Cache RAM interfaceCache RAM interface

BTB RAM interfaceTightly Coupled Bus

OCD
system

O
C

D
 in

te
rfa

ce

Reset
control

R
es

et
 in

te
rfa

ce

In
te

rru
pt

 c
on

tro
lle

r i
nt

er
fa

ce

Service
Access

Port

JT
A

G
 in

te
rfa

ce
5
32001A–AVR32–06/06

2. Programming Model
This chapter describes the programming model and the set of registers accessible to the user. It
also describes the implementation options in AVR32 AP.

2.1 Architectural compatibility
AVR32 AP is fully compatible with the Atmel AVR32B architecture.

2.2 Implementation options

2.2.1 Memory management
AVR32 AP implements a full MMU as specified by the AVR32 architecture.

2.2.2 Java support
AVR32 AP implements a Java Extention Module (JEM) as defined in the AVR32 architecture.

2.3 Register file configuration
The AVR32B architecture specifies that the exception contexts may have a different number of
shadowed registers in different implementations. The following shadow model is used in AVR32
AP.

Figure 2-1. Register file configuration. Shadowed registers are marked in grey.

Application

Bit 0

Supervisor

Bit 31

PC

SR

INT0PC

FINTPC
INT1PC

SMPC

R7

R5
R6

R4
R3

R1
R2

R0

Bit 0Bit 31

PC

SR

R12

INT0PC

FINTPC
INT1PC

SMPC

R7

R5
R6

R4

R11

R9
R10

R8

R3

R1
R2

R0

RSR_INT0
SR

RSR_EX
SR

SP_APP SP_SYS

RSR_NMI
SR

R12
R11

R9
R10

R8

Bit 0Bit 31

PC

INT0PC

FINTPC
INT1PC

SMPC

R7

R5
R6

R4
R3

R1
R2

R0

Bit 0Bit 31

PC

FINTPC
SMPC

R7

R5
R6

R4
R3

R1
R2

R0

Bit 0Bit 31

PC
LR_INT3

R12_INT3
R11_INT3

R9_INT3
R10_INT3

R8_INT3

SP_SYS SP_SYS SP_SYS
R12
R11

R9
R10

R8

Bit 0Bit 31

PC

INT0PC

FINTPC
INT1PC

SMPC

R7

R5
R6

R4
R3

R1
R2

R0

SP_SYS
R12
R11

R9
R10

R8

Bit 0Bit 31

PC

INT0PC

FINTPC
INT1PC

SMPC

R7

R5
R6

R4
R3

R1
R2

R0

SP_SYS
R12
R11

R9
R10

R8

Bit 0Bit 31

PC

INT0PC

FINTPC
INT1PC

SMPC

R7

R5
R6

R4
R3

R1
R2

R0

SP_SYS
R12
R11

R9
R10

R8

RSR_INT1
SR

RSR_INT2
SR

RSR_INT3
SR

INT0 INT1 INT2 INT3 Exception NMI

FINTPC
SMPC

R7

R5
R6

R4
R3

R1
R2

R0

R12
R11

R9
R10

R8

LR LR LR LR LR LR LR

RSR_SUP
RAR_INT0 RAR_EX RAR_NMIRAR_INT1 RAR_INT2 RAR_INT3RAR_SUP
6
32001A–AVR32–06/06

AVR32

AVR32
2.4 Status register configuration
The Status Register (SR) is splitted into two halfwords, one upper and one lower. The lower
word contains the C, Z, N, V and Q condition code flags and the R, T and L bits, while the upper
halfword contains information about the mode and state the processor executes in.

Figure 2-2. The Status Register high halfword.

Figure 2-3. The Status Register low halfword.

H - Java Handle

This bit is included to support different heap types in the Java Virtual Machine. For more details,
see the Java Technical Reference manual. The bit is cleared at reset.

J - Java state

The processor is in Java state when this bit is set. The incoming instruction stream will be
decoded as a stream of Java bytecodes, not RISC opcodes. The bit is cleared at reset. This bit
should not be modified by the user as undefined behaviour may result.

DM - Debug State Mask

If this bit is set, the Debug State is masked and cannot be entered. The bit is cleared at reset,
and can both be read and written by software.

B it 31

0 0 0

B it 16

In te rrup t Leve l 0 M ask
In te rrup t Leve l 1 M ask

In te rrup t Leve l 3 M ask
In te rrup t Leve l 2 M ask

10 0 0 0 1 1 0 0 0 00 0

R eserved

F E I0M G MM 1J D M 0 E M I2MD M - M 2LC
1-

In itia l va lue

B it nam eI1M

M ode B it 0
M ode B it 1

H

M ode B it 2
R ese rved
D ebug S ta te

- I3M

Java S ta te

E xcep tion M ask

G loba l In te rrup t M ask

D ebug S ta te M ask

Java H and le
R ese rved

B it 1 5 B it 0

R e s e rve d

C a rry
Z e ro
S ig n

0 0 0 00000000000

- - --TR B it n a m e

In it ia l va lu e0 0

L Q V N Z C-

O ve rf lo w
S a tu ra tio n

- - -

L o c k

R e g is te r R e m a p E n a b le
S c ra tc h
7
32001A–AVR32–06/06

D - Debug state

The processor is in debug state when this bit is set. The bit is cleared at reset and should only be
modified by debug hardware, the breakpoint instruction or the retd instruction. Undefined behav-
iour may result if the user tries to modify this bit manually.

M2, M1, M0 - Execution Mode

These bits show the active execution mode. The different settings for the different modes are
shown in Table 2-1. M2 and M1 are cleared by reset while M0 is set so that the processor is in
supervisor mode after reset. These bits are modified by hardware, or execution of certain
instructions like scall, rets and rete. Undefined behaviour may result if the user tries to modify
these bits manually.

EM - Exception mask

When this bit is set, exceptions are masked. Exceptions are enabled otherwise. The bit is auto-
matically set when exception processing is initiated or Debug Mode is entered. Software may
clear this bit after performing the necessary measures if nested exceptions should be supported.
This bit is set at reset.

I3M - Interrupt level 3 mask

When this bit is set, level 3 interrupts are masked. If I3M and GM are cleared, INT3 interrupts
are enabled. The bit is automatically set when INT3 processing is initiated. Software may clear
this bit after performing the necessary measures if nested INT3s should be supported. This bit is
cleared at reset.

I2M - Interrupt level 2 mask

When this bit is set, level 2 interrupts are masked. If I2M and GM are cleared, INT2 interrupts
are enabled. The bit is automatically set when INT3 or INT2 processing is initiated. Software
may clear this bit after performing the necessary measures if nested INT2s should be supported.
This bit is cleared at reset.

I1M - Interrupt level 1 mask

When this bit is set, level 1 interrupts are masked. If I1M and GM are cleared, INT1 interrupts
are enabled. The bit is automatically set when INT3, INT2 or INT1 processing is initiated. Soft-
ware may clear this bit after performing the necessary measures if nested INT1s should be
supported. This bit is cleared at reset.

Table 2-1. Mode bit settings

M2 M1 M0 Mode

1 1 1 Non Maskable Interrupt

1 1 0 Exception

1 0 1 Interrupt level 3

1 0 0 Interrupt level 2

0 1 1 Interrupt level 1

0 1 0 Interrupt level 0

0 0 1 Supervisor

0 0 0 Application
8
32001A–AVR32–06/06

AVR32

AVR32
I0M - Interrupt level 0 mask

When this bit is set, level 0 interrupts are masked. If I0M and GM are cleared, INT0 interrupts
are enabled. The bit is automatically set when INT3, INT2, INT1 or INT0 processing is initiated.
Software may clear this bit after performing the necessary measures if nested INT0s should be
supported. This bit is cleared at reset.

GM - Global Interrupt Mask

When this bit is set, all interrupts are disabled. This bit overrides I0M, I1M, I2M and I3M. The bit
is automatically set when exception processing is initiated, Debug Mode is entered, or a Java
trap is taken. This bit is automatically cleared when returning from a Java trap. This bit is set
after reset.

R - Java Register Remap

When this bit is set, the addresses of the registers in the register file is dynamically changed.
This allows efficient use of the register file registers as a stack. For more details, see the Java
Technical Reference Manual. The R bit is cleared at reset. Undefined behaviour may result if
this bit is modified by the user.

T - Scratch bit

Not used by any instruction, but can be manipulated by application software as a scratchpad bit.
This bit is cleared after reset.

L - Lock flag

Used by the conditional store instruction. Used to support atomical memory access. Automati-
cally cleared by rete. This bit is cleared after reset.

Q - Saturation flag

The saturation flag indicates that a saturating arithmetic operation overflowed. The flag is sticky
and once set it has to be manually cleared by a csrf instruction after the desired action has been
taken. See the Instruction set description for details.

V - Overflow flag

The overflow flag indicates that an arithmetic operation overflowed. See the Instruction set
description for details.

N - Negative flag

The negative flag is modified by arithmetical and logical operations. See the Instruction set
description for details.

Z - Zero flag

The zero flag indicates a zero result after an arithmetic or logic operation. See the Instruction set
description for details.

C - Carry flag

The carry flag indicates a carry after an arithmetic or logic operation. See the Instruction set
description for details.
9
32001A–AVR32–06/06

2.5 System registers
The system registers are placed outside of the virtual memory space, and are only accessible
using the privileged mfsr and mtsr instructions. Some of the System Registers can be altered
automatically by hardware. The table below lists the system registers specified in AVR32 AP. It
also identifies their address and the pipeline stage in which it is located. The programmer is
responsible for maintaining correct sequencing of any instructions following a mtsr instruction.

Table 2-2. System Registers implemented in AVR32 AP

Reg # Address Name Function
Location
in pipeline

0 0 SR Status Register A1

1 4 EVBA Exception Vector Base Address A1

2 8 ACBA Application Call Base Address A1

3 12 CPUCR CPU Control Register A1

4 16 ECR Exception Cause Register A1

5 20 RSR_SUP Return Status Register for supervisor context A1

6 24 RSR_INT0 Return Status Register for INT 0 context A1

7 28 RSR_INT1 Return Status Register for INT 1 context A1

8 32 RSR_INT2 Return Status Register for INT 2 context A1

9 36 RSR_INT3 Return Status Register for INT 3 context A1

10 40 RSR_EX Return Status Register for Exception context A1

11 44 RSR_NMI Return Status Register for NMI context A1

12 48 RSR_DBG Return Status Register for Debug Mode A1

13 52 RAR_SUP Return Address Register for supervisor context A1

14 56 RAR_INT0 Return Address Register for INT 0 context A1

15 60 RAR_INT1 Return Address Register for INT 1 context A1

16 64 RAR_INT2 Return Address Register for INT 2 context A1

17 68 RAR_INT3 Return Address Register for INT 3 context A1

18 72 RAR_EX Return Address Register for Exception context A1

19 76 RAR_NMI Return Address Register for NMI context A1

20 80 RAR_DBG Return Address Register for Debug Mode A1

21 84 JECR Java Exception Cause Register A1

22 88 JOSP Java Operand Stack Pointer ID

23 92 JAVA_LV0 Java Local Variable 0 A1

24 96 JAVA_LV1 Java Local Variable 1 A1

25 100 JAVA_LV2 Java Local Variable 2 A1

26 104 JAVA_LV3 Java Local Variable 3 A1

27 108 JAVA_LV4 Java Local Variable 4 A1

28 112 JAVA_LV5 Java Local Variable 5 A1
10
32001A–AVR32–06/06

AVR32

AVR32
SR - Status Register

The Status Register is mapped into the system register space. This allows it to be loaded into
the register file to be modified, or to be stored to memory. The Status Register is described in
detail in Section 2.4 on page 7.

EVBA - Exception Vector Base Address

This register contains a pointer to the exception routines. All exception routines starts at this
address, or at a defined offset relative to the address. Special alignment requirements apply for
EVBA, see Section 3.10 ”Event handling” on page 30.

ACBA - Application Call Base Address

Pointer to the start of a table of function pointers. Subroutines residing in this space can be
called by the compact acall instruction. This facilitates efficient reuse of code. Keeping this base
pointer as a register facilitates multiple application spaces. ACBA is a full 32 bit register, but the

29 116 JAVA_LV6 Java Local Variable 6 A1

30 120 JAVA_LV7 Java Local Variable 7 A1

31 124 JTBA Java Trap Base Address A1

32 128 JBCR Java Write Barrier Control Register A1

64 256 CONFIG0 Configuration register 0 TCB

65 260 CONFIG1 Configuration register 1 TCB

66 264 COUNT Cycle Counter register TCB

67 268 COMPARE Compare register TCB

68 272 TLBEHI TLB Entry High TCB

69 276 TLBELO TLB Entry Low TCB

70 280 PTBR Page Table Base Register TCB

71 284 TLBEAR TLB Exception Address Register TCB

72 288 MMUCR MMU Control Register TCB

73 292 TLBARLO TLB Accessed Register Low TCB

74 296 TLBARHI TLB Accessed Register High TCB

75 300 PCCNT Performance Clock Counter TCB

76 304 PCNT0 Performance Counter 0 TCB

77 308 PCNT1 Performance Counter 1 TCB

78 312 PCCR Performance Counter Control Register TCB

79 316 BEAR Bus Error Address Register TCB

192 768 SABAL SAB Address Low Register TCB

193 772 SABAH SAB Address High Register TCB

194 776 SABD SAB Data Register TCB

Table 2-2. System Registers implemented in AVR32 AP (Continued)

Reg # Address Name Function
Location
in pipeline
11
32001A–AVR32–06/06

lowest bit should be written to zero, making ACBA halfword aligned. Failing to do so may result
in erroneous behaviour.

CPUCR - CPU Control Register

Register controlling the configuration and behaviour of the CPU. The following fields are defined:

ECR - Exception Cause Register

This register identifies the cause of the most recently executed exception. This information may
be used to handle exceptions more efficiently in certain operating systems. The register is
updated with a value equal to the EVBA offset of the exception, shifted 2 bit positions to the
right. Only the 9 lowest bits of the EVBA offset are considered. As an example, an ITLB miss
jumps to EVBA+0x50. The ECR will then be loaded with 0x50>>2 == 0x14. The ECR register is
not loaded when a Breakpoint or OCD Stop CPU exception is taken. Note that for interrupts, the
offset is given by the autovector provided by the interrupt controller. The resulting ECR value
may therefore overlap with an ECR value used by a regular exception. This can be avoided by
choosing the autovector offsets so that no such overlaps occur.

RSR_SUP, RSR_INT0, RSR_INT1, RSR_INT2, RSR_INT3, RSR_EX, RSR_NMI - Return Sta-
tus Registers

If a request for a mode change like an interrupt request is accepted when executing in a context
C, the Status Register values in context C are automatically stored in the Return Status Register
(RSR) associated with the interrupt context I. When the execution in the interrupt state I is fin-

Table 2-3. CPU control register

Bit Name Reset Access Description

31 -
24

COP7EN
-
COP0EN

0 Read/write

Enable bit for coprocessor 7 to coprocessor 0. The
corresponding coprocessor is enabled if this bit is written
to one by software. Can be written to one only if the
corresponding coprocessor is present in the system.
Attempting to issue a coprocessor instruction to a
coprocessor whose enable bit is cleared, will result in a
coprocessor absent exception.

5 IEE 1 Read/write

Imprecise Execution Enable. Required for various OCD
features, see Section 9. ”OCD system” on page 86. If
cleared, memory operations will require several
additional clock cycles.

4 IBE 1 Read/write

Imprecise Breakpoint Enable. Required for various OCD
features, see Section 9. ”OCD system” on page 86. If
cleared, memory operations will require an additional
clock cycle.

3 RE 1 Read/write
If set, the return stack is enabled. Disabling the return
stack will empty it, removing all entries.

2 FE 1 Read/write
If set, branch instructions can be folded with other
instructions.

1 BE 1 Read/write If set, branch prediction is enabled.

0 BI -
Read-
0/write-1

BTB invalidate. Writing to 1 will invalidate all entries in
the BTB.

Other - -
Read-
0/write-0

Unused. Read as 0. Should be written as 0.
12
32001A–AVR32–06/06

AVR32

AVR32
ished and the rets / rete instruction is encountered, the RSR associated with I is copied to SR,
and the execution continues in the original context C.

RSR_DBG - Return Status Register for Debug Mode

When Debug mode is entered, the status register contents of the original mode is automatically
saved in this register. When the debug routine is finished, the retd instruction copies the con-
tents of RSR_DBG into SR.

RAR_SUP, RAR_INT0, RAR_INT1, RAR_INT2, RAR_INT3, RAR_EX, RAR_NMI - Return
Address Registers

If a request for a mode change, for instance an interrupt request, is accepted when executing in
a context C, the re-entry address of context C is automatically stored in the Return Address Reg-
ister (RAR) associated with the interrupt context I. When the execution in the interrupt state I is
finished and the rets / rete instruction is encountered, a change-of-flow to the address in the
RAR associated with I, and the execution continues in the original context C.

RAR_DBG - Return Address Register for Debug Mode

When Debug mode is entered, the Program Counter contents of the original mode is automati-
cally saved in this register. When the debug routine is finished, the retd instruction copies the
contents of RAR_DBG into PC.

JECR - Java Exception Cause Register

This register contains information needed for Java traps. See Java Technical Reference Manual
for details.

JOSP - Java Operand Stack Pointer

This register holds the Java Operand Stack Pointer. See Java Technical Reference Manual for
details. The register is initialized to 0 at reset.

JAVA_LVx - Java Local Variable Registers

The Java Extension Module uses these registers to temporarily store local variables. See Java
Technical Reference Manual for details.

JTBA - Java Trap Base Address

This register contains the base address to the program code for the trapped Java instructions.
See Java Technical Reference Manual for details.

JBCR - Java Write Barrier Control Register

This register is used by the garbage collector in the Java Virtual Machine. See Java Technical
Reference Manual for details.

CONFIG0 / 1 - Configuration Register 0 / 1

Used to describe the processor, its configuration and capabilities. The contents and functionality
of these registers is described in detail in Section 2.6 on page 16.

COUNT - Cycle Counter Register

The COUNT register increments once every clock cycle, regardless of pipeline stalls and
flushes. The COUNT register can both be read and written. The count register can be used
together with the COMPARE register to create a timer with interrupt functionality. The COUNT
13
32001A–AVR32–06/06

register is written to zero upon reset. Incrementation of the COUNT register can not be disabled.
The COUNT register will increment even though a compare interrupt is pending.

COMPARE - Cycle Counter Compare Register

The COMPARE register holds a value that the COUNT register is compared against. The COM-
PARE register can both be read and written. When the COMPARE and COUNT registers match,
a compare interrupt request is generated. This interrupt request is routed out to the interrupt
controller, which may forward the request back to the processor as a normal interrupt request at
a priority level determined by the interrupt controller. Writing a value to the COMPARE register
clears any pending compare interrupt requests. The compare and exception generation feature
is disabled if the COMPARE register contains the value zero. The COMPARE register is written
to zero upon reset.

TLBEHI - MMU TLB Entry Register High Part

Used to interface the CPU to the TLB. The contents and functionality of the register is described
in detail in Section 4. on page 48.

TLBELO - MMU TLB Entry Register Low Part

Used to interface the CPU to the TLB. The contents and functionality of the register is described
in detail in Section 4. on page 48.

PTBR - MMU Page Table Base Register

Contains a pointer to the start of the Page Table. The contents and functionality of the register is
described in detail in Section 4. on page 48.

TLBEAR - MMU TLB Exception Address Register

Contains the virtual address that caused the most recent MMU error. The contents and function-
ality of the register is described in detail in Section 4. on page 48.

MMUCR - MMU Control Register

Used to control the MMU and the TLB. The contents and functionality of the register is described
in detail in Section 4. on page 48.

TLBARLO/HI - MMU TLB Accessed Register Low/High

Contains the Accessed bits for the TLB. The contents and functionality of the register is
described in detail in Section 4. on page 48.

PCCNT - Performance Clock Counter

Clock cycle counter for performance counters. The contents and functionality of the register is
described in detail in the AVR32 Architecture Manual.

PCNT0 / PCNT1 - Performance Counter 0 / 1

Counts the events specified by the Performance Counter Control Register. The contents and
functionality of the register is described in detail in the AVR32 Architecture Manual.

PCCR - Performance Counter Control Register

Controls and configures the setup of the performance counters. The contents and functionality
of the register is described in detail in the AVR32 Architecture Manual.

BEAR - Bus Error Address Register
14
32001A–AVR32–06/06

AVR32

AVR32
Physical address that caused a Data Bus Error. This register is Read Only. Writes are allowed,
but are ignored.

SABAL - Service Access Bus Address Low

Lower part of address to Service Access Bus used by debug system.

SABAH - Service Access Bus Address High

Higher part of address to Service Access Bus used by debug system.

SABD - Service Access Bus Data

Data to or from Service Access Bus used by debug system.
15
32001A–AVR32–06/06

2.6 Configuration Registers
Configuration registers are used to inform applications and operating systems about the setup
and configuration of the processor on which it is running. Some of the fields in the configuration
registers are fixed for all implementations using the AVR32 AP platform, while others, like the
number of sets in each cache, can be different for each implementation of the platform. Such
fields have IMPL in the Value field in the following tables. The programmer should refer to the
data sheet for the specific product in order to obtain information on IMPL fields. The AVR32
implements the following read-only configuration registers.

Figure 2-4. Configuration Registers.

Table 2-4 shows the CONFIG0 fields.

Table 2-4. CONFIG0 Fields

Name Bit Description

Processor ID 31:24
Specifies the type of processor. This allows the application to
distinguish between different processor implementations.

RESERVED 23:20 Reserved for future use.

Processor revision 19:16 Specifies the revision of the processor implementation.

AT 15:13

Architecture type

Value Semantic

0 Unused in AVR32 AP

1 AVR32B

Other Reserved

AR 12:10

Architecture Revision

Value Semantic

0 Unused in AVR32 AP

1 Revision 1

Other Reserved

Processor ID AT

092431

CONFIG0

7 6
Processor
Revision AR MMUT

23 16 15 13 12 10

S

IMMU SZ ISET

2631

CONFIG1

ILSZ

25 20 19 1516 12

DMMU SZ IASS

13

DSET DLSZ

10 9 6 5

DASS

3

P OF

5

0

J

4

2

3 2

D R

1

-

1920
16
32001A–AVR32–06/06

AVR32

AVR32
MMUT 9:7

MMU type

Value Semantic

0 Unused in AVR32 AP

1 Unused in AVR32 AP

2 Shared TLB

3 Unused in AVR32 AP

Other Reserved

F 6

Floating-point unit implemented

Value Semantic

0 No FPU implemented

1 Unused in AVR32 AP

J 5

Java extension implemented

Value Semantic

0 Unused in AVR32 AP

1 Java extension implemented

P 4

Performance counters implemented

Value Semantic

0 Unused in AVR32 AP

1 Performance Counters implemented

O 3

On-Chip Debug implemented

Value Semantic

0 Unused in AVR32 AP

1 OCD implemented

S 2

SIMD instructions implemented

Value Semantic

0 Unused in AVR32 AP

1 SIMD instructions implemented

D 1

DSP instructions implemented

Value Semantic

0 Unused in AVR32 AP

1 DSP instructions implemented

R 0

Memory Read-Modify-Write instructions implemented

Value Semantic

0 No RMW instructions implemented

1 Unused in AVR32 AP

Table 2-4. CONFIG0 Fields (Continued)

Name Bit Description
17
32001A–AVR32–06/06

Table 2-4 shows the CONFIG1 fields.

Table 2-5. CONFIG1 Fields

Name Bit Description

IMMU SZ 31:26 Not used in single-MMU systems like AVR32 AP.

DMMU SZ 25:20
 Indicates the number of entries in the shared MMU in single-MMU
systems like AVR32 AP. The number of entries in the MMU equals
(DMMU SZ) + 1.

ISET 19:16

Number of sets in ICACHE

Value Semantic

0 1

1 2

2 4

3 8

4 16

5 32

6 64

7 128

8 256

9 512

10 1024

11 2048

12 4096

13 8192

14 16384

15 32768

ILSZ 15:13

Line size in ICACHE

Value Semantic

0 No ICACHE present

1 4 bytes

2 8 bytes

3 16 bytes

4 32 bytes

5 64 bytes

6 128 bytes

7 256 bytes
18
32001A–AVR32–06/06

AVR32

AVR32
IASS 12:10

Associativity of ICACHE

Value Semantic

0 Direct mapped

1 2-way

2 4-way

3 8-way

4 16-way

5 32-way

6 64-way

7 128-way

DSET 9:6

Number of sets in DCACHE

Value Semantic

0 1

1 2

2 4

3 8

4 16

5 32

6 64

7 128

8 256

9 512

10 1024

11 2048

12 4096

13 8192

14 16384

15 32768

Table 2-5. CONFIG1 Fields (Continued)

Name Bit Description
19
32001A–AVR32–06/06

DLSZ 5:3

Line size in DCACHE

Value Semantic

0 No DCACHE present

1 4 bytes

2 8 bytes

3 16 bytes

4 32 bytes

5 64 bytes

6 128 bytes

7 256 bytes

DASS 2:0

Associativity ofDCACHE

Value Semantic

0 Direct mapped

1 2-way

2 4-way

3 8-way

4 16-way

5 32-way

6 64-way

7 128-way

Table 2-5. CONFIG1 Fields (Continued)

Name Bit Description
20
32001A–AVR32–06/06

AVR32

AVR32
3. Pipeline

3.1 Overview
AVR32 AP is a pipelined processor with seven pipeline stages. The pipeline has three subpipes,
namely the Multiply pipe, the Execute pipe and the Data pipe. These pipelines may execute dif-
ferent instructions in parallel. Instructions are issued in order, but may complete out of order
(OOO) since the subpipes may be stalled individually, and certain operations may use a subpipe
for several clock cycles.

The following figure shows an overview of the AVR32 AP pipeline stages.

Figure 3-1. The AVR32 AP pipeline stages.

The following abbreviations are used in the figure:

• IF1, IF2 - Instruction Fetch 1 and 2

• ID - Instruction Decode

• IS - Instruction Issue

• A1, A2 - ALU stage 1 and 2

• M1, M2 - Multiply stage 1 and 2

• DA - Data Address calculation stage

• D - Data cache access

• WB - Writeback

3.2 Prefetch unit
The prefetch unit comprises the IF1 and IF2 pipestages, and is responsible for feeding instruc-
tions to the decode unit. The prefetch unit fetches 32 bits at a time from the instruction cache
and places them in a FIFO prefetch buffer. At the same time, one instruction, either RISC
extended or compact, or Java, is fed to the decode stage.

The instruction fetches are probed for the presence of change-of-flow instructions. If such
instructions are found, the prefetch unit will try to determine the destination of the instruction and
continue fetching instructions from there. The branch penalty will be eliminated if the prefetch
unit correctly predicts the destination of a change-of-flow instruction. When possible, the

IF2 ID IS A1

M1 M2

D

WB

Prefetch unit Decode unit

ALU pipe

Multiply pipe

Load-store
pipeDA

A2IF1
21
32001A–AVR32–06/06

prefetch unit will remove the change-of-flow instruction from the pipeline and replace it with the
target instruction. This is called branch folding.

In Java mode, the prefetch unit is able to recognize certain Java instruction pairs and merge
them together to one merged instruction. These merged instructions are passed on to ID as one
instruction.

Details about the prefetch unit is given in chapter 5.

3.3 Decode unit
The decode unit generates the necessary signals in order for the instruction to execute correctly.
The ID stage accepts one instruction each clock cycle from the prefetch unit. This instruction is
then decoded, and control signals and register file addresses are generated. If the instruction
cannot be decoded, an illegal instruction or unimplemented instruction exception is issued. The
ID stage also contains a state machine required for controlling multicycle instructions.

The ID stage performs the remapping of register file addresses from logical to physical
addresses. This is used both for remapping register address into the different contexts, and for
remapping registers to the Java operand stack if the R bit in the status register is set. The ID
stage also contains the Java Operand Stack Pointer (JOSP) register which is used to address
the Java operand stack if the CPU is running in Java mode.

The IS stage performs register file reads and keeps track of data hazards in the pipeline. If haz-
ards exist, pipelines are frozen as needed in order to resolve the hazard.

3.4 ALU pipeline
The ALU pipeline performs most of the data manipulation instructions, like arithmetical and logi-
cal operations. The A1 stage performs the following tasks:

• Target address calculation and condition check for change-of-flow instructions. The A1
pipestage checks if the branch prediction performed by the prefetch unit was correct. If not,
the prefetch unit is notified so that the pipeline can be flushed, the correct instruction can be
fetched and the BTB can be updated.

• Condition code checking for conditional instructions.

• Address calculation for indexed memory accesses

• Writeback address calculation for the LS pipeline.

• All flag setting for arithmetical and logical instructions.

• The A2 stage performs the following tasks:

• The saturation needed by satadd and satsub.

• The operation and flag setting needed by satrnds, satrndu, sats and satu.
22
32001A–AVR32–06/06

AVR32

AVR32
3.5 Multiply pipeline
All multiply instructions execute in the multiply pipeline. This pipeline contains a 32 by 16 multi-
plier array, and 16x16 and 32x16 multiplications therefore have an issue latency of one cycle.
Multiplication of 32 by 32 bits require two iterations through the multiplier array, and therefore
needs several cycles to complete. Additional cycles may be needed if an accumulation is to be
performed. This will stall the multiply pipeline until the instruction is complete.

A special accumulator cache is implemented in the MUL pipeline. This cache saves the multiply-
accumulate result in dedicated registers in the MUL pipeline, as well as writing them back to the
register file. This allows subsequent MAC instructions to read the accumulator value from the
cache, instead of from the register file. This will speed up MAC operations by one clock cycle. If
a MAC instruction targets a register not found in the cache, one clock cycle is added to the MAC
operation, loading the accumulator value from the register file into the cache. In the next cycle,
the MAC operation is restarted automatically by hardware. If a multiply (not MAC) instruction is
executed with target address equal to that of a valid cached register, the multiply instruction will
update the cache. All multiply and divide instructions will update the cache with its result, so that
a subsequent MAC to the same register will not have to preload the cache.

The accumulator cache can hold one doubleword accumulator value, or one word accumulator
value. Hardware ensures that the accumulator cache is kept consistent. If another pipeline
updates one of the registers kept in the accumulator cache, the cache is invalidated. The cache
is automatically invalidated after reset.

Some of the multiply instructions, machh.d, macwh.d, mulwh.d and mulnwh.d, produce a 48-bit
result that is to be placed in two registers. These instructions all have an issue latency of 1, even
though the MUL pipe only has one writeback port and two results are produced. This is handled
by delaying the writeback of the low register until the MUL pipeline is idle. Then, the low register
can be written back without stalling the MUL pipe. The high register is written back to the register
file when the instruction leaves the M2 stage. This scheme allows several of these instructions to
be issued consecutively, with no stalls due to writeback port congestion. This will increase per-
formance in MUL-intensive applications such as DSP algorithms. The MUL pipe can only hold
one delayed register for writeback, so a MUL instruction writing to another register will have to
stall one cycle in IS if a writeback is pending in the MUL pipe. Hazard detection is performed on
the pending writeback register, so any instruction reading a register pending writeback will stall
in IS until the value is forwardable in M2.

The multiply pipeline also contains a divider, performing multicycle 32-by-32 signed and
unsigned division with both quotient and remainder outputs.

In general, the MUL instructions do not set any flags. However, some of the MUL instructions
may set the saturate (Q) flag. No hazard detection is performed on this setting of the Q flag. The
programmer must ensure that such a Q flag update has propagated to the status register
before using the Q flag.
23
32001A–AVR32–06/06

3.6 Load-store pipeline
The load-store (LS) pipeline is able to read or write up to two registers per clock cycle, if the data
is 64-bit aligned. The address is calculated by the A1 pipe stage for indexed and load-extracted-
index accesses, the DA stage performs all other address calculations. Thereafter the address is
passed on to the LS pipe and output to the cache, together with the data to write if the access is
a write. If the access is a read, the read data is returned from the cache in the D stage. If the
read data requires typecasting or other manipulation like performed by ldins or ldswp, this
manipulation is performed in the WB stage.

The LS pipeline also contains hardware for performing load and store multiple instructions
decoupled from the rest of the core. For such instructions, the A1 stage calculates the pointer
writeback address if needed. The load or store is then decoupled from the integer unit, and the
integer unit may execute sequential instructions if no hazards occur. Load and store of multiple
registers are performed by accessing 2 words at a time. If the first address is not 64-bit aligned,
the first access is performed as a single word. The rest of the transfer is then performed as 64 bit
accesses. The last transfer may need to be performed as a 32 bit access, depending on the
number of registers to load or store.

For code efficiency purposes, the programmer should always try to rearrange the instructions in
the code in such a way that no data stalls will occur.

3.6.1 Support for unaligned addresses
The LS pipeline is able to perform certain word-sized load and store instructions of any align-
ment, and word-aligned st.d and ld.d. Any other unaligned memory access will cause an MMU
address exception. All coprocessor memory access instructions require word-aligned pointers.
Doubleword-sized accesses with word-aligned pointers will automatically be performed as two
word-sized accesses.

The following table shows the instructions with support for unaligned addresses. All other
instructions require aligned addresses. Accessing an unaligned address may require several
clock cycles, refer to Section 10. on page 154 for details.

Table 3-1. Instructions with unalignment support

Instruction Supported alignment

ld.w Any

st.w Any

lddsp Any

lddpc Any

stdsp Any

ld.d Word

st.d Word

All coprocessor memory access instruction Word
24
32001A–AVR32–06/06

AVR32

AVR32
3.7 Writeback
The three subpipes share a writeback (WB) stage with three register file write ports. If the three
subpipes produces four results at the same time, the MUL pipeline is temporarily stalled until a
writeback port is available. The WB stage also contains logic for:

• Sign- or zero-extention of data loaded from cache.

• Execution of ldins and ldswp.

• Output formatting of data loaded from unaligned addresses.

3.8 Forwarding hardware and hazard detection
The pipeline is implemented in such a way that the programmer in most cases will not have to
consider hazards between instructions when writing code. Efficient operand forwarding mecha-
nisms are implemented in order to minimize pipeline stalls due to data dependencies. When
dependencies exist, the hardware will stall the affected parts of the pipeline in order to guaran-
tee correct execution. Data forwarding is done automatically and is invisible to the user. This
ensures that all code will execute correctly, even though the pipeline may have to be stalled in
some cases. The user should be aware of these stalls and try to rewrite the code so that no such
dependencies arise. This will result in faster execution.

Since instructions are allowed to complete out of order, both Write-After-Read (WAR), Write-
After-Write (WAW) and Read-After-Write (RAW) hazards may occur. If an instruction is affected
by a hazard, or will provoke a hazard, it is frozen in the IS stage until the hazard is resolved. This
will also freeze all upstream pipeline stages. All downstream stages are allowed to continue exe-
cution. Instructions storing data to memory will read the data to store from the register file in the
D pipeline stage. This pipeline stage has a dedicated hazard detection and forwarding unit. If the
data to store to memory is not available in the D stage, the LS pipe will have to stall. Newer
instructions may still start executing in the other pipelines.

3.8.1 IS stage forwarding
The IS stage is able to forward data from the register file inputs to the register file outputs. If data
to write is present at the write ports of the register file at the same time as the register is read,
the data not yet written will be read. This ensures that data from the writeback stages are for-
warded to the register file outputs. This is illustrated in Figure 3-2:

Figure 3-2. Forwarding inside the IS stage

Register File

Write address

Write data

Read addressn ==
Write addressm

Read port n

Write port m

Forwarded data
25
32001A–AVR32–06/06

3.8.2 Forwarding sources
All operations that produce valid results are forwarded. All data are forwarded directly from the
inputs of pipeline registers. The following figure shows the forwarding sources, and the name of
the forwarded signals. Each of the forwarded signals carry a word-sized value. Pipeline registers
are illustrated as a thick black line, the load modification unit is illustrated as a gray box.

Figure 3-3. Forwarding sources

3.8.3 Forwarding destinations
The forwarded data is input to the IS stage. The IS stage has logic deciding whether the value
read from the register file is valid, or if a forwarded value should be used. This is illustrated in
Figure 3-4. Forwarded data is shown with bent arrows, and data from the previous pipeline
stage is shown in straight arrows. The forwarded value really consists of all the possible forward
values described in Figure 3-3, but is shown as a single value for simplicity. The prefetch unit
also receives forwarded data. This data is used for calculating an instruction fetch address for
change-of-flow instructions. Target addresses for change-of-flow instructions are produced
either by the A1 stage, or the WB stage.

A1

M1 M2

D

A2

Integer unit

Load-store unit

ALU pipe

Multiply pipe

Data pipe

fwd_dataA fwd_dataB

WB

Load
Mod

fwd_a1

fwd_mul

fwd_a2

DA
26
32001A–AVR32–06/06

AVR32

AVR32
Figure 3-4. Forwarding destinations

3.9 Hazards not handled by the hardware
All hazards occurring between normal arithmetical, logical, load-store and change-of-flow
instructions are handled automatically by hardware. There are, however, a few instruction
sequences which must be sequenced by the user. These sequences are described in this chap-
ter. The programmer can assume that any instruction sequence other than the sequences
explicitly mentioned in this chapter will work without any special consideration.

3.9.1 Accessing system registers with mtsr and mfsr
The mtsr instruction writes the contents of a register into a system register. The system registers
control the behaviour of the CPU. The programmer must make sure that any mtsr instruction has
committed and has altered the state of the system in the desired way before issuing any new
instructions that depend on this new state. This can be done by inserting nop instructions, or
other instructions that do not depend on the new state generated by the mtsr instruction.

Table 2-2, “System Registers implemented in AVR32 AP,” on page 10 details the timing for
writes into the different system registers. The system registers are written as the mtsr instruction
leaves the pipeline stage described in the table. The system registers are read as the mfsr
instruction leaves the pipeline stage described in the table. As soon as a system register is read
by mfsr, it can be forwarded as any regular register file register.

Some of the system registers are located inside modules on the TCB bus. These are written
when the mtsr instruction leaves the D pipeline stage. Instructions depending on a mtsr to these
system registers being committed must therefore wait in the IS stage until the effects of the mtsr
is guaranteed to be visible to the instruction. The following code demonstrates a write to the
ASID field of TLBEHI, followed by a rete to an address which requires the new ASID to be visi-
ble. A nop is inserted to guarantee that the mtsr leaves the D stage at the same time as rete
leaves the A1 stage. In the following cycle, the icache will start fetching at the specified address

A1

M1 M2

D

WB

A2

Integer unit

Load-store unit

IF

Prefetch unit

DA

Reg
File

Issue

Pointer

To cache
27
32001A–AVR32–06/06

and observe the newly updated ASID. Register r0 is assumed to contain the correct value to
write into TLBEHI.

mtsr TLBEHI, r0

nop

rete

3.9.2 Writing to the status register with ssrf and csrf
These instructions have the same timing as a mtsr to the system register.

3.9.3 Writing to and using the JOSP register
The JOSP register is used to determine which register file register to access when in Java
mode. This is needed because the 8 elements on top of the Java operand stack are located in
the register file. Since the register addresses are generated in the ID stage, JOSP is located
here.

JOSP is automatically updated to the correct value when executing Java bytecodes in Java
mode. One may also need to update the JOSP register manually, either with the incjosp instruc-
tion, or using mtsr/mfsr for reading/writing JOSP.

When updating JOSP with incjosp, JOSP is updated with the new value when incjosp has left ID.
The incjosp instruction reads the value of JOSP when it is in ID, and writes the new value as it
leaves ID. If the incjosp instruction is flushed from the pipe before being committed for some rea-
son like an interrupt or a taken change-of-flow instruction, hardware automatically restores the
correct value to the JOSP register. The JOSP register will be restored to the value it had after
the last completed instruction.

When updating JOSP with mtsr, JOSP is updated with the new value when mtsr has left A1.
The user is responsible for not letting any instruction that uses JOSP leave ID before mtsr has
written the new JOSP value. This may require inserting nop instructions between mtsr and any
instruction using JOSP.

The following assembly code illustrates coding to avoid hazards when accessing JOSP. Two
nop instructions are inserted to make sure that the new value of JOSP written by mtsr as mtsr
leaves A1 is visible to the incjosp instruction when it enters ID. A mfsr instruction may follow
immediately after incjosp, as incjosp writes the new JOSP value when it leaves ID, while mfsr
reads JOSP while it is in A1.

mtsr JOSP, r0

nop

nop

incjosp -2

mfsr r1, JOSP

The following assembly code is another illustration of coding to avoid hazards when accessing
JOSP. The two sets of code perform identical operations. This code sets the R bit in the status
register in order to enable remapping of the register file to a Java operand stack. This effectively
remaps r0 to r7 into a Java operand stack, where the mapping from logical register to physical
register is dependent on the value of JOSP. Note that the second code example is strongly dis-
couraged to use in practice, since no JOSP over/underflow detection is performed. The code is
presented only to show the differences in timing between the two ways of writing to JOSP.

In the first code, incjosp changes the value of JOSP when it is in ID. The new value of JOSP is
therefore visible when the add instruction enters ID.
28
32001A–AVR32–06/06

AVR32

AVR32
In the second code, mtsr writes the new value of JOSP as it leaves A1. As the add instruction
needs JOSP to be updated when it enters ID because of the register remapping, two nop
instructions must be inserted.

ssrf R

incjosp -2

add r0, r0

ssrf R

mfsr r8, JOSP

sub r8, 2

mtsr JOSP, r8

nop

nop

add r0, r0

3.9.4 Execution of TLB instructions
The TLB instructions tlbr, tlbw and tlbs are used to maintain the data in the TLB. They use the
TCB bus to access the MMU, and the instruction is dispatched to the MMU when the instruction
is in the D pipeline stage. The programmer must make sure that any writes to the TLB with the
tlbw instructions are completed before the TLB entry is used in an icache or dcache memory
access. This is handled automatically for any dcache memory access, since any load/store
instructions flow through the same pipeline as the tlbw instruction, and the tlbw instruction will
have left the D stage before any load/store instruction enters it. Any icache access that is to use
the page table entry written by tlbw must wait until the tlbw instruction is in the D pipeline stage.
This may require inserting a nop or another unrelated instruction, as illustrated in the code
below, which shows a part of a ITLB miss handler. The rete instruction wishes to use the page
table entry written by tlbw to generate the physical address of the instruction to return to.

tlbw

nop

rete

3.9.5 Execution of cache instructions
The cache instruction perform various cache-relatated operations, like invalidation of lines.
Some of these operations are harmless, and need no sequencing or hazard consideration.
Other operations, like invalidation, require more concern. The programmer must make sure that
any invalidation is committed before any instruction the depends on the invalidation already
being performed is allowed to execute.

The cache instruction use the TCB bus to access the caches, and the instruction is dispatched
to the caches when the instruction is in the D pipeline stage. The programmer must make sure
that any cache instructions are completed before any icache or dcache memory access that
depends on the cache instruction is executed. This is handled automatically for any dcache
memory access, since any load/store instructions flow through the same pipeline as the cache
instruction, and the cache instruction will have left the D stage before any load/store instruction
enters it. Any icache access that is dependent on the cache instruction must wait until the cache
instruction is in the D pipeline stage. This may require inserting a nop or another unrelated
instruction, as illustrated in the code below. The rjmp instruction wishes to jump to a location
29
32001A–AVR32–06/06

labeled flushedaddress that must be flushed from the cache. INVALIDATEI is a macro that is
defined to be the command for invalidation of the icache.

cache INVALIDATEI

nop

rjmp flushedaddress

3.9.6 Hazards on the Q flag
Some of the instructions in the instruction set updates the status register Q flag. Many of these
instructions, like satadd, generate the new Q flag after a single cycle so no hazards are present
between these instructions and other instructions. The sats, satu, satrnds, satrndu and some
multiply instructions, require several cycles before updating the Q flag. The required Q flag
latency for each of these instructions is listed in Section 10. on page 154. The user must make
sure that any of these instructions have completed and updated the Q flag before using the Q
flag in any computations. In the following example, a satrnds instruction is followed by a branch-
if-q-set instruction. A nop is needed in order to guarantee correct execution.

satrnds r0>>0, 5

nop

brqs targetaddress

3.10 Event handling
The CPU is able to respond to different events. An event can be either an interrupt or an excep-
tion. Interrupts are requests from external modules and are routed through the interrupt
controller. Exceptions are system events that require handling outside normal program flow.

Different types of exceptions can occur during execution of an instruction. Some exceptions are
instruction-address related, and occur during instruction fetch. Other exceptions occur during
decode, like unimplemented instruction and illegal opcode. Data access instructions can cause
data-address related exceptions, like DTLB miss. Exceptions can occur in different pipe stages,
depending on the type of exception. Several exceptions can be related to the same instruction.
Mechanisms must therefore be implemented so that several exceptions associated with the
same instruction can be handled correctly. The exception priorities are defined Table 3-2 on
page 34. An instruction that has caused an exception request is called a contaminated
instruction.

Each pipeline stage has a pipeline register that holds the exception requests associated with the
instruction in that pipeline stage. This allows the exception request to follow the contaminated
instruction through the pipeline.

Events are detected in two different pipeline stages. The D stage detects all data-address
related exceptions (DTLB multiple hit, DTLB miss, DTLB protection and DTLB modified). All
other exceptions and interrupts are detected in the A1 stage. Data breakpoints are also detected
in A1.

A complication occurs with the event detection in the A1 stage: The instruction tagged as con-
taminated may be part of a folded branch. In this case, the event is taken only if the branch
prediction was correct. Otherwise, the entire folded branch instruction is flushed.

Data-address related exceptions are detected in the D stage. The address boundary check unit
ensures that no sequential instructions are issued unless it can be guaranteed that the data
access will not generate an exception.
30
32001A–AVR32–06/06

AVR32

AVR32
Generally, all exceptions, including breakpoint, have the failing instruction as restart address.
This allows a fixup exception routine to correct the error and restart the instruction. Interrupts
(INT0-3, NMI) have the address of the first non-completed instruction as restart address. When
an event is accepted, the A1 stage and all upstream stages are flushed.

Branch folding complicates exception handling. If a folded instruction fails the condition check in
the A1 stage, the address of the folded instruction should be used as restart address. This is
implemented by passing the address of the folded instruction in the PC pipeline register.

When folding branches, both the branch and the folded instruction can be contaminated. How do
we determine which of the two instructions caused the exception? The fetch stage is responsible
for not folding instructions if the branch instruction is contaminated. The branch instruction can
be contaminated only due to instruction-address related exceptions, as it must already have
been decoded and recognized in order to have been placed in the BTB. This contamination is
known already in IF. If folding has occurred, it is guaranteed that the contamination was not in
the branch instruction, and it must therefore be in the folded instruction. Therefore, the folded
instruction should be restarted.

3.10.1 Event priority
Several instructions may be in the pipeline at the same time, and several events may be issued
in each pipeline stage. This implies that several pending exceptions may be in the pipeline
simultaneously. Priorities must therefore be imposed, ensuring that the correct event is serviced
first. The priority scheme obeys the following rules:

1. If several instructions trigger events, the instruction furthest down the pipeline is ser-
viced first, even if upstream instructions have pending events of higher priority.

2. If this instruction has several pending events, the event with the highest priority is ser-
viced first. After this event has been serviced, all pending events are cleared and the
instruction is restarted.

3.10.2 Exceptions and interrupt requests
When an event other than scall or debug request is received by the core, the following actions
are performed atomically:

1. The pending event will not be accepted if it is masked. The I3M, I2M, I1M, I0M, EM and
GM bits in the Status Register are used to mask different events. Not all events can be
masked. A few critical events (NMI, Unrecoverable Exception, TLB Multiple Hit and Bus
Error) can not be masked. When an event is accepted, hardware automatically sets the
mask bits corresponding to all sources with equal or lower priority. This inhibits accep-
tance of other events of the same or lower priority, except for the critical events listed
above. Software may choose to clear some or all of these bits after saving the neces-
sary state if other priority schemes are desired. It is the event source’s responsability to
ensure that their events are left pending until accepted by the CPU.

2. When a request is accepted, the Status Register and Program Counter of the current
context is stored in the Return Status Register and Return Address Register corre-
sponding to the new context. Saving the Status Register ensures that the core is
returned to the previous execution mode when the current event handling is completed.
When exceptions occur, both the EM and GM bits are set, and the application may
manually enable nested exceptions if desired by clearing the appropriate bit. Each
exception handler has a dedicated handler address, and this address uniquely identi-
fies the exception source.
31
32001A–AVR32–06/06

3. The Mode bits are set correctly to reflect the priority of the accepted event, and the cor-
rect register file banks are selected. The address of the event handler, as shown in
Table 3-2, is loaded into the Program Counter.

The execution of the event routine then continues from the effective address calculated.

The rete instruction signals the end of the event. When encountered, the values in the Return
Status Register and Return Address Register corresponding to the event context are restored to
the Status Register and Program Counter. The restored Status Register contains information
allowing the core to resume operation in the previous execution mode. This concludes the event
handling.

3.10.3 Supervisor calls
The AVR32 instruction set provides a supervisor mode call instruction. The scall instruction is
designed so that privileged routines can be called from any context. This facilitates sharing of
code between different execution modes. The scall mechanism is designed so that a minimal
execution cycle overhead is experienced when performing supervisor routine calls from time-
critical event handlers.

The scall instruction behaves differently depending on which mode it is called from. The behav-
iour is detailed in the Instruction Set Reference in the Architecture Manual. In order to allow the
scall routine to return to the correct context, a return from supervisor call instruction, rets, is
implemented.

3.10.4 Debug requests
The AVR32 architecture defines a dedicated debug mode. When a debug request is received by
the core, Debug mode is entered. Entry into Debug mode can be masked by the DM bit in the
status register. Upon entry into Debug mode, hardware sets the SR[D] bit and jumps to the
Debug Exception handler. By default, debug mode executes in the exception context, but with
dedicated Return Address Register and Return Status Register. These dedicated registers
remove the need for storing this data to the system stack, thereby improving debuggability. The
mode bits in the status register can freely be manipulated in Debug mode, to observe registers
in all contexts, while retaining full privileges.

Debug mode is exited by executing the retd instruction. This returns to the previous context.

3.11 Entry points for events
Several different event handler entry points exists. For AVR32B, the reset routine entry address
is always fixed to 0xA000_0000. This address resides in unmapped, uncached space in order to
ensure well-defined resets.

TLB miss exceptions and scall have a dedicated space relative to EVBA where their event han-
dler can be placed. This speeds up execution by removing the need for a jump instruction placed
at the program address jumped to by the event hardware. All other exceptions have a dedicated
event routine entry point located relative to EVBA. The handler routine address identifies the
exception source directly.

All external interrupt requests have entry points located at an offset relative to EVBA. This
autovector offset is specified by an external Interrupt Controller. The programmer must make
sure that none of the autovector offsets interfere with the placement of other code. The autovec-
tor offset has 14 address bits, giving an offset of maximum 16384 bytes.

Special considerations should be made when loading EVBA with a pointer. Due to security con-
siderations, the event handlers should be located in the privileged address space, or in a
32
32001A–AVR32–06/06

AVR32

AVR32
privileged memory protection region. In a segmented AVR32B system, some segments of the
virtual memory space may be better suited than others for holding event handlers. This is due to
differences in translateability and cacheability between segments. A cacheable, non-translated
segment may offer the best performance for event handlers, as this will eliminate any TLB
misses and speed up instruction fetch. The user may also consider to lock the event handlers in
the instruction cache.

If several events occur on the same instruction, they are handled in a prioritized way. The priority
ordering is presented in Table 3-2. If events occur on several instructions at different locations in
the pipeline, the events on the oldest instruction are always handled before any events on any
younger instruction, even if the younger instruction has events of higher priority than the oldest
instruction. An instruction B is younger than an instruction A if it was sent down the pipeline later
than A.

The addresses and priority of simultaneous events are shown in Table 3-2 on page 34

The interrupt system requires that an interrupt controller is present outside the core in order to
prioritize requests and generate a correct offset if more than one interrupt source exists for each
priority level. An interrupt controller generating different offsets depending on interrupt request
source is referred to as autovectoring. Note that the interrupt controller should generate
autovector addresses that do not conflict with addresses in use by other events or regular pro-
gram code.

The addresses of the interrupt routines are calculated by adding the address on the autovector
offset bus to the value of the Exception Vector Base Address (EVBA). In AVR32 AP, the actual
autovector address is formed by bitwise OR-ing the autovector offset to EVBA. Using bitwise-OR
instead of an adder saves hardware. The programmer must consider this when setting up
EVBA.
33
32001A–AVR32–06/06

Table 3-2. Priority and handler addresses for events

Priority Handler Address Name Event source Stored Return Address

1 0xA000_0000 Reset External input Undefined

2 Provided by OCD system OCD Stop CPU OCD system First non-completed instruction

3 EVBA+0x00 Unrecoverable exception Internal PC of offending instruction

4 EVBA+0x04 TLB multiple hit Internal signal PC of offending instruction

5 EVBA+0x08 Bus error data fetch Data bus First non-completed instruction

6 EVBA+0x0C Bus error instruction fetch Data bus First non-completed instruction

7 EVBA+0x10 NMI External input First non-completed instruction

8 Autovectored Interrupt 3 request External input First non-completed instruction

9 Autovectored Interrupt 2 request External input First non-completed instruction

10 Autovectored Interrupt 1 request External input First non-completed instruction

11 Autovectored Interrupt 0 request External input First non-completed instruction

12 EVBA+0x14 Instruction Address ITLB PC of offending instruction

13 EVBA+0x50 ITLB Miss ITLB PC of offending instruction

14 EVBA+0x18 ITLB Protection ITLB PC of offending instruction

15 EVBA+0x1C Breakpoint OCD system First non-completed instruction

16 EVBA+0x20 Illegal Opcode Instruction PC of offending instruction

17 EVBA+0x24 Unimplemented instruction Instruction PC of offending instruction

18 EVBA+0x28 Privilege violation Instruction PC of offending instruction

19 EVBA+0x2C Floating-point - Unused in AVR32 AP

20 EVBA+0x30 Coprocessor absent Instruction PC of offending instruction

21 EVBA+0x100 Supervisor call Instruction PC(Supervisor Call) +2

22 EVBA+0x34 Data Address (Read) DTLB PC of offending instruction

23 EVBA+0x38 Data Address (Write) DTLB PC of offending instruction

24 EVBA+0x60 DTLB Miss (Read) DTLB PC of offending instruction

25 EVBA+0x70 DTLB Miss (Write) DTLB PC of offending instruction

26 EVBA+0x3C DTLB Protection (Read) DTLB PC of offending instruction

27 EVBA+0x40 DTLB Protection (Write) DTLB PC of offending instruction

28 EVBA+0x44 DTLB Modified DTLB PC of offending instruction
34
32001A–AVR32–06/06

AVR32

AVR32
3.11.1 Description of events in AVR32 AP

3.11.1.1 Reset Exception
The Reset exception is generated when the reset input line to the CPU is asserted. The Reset
exception can not be masked by any bit. The Reset exception resets all synchronous elements
and registers in the CPU pipeline to their default value, and starts execution of instructions at
address 0xA000_0000.

SR = reset_value_of_SREG;

PC = 0xA000_0000;

All other system registers are reset to their reset value, which may or may not be defined. Refer
to “Programming Model” on page 6 for details.

3.11.1.2 OCD Stop CPU Exception
The OCD Stop CPU exception is generated when the OCD Stop CPU input line to the CPU is
asserted. The OCD Stop CPU exception can not be masked by any bit. This exception is identi-
cal to a non-maskable, high priority breakpoint. Any subsequent operation is controlled by the
OCD hardware. The OCD hardware will take control over the CPU and start to feed instructions
directly into the pipeline.

RSR_DBG = SR;

RAR_DBG = PC;

SR[M2:M0] = B’110;

SR[R] = 0;

SR[J] = 0;

SR[D] = 1;

SR[DM] = 1;

SR[EM] = 1;

SR[GM] = 1;

3.11.1.3 Unrecoverable Exception
The Unrecoverable Exception is generated when an exception request is issued when the
Exception Mask (EM) bit in the status register is asserted. The Unrecoverable Exception can not
be masked by any bit. The Unrecoverable Exception is generated when a condition has
occurred that the hardware cannot handle. The system will in most cases have to be restarted if
this condition occurs.

RSR_EX = SR;

RAR_EX = PC of offending instruction;

SR[R] = 0;

SR[J] = 0;

SR[M2:M0] = B’110;

SR[EM] = 1;

SR[GM] = 1;

PC = EVBA | 0x00;
35
32001A–AVR32–06/06

3.11.1.4 TLB Multiple Hit Exception
TLB Multiple Hit exception is issued when multiple address matches occurs in the TLB, causing
an internal inconsistency.

This exception signals a critical error where the hardware is in an undefined state. All interrupts
are masked, and PC is loaded with EVBA | 0x04. MMU-related registers are updated with infor-
mation in order to identify the failing address and the failing TLB if multiple TLBs are present.
TLBEHI[ASID] is unchanged after the exception, and therefore identifies the ASID that caused
the exception.

RSR_EX = SR;

RAR_EX = PC of offending instruction;

TLBEAR = FAILING_VIRTUAL_ADDRESS;

TLBEHI[VPN] = FAILING_PAGE_NUMBER;

TLBEHI[I] = 0/1, depending on which TLB caused the error;

SR[R] = 0;

SR[J] = 0;

SR[M2:M0] = B’110;

SR[EM] = 1;

SR[GM] = 1;

PC = EVBA | 0x04;

3.11.1.5 Bus Error Exception on Data Access
The Bus Error on Data Access exception is generated when the data bus detects an error condi-
tion. This exception is caused by events unrelated to the instruction stream, or by data written to
the cache write-buffers many cycles ago. Therefore, execution can not be resumed in a safe
way after this exception. The value placed in RAR_EX is unrelated to the operation that caused
the exception. The exception handler is responsible for performing the appropriate action.

RSR_EX = SR;

RAR_EX = PC of first non-issued instruction;

SR[R] = 0;

SR[J] = 0;

SR[M2:M0] = B’110;

SR[EM] = 1;

SR[GM] = 1;

PC = EVBA | 0x08;

3.11.1.6 Bus Error Exception on Instruction Fetch
The Bus Error on Instruction Fetch exception is generated when the data bus detects an error
condition. This exception is caused by events related to the instruction stream. Therefore, exe-
cution can be restarted in a safe way after this exception, assuming that the condition that
caused the bus error is dealt with.

RSR_EX = SR;

RAR_EX = PC;

SR[R] = 0;

SR[J] = 0;

SR[M2:M0] = B’110;

SR[EM] = 1;
36
32001A–AVR32–06/06

AVR32

AVR32
SR[GM] = 1;

PC = EVBA | 0x0C;

3.11.1.7 NMI Exception
The NMI exception is generated when the NMI input line to the core is asserted. The NMI excep-
tion can not be masked by the SR[GM] bit. However, the core ignores the NMI input line when
processing an NMI Exception (the SR[M2:M0] bits are B’111). This guarantees serial execution
of NMI Exceptions, and simplifies the NMI hardware and software mechanisms.

Since the NMI exception is unrelated to the instruction stream, the instructions in the pipeline are
allowed to complete. After finishing the NMI exception routine, execution should continue at the
instruction following the last completed instruction in the instruction stream.

RSR_NMI = SR;

RAR_NMI = Address of first noncompleted instruction;

SR[R] = 0;

SR[J] = 0;

SR[M2:M0] = B’111;

SR[EM] = 1;

SR[GM] = 1;

PC = EVBA | 0x10;

3.11.1.8 INT3 Exception
The INT3 exception is generated when the INT3 input line to the core is asserted. The INT3
exception can be masked by the SR[GM] bit, and the SR[I3M] bit. Hardware automatically sets
the SR[I3M] bit when accepting an INT3 exception, inhibiting new INT3 requests when process-
ing an INT3 request.

The INT3 Exception handler address is calculated by adding EVBA to an interrupt vector offset
specified by an interrupt controller outside the core. The interrupt controller is responsible for
providing the correct offset.

Since the INT3 exception is unrelated to the instruction stream, the instructions in the pipeline
are allowed to complete. After finishing the INT3 exception routine, execution should continue at
the instruction following the last completed instruction in the instruction stream.

RSR_INT3 = SR;

RAR_INT3 = Address of first noncompleted instruction;

SR[R] = 0;

SR[J] = 0;

SR[M2:M0] = B’101;

SR[I3M] = 1;

SR[I2M] = 1;

SR[I1M] = 1;

SR[I0M] = 1;

PC = EVBA | INTERRUPT_VECTOR_OFFSET;

3.11.1.9 INT2 Exception
The INT2 exception is generated when the INT2 input line to the core is asserted. The INT2
exception can be masked by the SR[GM] bit, and the SR[I2M] bit. Hardware automatically sets
37
32001A–AVR32–06/06

the SR[I2M] bit when accepting an INT2 exception, inhibiting new INT2 requests when process-
ing an INT2 request.

The INT2 Exception handler address is calculated by adding EVBA to an interrupt vector offset
specified by an interrupt controller outside the core. The interrupt controller is responsible for
providing the correct offset.

Since the INT2 exception is unrelated to the instruction stream, the instructions in the pipeline
are allowed to complete. After finishing the INT2 exception routine, execution should continue at
the instruction following the last completed instruction in the instruction stream.

RSR_INT2 = SR;

RAR_INT2 = Address of first noncompleted instruction;

SR[R] = 0;

SR[J] = 0;

SR[M2:M0] = B’100;

SR[I2M] = 1;

SR[I1M] = 1;

SR[I0M] = 1;

PC = EVBA | INTERRUPT_VECTOR_OFFSET;

3.11.1.10 INT1 Exception
The INT1 exception is generated when the INT1 input line to the core is asserted. The INT1
exception can be masked by the SR[GM] bit, and the SR[I1M] bit. Hardware automatically sets
the SR[I1M] bit when accepting an INT1 exception, inhibiting new INT1 requests when process-
ing an INT1 request.

The INT1 Exception handler address is calculated by adding EVBA to an interrupt vector offset
specified by an interrupt controller outside the core. The interrupt controller is responsible for
providing the correct offset.

Since the INT1 exception is unrelated to the instruction stream, the instructions in the pipeline
are allowed to complete. After finishing the INT1 exception routine, execution should continue at
the instruction following the last completed instruction in the instruction stream.

RSR_INT1 = SR;

RAR_INT1 = Address of first noncompleted instruction;

SR[R] = 0;

SR[J] = 0;

SR[M2:M0] = B’011;

SR[I1M] = 1;

SR[I0M] = 1;

PC = EVBA | INTERRUPT_VECTOR_OFFSET;

3.11.1.11 INT0 Exception
The INT0 exception is generated when the INT0 input line to the core is asserted. The INT0
exception can be masked by the SR[GM] bit, and the SR[I0M] bit. Hardware automatically sets
the SR[I0M] bit when accepting an INT0 exception, inhibiting new INT0 requests when process-
ing an INT0 request.

The INT0 Exception handler address is calculated by adding EVBA to an interrupt vector offset
specified by an interrupt controller outside the core. The interrupt controller is responsible for
providing the correct offset.
38
32001A–AVR32–06/06

AVR32

AVR32
Since the INT0 exception is unrelated to the instruction stream, the instructions in the pipeline
are allowed to complete. After finishing the INT0 exception routine, execution should continue at
the instruction following the last completed instruction in the instruction stream.

RSR_INT0 = SR;

RAR_INT0 = Address of first noncompleted instruction;

SR[R] = 0;

SR[J] = 0;

SR[M2:M0] = B’010;

SR[I0M] = 1;

PC = EVBA | INTERRUPT_VECTOR_OFFSET;

3.11.1.12 Instruction Address Exception
The Instruction Address Error exception is generated if the generated instruction memory
address has an illegal alignment.

RSR_EX = SR;

RAR_EX = PC;

TLBEAR = FAILING_VIRTUAL_ADDRESS;

TLBEHI[VPN] = FAILING_PAGE_NUMBER;

SR[R] = 0;

SR[J] = 0;

SR[M2:M0] = B’110;

SR[EM] = 1;

SR[GM] = 1;

PC = EVBA | 0x14;

3.11.1.13 ITLB Miss Exception
The ITLB Miss exception is generated when no TLB entry matches the instruction memory
address, or if the Valid bit in a matching entry is 0.

RSR_EX = SR;

RAR_EX = PC;

TLBEAR = FAILING_VIRTUAL_ADDRESS;

TLBEHI[VPN] = FAILING_PAGE_NUMBER;

TLBEHI[I] = 1;

SR[R] = 0;

SR[J] = 0;

SR[M2:M0] = B’110;

SR[EM] = 1;

SR[GM] = 1;

PC = EVBA | 0x50;
39
32001A–AVR32–06/06

3.11.1.14 ITLB Protection Exception
The ITLB Protection exception is generated when the instruction memory access violates the
access rights specified by the protection bits of the addressed virtual page.

RSR_EX = SR;

RAR_EX = PC;

TLBEAR = FAILING_VIRTUAL_ADDRESS;

TLBEHI[VPN] = FAILING_PAGE_NUMBER;

TLBEHI[I] = 1;

SR[R] = 0;

SR[J] = 0;

SR[M2:M0] = B’110;

SR[EM] = 1;

SR[GM] = 1;

PC = EVBA | 0x18;

3.11.1.15 Breakpoint Exception
The Breakpoint exception is issued when a breakpoint instruction is executed, or the OCD
breakpoint input line to the CPU is asserted, and SREG[DM] is cleared.

An external debugger can optionally assume control of the CPU when the Breakpoint Exception
is executed. The debugger can then issue individual instructions to be executed in Debug mode.
Debug mode is exited with the retd instruction. This passes control from the debugger back to
the CPU, resuming normal execution.

RSR_DBG = SR;

RAR_DBG = PC;

SR[R] = 0;

SR[J] = 0;

SR[M2:M0] = B’110;

SR[D] = 1;

SR[DM] = 1;

SR[EM] = 1;

SR[GM] = 1;

PC = EVBA | 0x1C;

3.11.1.16 Illegal Opcode
This exception is issued when the core fetches an unknown instruction, or when a coprocessor
instruction is not acknowledged. When entering the exception routine, the return address on
stack points to the instruction that caused the exception.

RSR_EX = SR;

RAR_EX = PC;

SR[R] = 0;

SR[J] = 0;

SR[M2:M0] = B’110;

SR[EM] = 1;

SR[GM] = 1;

PC = EVBA | 0x20;
40
32001A–AVR32–06/06

AVR32

AVR32
3.11.1.17 Unimplemented Instruction
This exception is issued when the core fetches an instruction supported by the instruction set
but not by the current implementation. This allows software implementations of unimplemented
instructions. When entering the exception routine, the return address on stack points to the
instruction that caused the exception.

RSR_EX = SR;

RAR_EX = PC;

SR[R] = 0;

SR[J] = 0;

SR[M2:M0] = B’110;

SR[EM] = 1;

SR[GM] = 1;

PC = EVBA | 0x24;

3.11.1.18 Data Read Address Exception
The Data Read Address Error exception is generated if the address of a data memory read has
an illegal alignment.

RSR_EX = SR;

RAR_EX = PC;

TLBEAR = FAILING_VIRTUAL_ADDRESS;

TLBEHI[VPN] = FAILING_PAGE_NUMBER;

SR[R] = 0;

SR[J] = 0;

SR[M2:M0] = B’110;

SR[EM] = 1;

SR[GM] = 1;

PC = EVBA | 0x34;

3.11.1.19 Data Write Address Exception
The Data Write Address Error exception is generated if the address of a data memory write has
an illegal alignment.

RSR_EX = SR;

RAR_EX = PC;

TLBEAR = FAILING_VIRTUAL_ADDRESS;

TLBEHI[VPN] = FAILING_PAGE_NUMBER;

SR[R] = 0;

SR[J] = 0;

SR[M2:M0] = B’110;

SR[EM] = 1;

SR[GM] = 1;

PC = EVBA | 0x38;
41
32001A–AVR32–06/06

3.11.1.20 DTLB Read Miss Exception
The DTLB Read Miss exception is generated when no TLB entry matches the data memory
address of the current read operation, or if the Valid bit in a matching entry is 0.

RSR_EX = SR;

RAR_EX = PC;

TLBEAR = FAILING_VIRTUAL_ADDRESS;

TLBEHI[VPN] = FAILING_PAGE_NUMBER;

TLBEHI[I] = 0;

SR[R] = 0;

SR[J] = 0;

SR[M2:M0] = B’110;

SR[EM] = 1;

SR[GM] = 1;

PC = EVBA | 0x60;

3.11.1.21 DTLB Write Miss Exception
The DTLB Write Miss exception is generated when no TLB entry matches the data memory
address of the current write operation, or if the Valid bit in a matching entry is 0.

RSR_EX = SR;

RAR_EX = PC;

TLBEAR = FAILING_VIRTUAL_ADDRESS;

TLBEHI[VPN] = FAILING_PAGE_NUMBER;

TLBEHI[I] = 0;

SR[R] = 0;

SR[J] = 0;

SR[M2:M0] = B’110;

SR[EM] = 1;

SR[GM] = 1;

PC = EVBA | 0x70;

3.11.1.22 DTLB Read Protection Exception
The DTLB Protection exception is generated when the data memory read violates the access
rights specified by the protection bits of the addressed virtual page.

RSR_EX = SR;

RAR_EX = PC;

TLBEAR = FAILING_VIRTUAL_ADDRESS;

TLBEHI[VPN] = FAILING_PAGE_NUMBER;

TLBEHI[I] = 0;

SR[R] = 0;

SR[J] = 0;

SR[M2:M0] = B’110;

SR[EM] = 1;

SR[GM] = 1;

PC = EVBA | 0x3C;
42
32001A–AVR32–06/06

AVR32

AVR32
3.11.1.23 DTLB Write Protection Exception
The DTLB Protection exception is generated when the data memory write violates the access
rights specified by the protection bits of the addressed virtual page.

RSR_EX = SR;

RAR_EX = PC;

TLBEAR = FAILING_VIRTUAL_ADDRESS;

TLBEHI[VPN] = FAILING_PAGE_NUMBER;

TLBEHI[I] = 0;

SR[R] = 0;

SR[J] = 0;

SR[M2:M0] = B’110;

SR[EM] = 1;

SR[GM] = 1;

PC = EVBA | 0x40;

3.11.1.24 Privilege Violation Exception
If the application tries to execute privileged instructions, this exception is issued. The complete
list of priveleged instructions is shown in Table 3-3. When entering the exception routine, the
address of the instruction that caused the exception is stored as yhe stacked return address.

RSR_EX = SR;

RAR_EX = PC;

SR[R] = 0;

SR[J] = 0;

SR[M2:M0] = B’110;

SR[EM] = 1;

SR[GM] = 1;

PC = EVBA | 0x28;
43
32001A–AVR32–06/06

3.11.1.25 DTLB Modified Exception
The DTLB Modified exception is generated when a data memory write hits a valid TLB entry, but
the Dirty bit of the entry is 0. This indicates that the page is not writable.

RSR_EX = SR;

RAR_EX = PC;

TLBEAR = FAILING_VIRTUAL_ADDRESS;

TLBEHI[VPN] = FAILING_PAGE_NUMBER;

TLBEHI[I] = 0;

SR[R] = 0;

SR[J] = 0;

SR[M2:M0] = B’110;

SR[EM] = 1;

SR[GM] = 1;

PC = EVBA | 0x44;

Table 3-3. List of instructions which can only execute in privileged modes.

Privileged Instructions Comment

csrf - clear status register flag Privileged only when accessing upper half of status register

cache - perform cache operation

tlbr - read addressed TLB entry into
TLBEHI and TLBELO

tlbw - write TLB entry registers into
TLB

tlbs - search TLB for entry matching
TLBEHI[VPN]

mtsr - move to system register Unpriviledged when accessing JOSP and JECR

mfsr - move from system register Unpriviledged when accessing JOSP and JECR

mtdr - move to debug register

mfdr - move from debug register

rete- return from exception

rets - return from supervisor call

retd - return from debug mode

sleep - sleep

ssrf - set status register flag Privileged only when accessing upper half of status register
44
32001A–AVR32–06/06

AVR32

AVR32
3.11.1.26 Floating-point Exception
The Floating-point exception is generated when the optional Floating-Point Hardware signals
that an IEEE® exception occurred, or when another type of error from the floating-point hardware
occurred. Unused in AVR32 AP since it has no FP hardware.

RSR_EX = SR;

RAR_EX = PC;

SR[R] = 0;

SR[J] = 0;

SR[M2:M0] = B’110;

SR[EM] = 1;

SR[GM] = 1;

PC = EVBA | 0x2C;

3.11.1.27 Coprocessor Exception
The Coprocessor exception occurs when the addressed coprocessor does not acknowledge an
instruction. This permits software implementation of coprocessors.

RSR_EX = SR;

RAR_EX = PC;

SR[R] = 0;

SR[J] = 0;

SR[M2:M0] = B’110;

SR[EM] = 1;

SR[GM] = 1;

PC = EVBA | 0x30;

3.11.1.28 Supervisor call
Supervisor calls are signalled by the application code executing a supervisor call (scall) instruc-
tion. The scall instruction behaves differently depending on which context it is called from. This
allows scall to be called from other contexts than Application.

When the exception routine is finished, execution continues at the instruction following scall. The
rets instruction is used to return from supervisor calls.

If (SR[M2:M0] == {B’000 or B’001})

RAR_SUP ← PC + 2;

RSR_SUP ← SR;

PC ← EVBA | 0x100;

SR[M2:M0] ← B’001;

else

LRCurrent Context ← PC + 2;

PC ← EVBA | 0x100;
45
32001A–AVR32–06/06

3.12 Interrupt latencies
The following features in AVR32 AP ensure low and deterministic interrupt latency:

• Four different interrupt levels and an NMI ensures that the user can efficiently prioritize the
interrupt sources.

• Interrupts are autovectored, allowing the CPU to jump directly to the interrupt handler.

• A shadowed interrupt context for INT3 is provided so that critical interrupt handlers can start
directly without having to stack registers.

• Interrupt handler code can be locked in the icache, and the corresponding page table
information can be locked in the TLB.

The following calculations makes the following assumptions:

• The interrupt handler code is present in the icache and fetching handler instructions does not
cause any MMU exceptions.

• The pending interrupt is of higher priority than any executing interrupts, so that it can be
handled immediately.

• Any instructions in DA or D do not cause a cache miss. Any interrupts will wait until
instructions in DA or D have left these pipeline stages. If the instruction in DA or D cause a
cache miss, the time for the cache line to be loaded so that the instruction can complete will
depend on the timing of the memory the data will be loaded from. Any time spent reloading a
cache line must be added to the maximum interrupt latency calculated below.

3.12.1 Maximum interrupt latency
The maximum interrupt latency occurs when a long-running instruction is present in DA. Any
instruction must have left DA and D before interrupt handling will commence. The latency can be
calculated as follows:

3.12.2 Minimum interrupt latency
The maximum interrupt latency can be calculated as follows:

Table 3-4. Maximum interrupt latency

Source Delay

Wait for the slowest instruction (ldm/stm) to leave DA and D 10

Wait for autovector target instruction to be fetched 4

TOTAL 14

Table 3-5. Maximum interrupt latency

Source Delay

DA and D are empty 0

Wait for autovector target instruction to be fetched 4

TOTAL 4
46
32001A–AVR32–06/06

AVR32

AVR32
3.13 Processor consistency
Special hardware is implemented ensuring strict processor consistency, despite the use of OOO
completion. No instruction is allowed to change the state of the processor if there is a possibility
that an older, uncommitted instruction may not complete. In such a case, the younger instruction
is frozen in the IS stage until it can be guaranteed that the older instruction will commit. In prac-
tice, it is only memory access instructions that can cause a recoverable exception after they
have left the IS stage. Such address-related exceptions are always detected at the end of the D
stage. All other exceptions occuring after an instruction has left the IS stage are unrecoverable,
so processor consistency is unimportant, as a reset will have to be performed anyway.

The following mechanisms ensure processor consistency:

3.13.1 Address boundary checking
If a memory access instruction generates addresses that cross a page boundary, the next
sequential instruction is frozen in the IS stage until the memory access instruction has success-
fully left the D stage. This ensures that no address-related exceptions will occur in the middle of
a memory access instruction. As a consequence, the memory access instruction is guaranteed
to complete, and the following instruction may safely leave the IS stage.

Simple address checking is used to ensure that a memory access instruction cannot cause an
address related exception. This is checked by examining the memory pointer, the size of the
data transfer and the direction of pointer incrementation.

3.13.2 Handling contaminated instructions
Contaminated instructions are instructions that are tagged as having caused an exception. The
following rules ensures in-order completion and handling of contaminated instructions.

• A contaminated instruction is frozen in the IS stage until the DA and D stages are empty.

• When a contaminated instruction leaves the IS stage, it is issued to the A1 stage, regardless
of instruction type. All sequential instructions are frozen until the contaminated instruction
has either committed or been flushed from the pipe. This last event can occur only when the
contaminated instruction is folded with a branch.

3.13.3 Handling instructions with PC as destination
Instructions with PC as destination register will cause a change of flow. It must therefore be
ensured that no sequential instructions are allowed to commit before the instruction updating the
PC. When the instruction updating PC has left IS, all upstream stages are frozen until the
instruction updating PC has committed. The new PC value is forwarded directly from the WB
stage to the IF stage.
47
32001A–AVR32–06/06

4. Virtual memory
The AVR32 architecture uses virtual memory in order to support operating systems and large
memory spaces efficiently. Virtual memory simplifies execution of multiple processes and allows
allocation of privileges to different sections of the memory space.

The AVR32 architecture specifies a 32-bit virtual memory space. This virtual space can be
mapped to a 32-bit physical space. How this memory space is used and mapped is defined by
bus controllers and memory controllers on the outside of AVR32 AP.

4.1 Memory map
The memory map has six different segments, named P0 through P4, and U0. The P-segments
are accessible in the privileged modes, while the U-segment is accessible in the unprivileged
mode.

The virtual memory map is specified below.

Figure 4-1. The AVR32 virtual memory space

Both the P1 and P2 segments are default segment translated to the physical address range
0x00000000 to 0x1FFFFFFF. The mapping between virtual addresses and physical addresses
is therefore implemented by clearing of MSBs in the virtual address. The difference between P1
and P2 is that P1 is cached, while P2 is uncached. Because P1 and P2 are segment translated
and not page translated, code for initialization of MMUs and exception vectors are located in
these segments. P1, being cacheable, offers higher performance than P2.

The P3 space is also by default segment translated to the physical address range 0x00000000
to 0x1FFFFFFF. By enabling and setting up the MMU, the P3 space becomes page translated.
Page translation will override segment translation.

The P4 space is intended for memory mapping special system resources like peripheral mod-
ules. This segment is non-cacheable, non-translated.

2GB translated space
Cacheable

512MB system space,
non-cacheable

512MB translated space,
cacheable

512MB non-translated
space, non-cacheable

512MB non-translated
space, cacheable

Unaccessible space
Access error

2GB translated space
Cacheable

0x00000000

0x80000000

0xA0000000

0xC0000000

0xE0000000

0xFFFFFFFF

Privileged Modes Unprivileged Mode

0x00000000

0x80000000

0xFFFFFFFF

P0

P1

P2

P3

P4

U0
48
32001A–AVR32–06/06

AVR32

AVR32
The U0 segment is accessible in the unprivileged user mode. This segment is cacheable and
translated, depending upon the configuration of the cache and the memory management unit. If
accesses to other memory addresses than the ones within U0 is made in application mode, an
access error exception is issued.

The virtual address map is summarized in Table 4-1.

The segment translation can be disabled by clearing the S bit in the MMUCR. This will place all
the virtual memory space into a single 4 GB mapped memory space. Segment translation is
enabled by default.

The AVR32 architecture has two translations of addresses.

1. Segment translation (enabled by the MMUCR[S] bit)

2. Page translation (enabled by the MMUCR[E] bit)

Both these translations are performed by the MMU and they can be applied independent of each
other. This means that you can enable:

1. No translation. Virtual and physical addresses are the same.

2. Segment translation only. The virtual and physical addresses are the same for
addresses residing in the P0, P4 and U0 segments. P1, P2 and P3 are mapped to the
physical address range 0x00000000 to 0x1FFFFFFF.

3. Page translation only. All addresses are mapped as described by the TLB entries.
Doing this will give all access permission control to the AP bits in the TLB entry match-
ing the virtual address, and allow all virtual addresses to be translated.

4. Both segment and page translations. P1 and P2 are mapped to the physical address
range 0x00000000 to 0x1FFFFFFF. U0, P0 and P3 are mapped as described by the
TLB entries. The virtual and physical addresses are the same for addresses residing in
the P4 segment.

The segment translation is by default turned on and the page translation is by default turned off
after reset. The segment translation is summarized in Figure 4-2 on page 50.

Table 4-1. The virtual address map

Virtual
address
[31:29]

Segment
name

Virtual
Address Range

Segment
size

Accessible
from

Default
segment
translated Characteristics

111 P4
0xFFFF_FFFF to
0xE000_0000

512 Mb Privileged No
System space

Unmapped, Uncacheable

110 P3
0xDFFF_FFFF to
0xC000_0000

512 Mb Privileged Yes
Mapped,

Cacheable

101 P2
0xBFFF_FFFF to
0xA000_0000

512 Mb Privileged Yes Unmapped, Uncacheable

100 P1
0x9FFF_FFFF to
0x8000_0000

512 Mb Privileged Yes Unmapped, Cacheable

0xx P0 / U0
0x7FFF_FFFF to
0x0000_0000

2 Gb
Unprivileged
Privileged

No Mapped, Cacheable
49
32001A–AVR32–06/06

Figure 4-2. The AVR32 segment translation map

4.2 Understanding the MMU
The AVR32 Memory Management Unit (MMU) is responsible for mapping virtual to physical
addresses. When a memory access is performed, the MMU translates the virtual address speci-
fied into a physical address, while checking the access permissions. If an error occurs in the
translation process, or operating system intervention is needed for some reason, the MMU will
issue an exception, allowing the problem to be resolved by software.

The MMU architecture uses paging to map memory pages from the 32-bit virtual address space
to a 32-bit physical address space. Page sizes of 1, 4, 64 Kbytes and 1 Mbyte are supported.
Each page has individual access rights, providing fine protection granularity.

The information needed in order to perform the virtual-to-physical mapping resides in a page
table. Each page has its own entry in the page table. The page table also contains protection
information and other data needed in the translation process. Conceptually, the page table is
accessed for every memory access, in order to read the mapping information for each page.

4.2.1 Virtual Memory Models
The MMU provides two different virtual memory models, selected by the Mode (M) bit in the
MMU Control Register:

• Shared virtual memory, where the same virtual address space is shared between all
processes

• Private virtual memory, where each process has its own virtual address space

In shared virtual memory, the virtual address uniquely identifies which physical address it should
be mapped to. Two different processes addressing the same virtual address will always access

2GB translated space
cacheable

512MB system space,
non-cacheable

512MB translated space,
cacheable

512MB non-translated
space, non-cacheable

512MB non-translated
space, cacheable

0x00000000

0x80000000

0xA0000000

0xC0000000

0xE0000000

0xFFFFFFFF

P0 / U0

P1

P2

P3

P4

2GB physical address
space

Virtual address space

512MB physical address
space

0x00000000

0x80000000

0xE0000000

0xFFFFFFFF

0x20000000

Physical address space
Segment

translation
50
32001A–AVR32–06/06

AVR32

AVR32
the same physical address. In other words, the Virtual Page Number (VPN) section of the virtual
address uniquely specifies the Physical Frame Number (PFN) section in the physical address.

In private virtual memory, each process has its own virtual memory space. This is implemented
by using both the VPN and the Application Space Identifier (ASID) of the current process when
searching the TLB for a match. Each process has a unique ASID. Therefore, two different pro-
cesses accessing the same VPN won’t hit the same TLB entry, since their ASID is different.
Pages can be shared between processes in private virtual mode by setting the Global (G) bit in
the page table entry. This will disable the ASID check in the TLB search, causing the VPN sec-
tion uniquely to identify the PFN for the particular page.

4.2.2 MMU interface registers
The following registers are used to control the MMU, and provide the interface between the
MMU and the operating system. Most registers can be altered both by the application software
(by writing to them) and by hardware when an exception occurs. All the registers are mapped
into the System Register space, their addresses are presented in Section 2.5 ”System registers”
on page 10. The MMU interface registers are shown in Figure 4-3 on page 52.
51
32001A–AVR32–06/06

Figure 4-3. The MMU interface registers

4.2.2.1 TLB Entry Register High Part - TLBEHI
The content of the TLBEHI and TLBELO registers is loaded into the TLB when the tlbw instruc-
tion is executed. The TLBEHI register consists of the following fields:

• VPN - Virtual Page Number in the TLB entry. This field contains 22 bits, but the number of
bits used depends on the page size. A page size of 1 Kb requires 22 bits, while larger page
sizes require fewer bits. When preparing to write an entry into the TLB, the virtual page
number of the entry to write should be written into VPN. When an MMU-related exception has
occurred, the virtual page number of the failing address is written to VPN by hardware.

• V - Valid. Set if the TLB entry is valid, cleared otherwise. This bit is written to 0 by a reset. If
an access to a page which is marked as invalid is attempted, an TLB Miss exception is
raised. Valid is set automatically by hardware whenever an MMU exception occurs.

• I - Instruction TLB. The I bit is set by hardware when an MMU-related exception occurs,
indicating whether the error was caused by instructions or data. All MMU operations always
use the unified TLB no matter which state the I bit is in.

• ASID - Application Space Identifier. The operating system allocates a unique ASID to each
process. This ASID is written into TLBEHI by the OS, and used in the TLB address match if
the MMU is running in Private Virtual Memory mode and the G bit of the TLB entry is cleared.
ASID is never changed by hardware.

12

VPN ASID

G D

071031

TLBEHI

PFN C B

091031

TLBELO

V

SZAP W

I

8 7 6 5 4 3 2 1

PTBR

031

PTBR

TLBEAR

031

TLBEAR

DLA EM

07831

MMUCR

- DRP-

1

-

213142026 1925

I

3

9 8

N

45

S

TLBARLO

031

TLBARLO

- -

18
52
32001A–AVR32–06/06

AVR32

AVR32
4.2.2.2 TLB Entry Register Low Part - TLBELO
The content of the TLBEHI and TLBELO registers is loaded into the TLB when the tlbw instruc-
tion is executed. None of the fields in TLBELO are altered by hardware. The TLBELO register
consists of the following fields:

• PFN - Physical Frame Number to which the VPN is mapped. This field contains 22 bits, but
the number of bits used depends on the page size. A page size of 1 Kb requires 22 bits, while
larger page sizes require fewer bits. When preparing to write an entry into the TLB, the
physical frame number of the entry to write should be written into PFN.

• C - Cacheable. Set if the page is cacheable, cleared otherwise.

• G - Global bit used in the address comparison in the TLB lookup. If the MMU is operating in
the Private Virtual Memory mode and the G bit is set, the ASID won’t be used in the TLB
lookup.

• B - Bufferable. Set if the page is bufferable, cleared otherwise.

• AP - Access permissions specifying the privilege requirements to access the page. The
following permissions can be set, see Table 4-2:

• SZ - Size of the page. The following page sizes are provided, see Table 4-3:

• D - Dirty bit. Set if the page has been written to, cleared otherwise. If the memory access is a
store and the D bit is cleared, an Initial Page Write exception is raised.

• W - Write through. If set, a write-through cache update policy should be used. Write-back
should be used otherwise. The bit is ignored if the cache only supports write-through or write-
back.

Table 4-2. Access permissions implied by the AP bits

AP[2:0] Privileged mode Unprivileged mode

000 Read None

001 Read / Execute None

010 Read / Write None

011 Read / Write / Execute None

100 Read Read

101 Read / Execute Read / Execute

110 Read / Write Read / Write

111 Read / Write / Execute Read / Write / Execute

Table 4-3. Page sizes implied by the SZ bits

SZ[1:0] Page size Bits used in VPN Bits used in PFN

00 1 Kb TLBEHI[31:10] TLBELO[31:10]

01 4 Kb TLBEHI[31:12] TLBELO[31:12]

10 64 Kb TLBEHI[31:16] TLBELO[31:16]

11 1 Mb TLBEHI[31:20] TLBELO[31:20]
53
32001A–AVR32–06/06

4.2.2.3 Page Table Base Register - PTBR
This register points to the start of the page table structure. The register is not used by hardware,
and can only be modified by software. The register is meant to be used by the MMU-related
exception routines.

4.2.2.4 TLB Exception Address Register - TLBEAR
This register contains the virtual address that caused the most recent MMU-related exception.
The register is updated by hardware when such an exception occurs.

4.2.2.5 MMU Control Register - MMUCR
The MMUCR controls the operation of the MMU. The MMUCR has the following fields:

• DRP - Data TLB Replacement Pointer. DRP points to the TLB entry to overwrite when a new
entry is loaded by the tlbw instruction. The DRP field is incremented automatically by
hardware upon every tlbw instruction. If DRP wraps around after such an incrementation,
DRP is set to the value indicated by DLA. The DRP field can also be written by software,
allowing the exception routine to implement a replacement algorithm in software. The DRP
field is 5 bits wide, to support 32 entries in the UTLB.
When a DTLB protection exception, DTLB modified exception, or ITLB protection exception
occurs on a valid page, the DRP is set to the index of that page.

• DLA - Data TLB Lockdown Amount. Specified the number of locked down TLB entries. All
TLB entries from entry 0 to entry (DLA-1) are locked down. If DLA equals zero, no entries are
locked down. A DLA setting does not prevent the programmer from modifying an entry in the
TLB. DLA is only used when the tlbw autoincrement of DRP causes DRP to wrap.

• S - Segmentation Enable. If set, the segmented memory model is used in the translation
process. If cleared, the memory is regarded as unsegmented. The S bit is set after reset.

• N - Not Found. Set if the entry searched for by the TLB Search instruction (tlbs) was not
found in the TLB.

• I - Invalidate. Writing this bit to one invalidates all TLB entries. The bit is always read as zero.

• M - Mode. Selects whether the shared virtual memory mode or the private virtual memory
mode should be used. The M bit determines how the TLB address comparison should be
performed, see Table 4-4.

• E - Enable. If set, the MMU page translation is enabled. If cleared, no page translation is
performed.

4.2.2.6 TLB Accessed Register HI - TLBARHI
TLBARHI is not implemented since only 32 TLB entries are present.

Table 4-4. MMU mode implied by the M bit

M Mode

0 Private Virtual Memory

1 Shared Virtual Memory
54
32001A–AVR32–06/06

AVR32

AVR32
4.2.2.7 TLB Accessed Register LO - TLBARLO
The TLBARLO register is a 32-bit register with 32 1-bit fields. Each of these fields contain the
Accessed bit for the corresponding UTLB entry. Bit 0 in TLBARLO correspond to UTLB entry 0,
bit 31 in TLBARLO correspond to UTLB entry 32.

Note: The contents of TLBARLO are reversed to let the Count Leading Zero (CLZ) instruction be
used directly on the contents of the registers. E.g. if CLZ returns the value four on the contents
of TLBARLO, then item four is the first unused item in the TLB.

4.2.3 Page Table Organization
The MMU leaves the page table organization up to the OS software. Since the page table han-
dling and TLB handling is done in software, the OS is free to implement different page table
organizations. It is recommended, however, that the page table entries (PTEs) are of the format
shown in Figure 4-4. This allows the loaded PTE to be written directly into TLBELO, without the
need for reformatting. How the PTEs are indexed and organized in memory is left to the OS.

Figure 4-4. Recommended Page Table Entry format

4.2.4 TLB organization
The TLB is used as a cache for the page table, in order to speed up the virtual memory transla-
tion process. A single TLB is implemented in AVR32 AP, with 32 entries. The TLB is configured
as shown in Table 4-5.

Figure 4-5. TLB organization

The A bit is the Accessed bit. This bit is set when the TLB entry is loaded with a new value using
the tlbw instruction. It is cleared whenever the TLB matching process finds a match in the spe-
cific TLB entry. The A bit is used to implement pseudo-LRU replacement algorithms.

When an address look-up is performed by the TLB, the address section is searched for an entry
matching the virtual address to be accessed. The matching process is described in chapter
4.2.5.

G DPFN C B

091031

SZAP W

8 7 6 5 4 3 2 1

VPN[21:0] ASID[7:0] G DPFN[21:0] C BV AP[2:0] WEntry 0

VPN[21:0] ASID[7:0] G DPFN[21:0] C BV AP[2:0] WEntry 1

VPN[21:0] ASID[7:0] G WPFN[21:0] C BV AP[2:0] DEntry 2

VPN[21:0] ASID[7:0] G WPFN[21:0] C BV AP[2:0] DEntry 3

VPN[21:0] ASID[7:0] G WPFN[21:0] C BV AP[2:0] DEntry 31

Address section Data section

SZ[1:0]

SZ[1:0]

SZ[1:0]

SZ[1:0]

SZ[1:0]

A

A

A

A

A

55
32001A–AVR32–06/06

The MMU has a 4-entry micro-ITLB, and an 8 entry micro-DTLB connected to the caches. The
caches use the micro-TLBs directly for look-ups. If the desired entry is not found in the small
micro-TLB, the larger common TLB is searched. If the entry is found in the common TLB, it is
copied into the desired micro-TLB and the access is performed. Otherwise, a page miss excep-
tion is issued.

The use of micro-TLBs is completely transparent to the user. Hardware is responsible for replac-
ing entries in the micro-TLB with entries found in the main TLB. Small micro-TLBs are used in
order to increase clock frequency, since performing a look-up in a large TLB is slower than for a
small TLB. If an access misses in the micro-TLB, a clock cycle penalty is imposed for performing
a look-up in the large TLB.

4.2.5 Translation process
The translation process maps addresses from the virtual address space to the physical address
space. The addresses are generated as shown in Table 4-5, depending on the page size
chosen:

Table 4-5. Physical address generation

Page size Physical address

1 Kb PFN[31:10], VA[9:0]

4 Kb PFN[31:12], VA[11:0]

64 Kb PFN[31:16], VA[15:0]

1 Mb PFN[31:20], VA[19:0]
56
32001A–AVR32–06/06

AVR32

AVR32
A data memory access can be described as shown in Table 4-6.

Table 4-6. Data memory access pseudo-code example

If (Segmentation disabled)

If (! PagingEnabled)

PerformAccess(cached, write-back);

else

PerformPagedAccess(VA);

else

if (VA in Privileged space)

if (InApplicationMode)

SignalException(DTLB Protection, accesstype);

endif;

if (VA in P4 space)

PerformAccess(non-cached);

else if (VA in P2 space)

PerformAccess(non-cached);

else if (VA in P1 space)

PerformAccess(cached, writeback);

else

// VA in P0, U0 or P3 space

if (! PagingEnabled)

PerformAccess(cached, writeback);

else

PerformPagedAccess(VA);

endif;

endif;

endif;
57
32001A–AVR32–06/06

The translation process performed by PerformPagedAccess() can be described as shown in
Table 4-7.
Table 4-7. PerformPagedAccess() pseudo-code example

match ← 0;
for (i=0; i<TLBentries; i++)

if (Compare(TLB[i]VPN, VA, TLB[i]SZ, TLB[i]V))

// VPN and VA matches for the given page size and entry valid

if (SharedVirtualMemoryMode or

(PrivateVirtualMemoryMode and (TLB[i]G or (TLB[i]ASID==TLBEHIASID))))

if (match == 1)

SignalException(TLBmultipleHit);

else

match ← 1;
TLB[i]A ← 1;
ptr ← i;
// pointer points to the matching TLB entry

endif;

endif;

endfor;

if (match == 0)

SignalException(DTLBmiss, accesstype);

endif;

if (InApplicationMode)

if (TLB[ptr]AP[2] == 0)

SignalException(DTLBprotection, accesstype);

endif;

endif;

if (accesstype == write)

if (TLB[ptr]AP[1] == 0)

SignalException(DTLBprotection, accesstype);

endif;

if (TLB[ptr]D == 0)

// Initial page write

SignalException(DTLBmodified);

endif;

endif;

if (TLB[ptr]C == 1)

if (TLB[ptr]W == 1)

PerformAccess(cached, write-through);

else

PerformAccess(cached, write-back);

endif;

else

PerformAccess(non-cached);

endif;
58
32001A–AVR32–06/06

AVR32

AVR32
An instruction memory access can be described as shown in Table 4-8.

Table 4-8. Instruction memory access pseudo-code example

If (Segmentation disabled)

If (! PagingEnabled)

PerformAccess(cached, write-back);

else

PerformPagedAccess(VA);

else

if (VA in Privileged space)

if (InApplicationMode)

SignalException(ITLB Protection, accesstype);

endif;

if (VA in P4 space)

PerformAccess(non-cached);

else if (VA in P2 space)

PerformAccess(non-cached);

else if (VA in P1 space)

PerformAccess(cached, writeback);

else

// VA in P0, U0 or P3 space

if (! PagingEnabled)

PerformAccess(cached, writeback);

else

PerformPagedAccess(VA);

endif;

endif;

endif;
59
32001A–AVR32–06/06

The translation process performed by PerformPagedAccess() can be described as as shown in
Table 4-9.

4.3 Operation of the MMU and MMU exceptions
The MMU uses both hardware and software mechanisms in order to perform its memory remap-
ping operations. The following tasks are performed by hardware:

1. The MMU decodes the virtual address and tries to find a matching entry in the TLB.
This entry is used to generate a physical address. If no matching entry is found, a TLB
miss exception is issued.

2. The matching entry is used to determine whether the access has the appropriate
access rights, cacheability, bufferability and so on. If the access is not permitted, a TLB
Protection Violation exception is issued.

Table 4-9. PerformPagedAccess() pseudo-code example

match ← 0;
for (i=0; i<TLBentries; i++)

if (Compare(TLB[i]VPN, VA, TLB[i]SZ, TLB[i]V))

// VPN and VA matches for the given page size and entry valid

if (SharedVirtualMemoryMode or

(PrivateVirtualMemoryMode and (TLB[i]G or (TLB[i]ASID==TLBEHIASID))))

if (match == 1)

SignalException(TLBmultipleHit);

else

match ← 1;
TLB[i]A ← 1;
ptr ← i;
// pointer points to the matching TLB entry

endif;

endif;

endfor;

if (match == 0)

SignalException(ITLBmiss);

endif;

if (InApplicationMode)

if (TLB[ptr]AP[2] == 0)

SignalException(ITLBprotection);

endif;

endif;

if (TLB[ptr]AP[0] == 0)

SignalException(ITLBprotection);

endif;

if (TLB[ptr]C == 1)

PerformAccess(cached);

else

PerformAccess(non-cached);

endif;
60
32001A–AVR32–06/06

AVR32

AVR32
3. If any other event arises that requires software intervention, an appropriate exception is
issued.

4. If the correct entry was found in the TLB, and the access permissions were not violated,
the memory access is performed without any further software intervention.

The following tasks must be performed by software:

1. Setup of the MMU hardware by initializing the MMU-related registers and data struc-
tures if needed.

2. Maintenance of the TLB structure. TLB entries are written, invalidated and replaced by
means of software. A tlbw instruction is included in the instruction set to support this.

3. The MMU may generate several exceptions. Software exception handlers must be writ-
ten in order to service these exceptions.

4.3.1 The tlbw instruction
The tlbw instruction is implemented in order to aid in performing TLB maintenance. The instruc-
tion copies the contents of TLBEHI and TLBELO into the TLB entry pointed to by the DTLB
Replacement Pointer (DRP) in the MMU Control Register. DRP is automatically incremented by
hardware in order to implement a TLB replacement algorithm in hardware. Software may update
DRP before executing tlbw in order to implement a software replacement algorithm.

4.3.2 TLB synonyms
The caches in the AVR32 AP system are virtually indexed but physically tagged. This allows a
cache access to start before the MMU translation has completed, but puts some restrictions on
which address translations can be performed.

If using pages smaller than 1/4th of the cache size, it is possible that the virtual address and the
physical address could map to different places in the cache. To avoid unpredictable behaviour,
the OS must ensure that no translations change address bits that are lower than 1/4th cache
size.

This means that all page translation must fulfill the following restriction:

AddressPhysical modulo (Cache Size / 4) = AddressVirtual modulo (Cache Size / 4)

For cache sizes up to 16 kB, this is only relevant for 1kB MMU pages. For 32kB caches, this is
also relevant for 4kB pages.

Example 1: On a system with 8kB caches, virtual and physical address must be the same mod-
ulo 2 kB. If using 1kB pages, the OS must ensure that bit 10 of the address is not changed by
the translation.

Example 2: On a system with 16kB caches, virtual and physical address must be the same mod-
ulo 4 kB. If using 1kB pages, the OS must ensure that bit 10 and 11 of the address are not
changed by the translation.

4.3.3 MMU exception handling
This chapter describes the software actions that must be performed for MMU-related excep-
tions. The hardware actions performed by the exceptions are described in detail in Section
3.11.1 ”Description of events in AVR32 AP” on page 35.
61
32001A–AVR32–06/06

4.3.3.1 ITLB / DTLB Multiple Hit
If multiple matching entries are found when searching the TLB, or matching entries are found in
a segment translated area, this exception is issued. This situation is a critical error, since mem-
ory consistency can no longer be guaranteed. The exception hardware therefore jumps to the
reset vector, where software should execute the required reset code. This exception is a sign of
erroneous code and is not normally generated.

The software handler should perform a normal system restart. However, debugging code may
be inserted in the handler.

4.3.3.2 ITLB / DTLB Miss
This exception is issued if no matching entries are found in the TLB, or when a matching entry is
found with the Valid bit cleared.

1. Examine the TLBEAR and TLBEHI registers in order to identify the page that caused
the fault. Use this to index the page table pointed to by PTBR and fetch the desired
page table entry.

2. Use the fetched page table entry to update the necessary bits in TLBEHI and TLBELO.
The following bits must be updated, not all bits apply to ITLB entries: V, PFN, C, G, B,
AP[2:0], SZ[1:0], W, D.

3. The replacement pointer in MMUCR[DRP] may be written to manually choose which
entry to replace.

4. Execute the tlbw instruction in order to update the TLB entry.

5. Finish the exception handling and return to the application by executing the rete
instruction.

4.3.3.3 ITLB / DTLB Protection Violation
This exception is issued if one of the following occur:

• Access to a privileged segment in application mode.

• Access to a page translated area, and the access permissions on the matching page does
not allow that type of access. MMUCR[DRP] is updated to point to the matching TLB entry.

Software must examine the TLBEAR and TLBEHI registers in order to identify the instruction
and process that caused the error. Corrective measures like terminating the process must then
be performed before returning to normal execution with rete.

4.3.3.4 DTLB Modified
This exception is issued if a valid memory write operation is performed to a page that has never
been written before. This is detected by the Dirty-bit in the matching TLB entry reading zero.

1. Examine the TLBEAR and TLBEHI registers in order to identify the page that caused
the fault. Use this to index the page table pointed to by PTBR and fetch the desired
page table entry.

2. Set the Dirty bit in the read page table entry and write this entry back to the page table

3. Use the fetched page table entry to update the necessary bits in TLBEHI and TLBELO.
The following bits must be updated: V, PFN, C, G, B, AP[2:0], SZ[1:0], W, D.

4. The TLBEHI[I] register is cleared by hardware to indicate that it was a data access, and
MMUCR[DRP] is updated to point to the matching TLB entry.

5. Execute the tlbw instruction in order to update the TLB entry.

6. Finish the exception handling and return to the application by executing the rete
instruction.
62
32001A–AVR32–06/06

AVR32

AVR32
5. Prefetch Unit

5.1 Instruction buffer
The instruction buffer is implemented as a 96-bit FIFO queue, holding 12 byte-sized entries. The
buffer can hold either Java or RISC instructions. The instruction at the front of the queue is
issued to the ID stage at each clock cycle. The buffer detects the length of this instruction, and
shifts the queue the appropriate amount. The tail of the queue is filled with instructions from the
instruction cache. Instructions are placed in the buffer as soon as the queue has vacant slots. If
the queue is empty, or the instruction at the head of the queue is only partially fetched, the ID
stage may need to stall until the entire instruction is available.

The queue can contain instructions of different length. The instruction at the front of the queue is
always assumed to be a valid, aligned and complete instruction. If this condition fails, the hard-
ware would be unable to determine the instruction boundary. This is necessary in order to
separate between instructions and decide where in the buffer an instruction starts and ends.

The instruction buffer has the following format:

Figure 5-1. Instruction buffer.

5.1.1 Instruction buffer fill
If the instruction buffer is non-empty, fetched instructions will always reside at sequential
addresses of the instructions already in the buffer. In this case, no special concerns are taken. If
the instruction buffer has been flushed and is empty, the loaded word must be rotated in such a
way that the addressed instruction is placed at the front of the instruction queue. If the target
address is not word-aligned, the most significant bytes in the fetched word are discarded. In
order to efficiently execute branch instructions, the branch targets for extended branch target
instructions should be aligned. This will in many cases allow the target instruction to be fetched
and executed without pipeline stalls.

A dedicated fetch address adder generates addresses to fetch from the instruction cache for
sequential instruction flow.

5.1.2 Flushing of the instruction buffer
The instruction buffer is flushed in the following circumstances:

• Entry into an exception routine

• Execution of an instruction with PC as target register

• Excecution of an unpredicted branch

• Detection of a mispredicted branch

• A procedure return address is popped from the return address stack.

Instruction queue

in
st

ru
ct

io
n

63
32001A–AVR32–06/06

5.1.3 Instruction forwarding
If for some reason the instruction buffer is empty, the fetched instruction will be forwarded past
the fetch queue and into ID as soon as it is fetched. This forwarding is done only when it can be
ensured that the entire instruction is contained in the fetched word. This is ensured if the 2 least
significant bits of the PC of the desired instruction equal 00. If the bits are 10, the fetched instruc-
tion must pass via the instruction buffer. This will impose a 1-cycle penalty on the case where
the addressed instruction is a compact instruction, but is done for critical path simplification.
Instruction forwarding is done only in RISC mode, no instruction forwarding is done in Java
mode.

5.2 Branch prediction

5.2.1 Functionality
AVR32 AP implements special hardware in order to minimize the penalty from mispredicted
branches. A branch target buffer (BTB) is used in order to record information about the outcome
of encountered branches. This information is used to predict the outcome of branches based on
the recorded history of the branch. The hardware is able to start fetching instructions from the
predicted path, so that no branch penalty is experienced if the prediction was correct. If the pre-
diction was wrong, the pipeline will have to be flushed and execution resume at the correct path.

If prediction information about an encountered branch is contained in the BTB, hardware will in
many cases be able to fold the branch instruction with the following instruction. In this process,
the branch instruction is removed from the execution stream and its condition codes are passed
on to the following instruction. This instruction is sent down the pipe together with the condition
codes of the branch. If the branch was predicted correctly, the folded instruction is allowed to
complete. Otherwise, the folded instruction is flushed from the pipeline and execution continues
from the alternate branch path.

Branch prediction is enabled or disabled according to the Branch Prediction Enable (BE) bit in
the CPUCR system register. Before enabling or disabling the BTB, it must be invalidated. No
branches should be executed between the BTB invalidate and the BTB enable or disable.

Branch prediction is invisible to the programmer. Hardware makes sure that the program exe-
cutes correctly regardless of a branch being predicted or not, and the correctness of the
prediction.
64
32001A–AVR32–06/06

AVR32

AVR32
5.2.2 Predictable instructions
The following instructions are predictable, and may be placed in the BTB.

5.2.3 Foldable instructions
All instructions can be folded into a branch instruction, except for instructions that are predicted
by the BTB. These instructions are listed in Table 5-1. In other words, br {k8, k21} and rjmp {k10,
k21} can not be folded together with any of the instructions listed in Table 5-1. The three call
instructions listed in the table can not fold into any other instructions.

All Java branches can be predicted and can be merged as described in the Java Technical
Reference.

5.2.4 Branch target buffer
The branch target buffer (BTB) is a n-entry direct mapped cache. The indexing function used is
index = fetchadr[n+2:2]. This function is expected to present a good hashing function into the
cache, distributing competing entries evenly into the cache. Note that bits [n+2:2] in the instruc-
tion address is used for BTB lookup. This will map two sequential compact branches to the same
BTB entry. This should not reduce performance, as the case where two sequential branches
both are predicted taken is meaningless. The other bits in the instruction address is used as
cache tag fields.

Each line in the BTB cache cache has the following format. The Ext field indicates if the branch
instruction is an extended instruction.

Figure 5-2. BTB entry.

The history bits are implemented as a 2-bit saturating counter. When a new branch is detected,
the counter is initialized to Strong Taken. The FSM has the following coding and transitions:

Table 5-1. Predictable instructions

Instruction
Conditiona
l Mode

Can fold other
instructions

Can merge with other
instructions

br k8 Yes RISC Yes -

br k21 Yes RISC Yes -

rjmp k10 No RISC Yes -

rjmp k21 No RISC Yes -

rcall k10 No RISC No -

rcall k21 No RISC No -

if{cond} Yes Java - Yes

ifcmp{cond} Yes Java - Yes

Branch Address Target address History[1:0]

Tag Data

Valid Ext
65
32001A–AVR32–06/06

Figure 5-3. BTB entry.

5.2.5 BTB update policy
A new entry is stored in the BTB when the following conditions are met:

• The branch instruction or the branch-folded instruction has executed, i.e. left A1.

• The branch was taken

• The branch is not currently in the BTB

• Branch prediction is enabled

Once a branch is stored in the BTB, the history bits are updated upon every execution of the
branch. When a new branch is detected, the counter is initialized to Strong Taken, and the Valid
bit is set.

5.2.6 Reset
Branch prediction is enabled after reset. All valid bits in the BTB are cleared after reset.

5.2.7 Invalidation
The BTB is invalidated when one or more of the following events occur:

• Reset

• The instruction cache is invalidated

• The ASID part of the TLBEHI system register is written

• The BTB Invalidate (BI) bit in the CPUCR system register

The application may manually need to invalidate the BTB after executing self-modifying code, in
order to avoid false predictions.

Important note:

As mentioned above, the BTB is invalidated when the ASID field in TLBEHI is written. As shown
in Table 2-2, “System Registers implemented in AVR32 AP,” on page 10, TLBEHI is accessed
through the TCB bus. This implies that several instructions can be present upstream in the pipe-
line when TLBEHI is written. However, writing to ASID does not cause the pipeline to be flushed.
The user must therefore ensure that predicted instructions is not fetched and sent down the

Weak Not Taken
00

Weak Taken
10

Strong Not Taken
01

Strong Taken
11

Branch taken

Branch not taken

Branch not taken

Branch not taken

Branch taken

Branch not taken

Branch taken

Branch taken
66
32001A–AVR32–06/06

AVR32

AVR32
pipeline before the write to ASID has invalidated the BTB. Failing to do so may cause UNDE-
FINED behaviour. This error can be avoided by one of the following methods:

• Scheduling the code executed after the write to TLBEHI, such that no predictable instructions
are fetched before the BTB has been invalidated by the write to TLBEHI, or

• Forcing a pipeline flush by issuing an unpredicted change-of-flow instruction after the write to
the TLBEHI, so that the pipeline is flushed after the BTB has been invalidated. This can be
done by the following code sequence:

mtsr AVR32_TLBEHI, r0 ; Update TLBEHI with new value present in r0

sub pc, -2 ; Not predictable COF insn flushing the pipe

5.2.8 Disabling
Branch prediction is disabled by clearing the Branch Prediction Enable (BE) bit in CPUCR.
67
32001A–AVR32–06/06

5.2.9 Return stack
The return stack is a 4-entry circular buffer, holding the return addresses for call instructions.
The ID stage controls the pushing of return addresses to the return stack. When A1 detects a
rcall, icall, mcall or acall instruction, the address of the instruction following the call (the instruc-
tion in IS) is pushed. This is the return address.

There are two types of return instructions: Predicted taken and predicted not taken. The predic-
tion is statically based on the instruction opcode, as shown in Table 5-2. Predicted taken return
instructions will cause a return stack pop and execution will continue as soon as possible from
the new path. Predicted not taken return instructions will not cause a return stack pop until it has
reached the A1 stage and the condition is evaluated to be true.

When ID detects a predicted taken return instruction, the top-of-stack element is popped and
used as an instruction fetch address. The return stack is circular, and overflow is handled by
hardware by means of a saturating valid-element counter. If a predicted taken return instruction
is encountered and the return stack is empty, the return instruction will still be executed cor-
rectly, but with a cycle penalty.

The instructions in Table 5-2 are considered return-instructions. No other instructions or mecha-
nisms should be used to return from call-instructions. Violation of this rule will place hardware in
an undetermined state. If the user wants to return from call-instructions by other means than the
instructions listed in Table 5-2, the return stack must be disabled by clearing the Return Stack
Enable (RE) bit in CPUCR. Another approach is to flush the return stack before returning by exe-
cuting the flush return stack (frs) instruction.

5.2.10 Reset
The return stack is enabled and empty after reset.

5.2.11 Disabling
The return stack is disabled by clearing the Return Stack Enable (RE) bit in CPUCR. Disabling
the stack will reset the element counter, removing all entries.

Table 5-2. Predictable return instructions

Instruction Prediction

mov pc, lr Taken

ret, cond == AL Taken

ret, cond != AL Not taken

popm with PC in register list Taken

ldm with PC in register list Taken
68
32001A–AVR32–06/06

AVR32

AVR32
6. Instruction Cache
The AVR32 AP uses an instruction cache in order to increase performance and lower power
consumption. The cache has the following features:

• Virtually indexed, physically tagged.

• 4-way Set-associative.

• 32-byte line size.

• Least recently used (LRU) allocate-on-read-miss line replacements.

• Easily portable using standard single and two port RAMs.

• Lockable on a per-line basis.

• Cacheable or uncacheable operation configurable on a per-page basis through the MMU.

• All accesses are subject to MMU protection and translation checks.

• Powerful cache maintenance operations, allowing many common cache operations to be
performed through a single instruction.

The number of sets in the instruction cache is specified in the CONFIG1 register described in
chapter 2.6. The total cache size is (number of sets * line size * associativity), i.e. (128 * number
of sets) bytes.

6.1 Behaviour
Reset invalidates all entries in the ICache.

All instruction fetches will result in an ICache lookup and will return the cached data if the
requested address is found in the cache (a cache hit). If data are found in the cache, they are
returned even if the memory area is marked as uncacheable. If the address is not found (a
cache miss) and the address is in a cacheable area, a burst read access is started on the sys-
tem bus in order to read an entire cache line of data. The read data will be written to an unlocked
line according to a LRU scheme, possibly replacing another line.

If a cache miss is in an uncacheable area, a single non-sequential read is started on the system
bus.

If the MMU is disabled or the fetch is from an unmapped segment, the cacheability of memory
areas is predefined as shown in the architecture manual. If the MMU is enabled and the fetch is
from a mapped segment, the cacheability of memory areas is controlled through the C bit in the
TLB.

If the MMU signals an exception, the cache will abandon the fetch. The exception is handled by
the CPU as soon as it knows if the instruction should really be executed, but is ignored if it turns
out to be a needlessly prefetched instruction.

There is no hardware support for self-modifying code. If any memory that may be cached in the
ICache is modified during execution, the programmer is responsible for ensuring ICache consis-
tency. See chapter 6.3 for details on how to do this.
69
32001A–AVR32–06/06

6.2 Cache operations
All cache operations are initiated through the CACHE instruction. See the Instruction Set
Description for the format of the CACHE instruction.

The following cache operations are defined for the ICache:

6.2.1 The Flush operation
The flush operation is used to reset the contents of the cache. This is done automatically at
reset, and may be used at the programmers discretion at other times. The parameter is used to
select one of the following flush modes:

6.2.2 The Invalidate operation
The invalidate operation will try to invalidate the line containing the address given by the param-
eter. The address is treated as a virtual address, and is translated to a physical address by the
MMU. If the line exists in the cache, it is marked as invalid and unlocked. Otherwise nothing is
done. If any MMU exceptions happen, the operation is silently aborted.

6.2.3 The Lock operation
The lock operation will try to lock the line containing the address given by the parameter into the
cache. The address is treated as a virtual address, and is translated to a physical address by the
MMU. If the line exists in the cache, the lock bit is set. If the line does not exist in the cache, it will
be fetched from the bus and locked - even if the area is uncacheable. If any exceptions happen
- MMU or bus exceptions - the operation is silently aborted. If the requested address maps to a
set with four lines already locked, the operation is silently aborted.

Table 6-1. ICache operations

Op[4:3] Op[2:0] Operation Parameter

00 000 Flush Flush mode

00 001 Invalidate Virtual Address

00 010 Lock Virtual Address

00 011 Unlock Virtual Address

00 100 Prefetch Virtual Address

00 101 Reserved N/A

00 110 Reserved N/A

00 111 Reserved N/A

Other xxx Reserved for other caches N/A

Table 6-2. ICache flush modes

Mode Name Description

0 Flush all All lines are invalidated and unlocked, including locked ones.

1 Flush unlocked Invalidate all unlocked lines.

2 Unlock all All locked lines are unlocked, but no lines are invalidated.

Others Undefined Should not be used - operation is undefined.
70
32001A–AVR32–06/06

AVR32

AVR32
6.2.4 The Unlock operation
The unlock operation will try to unlock the line containing the address given by the parameter.
The address is treated as a virtual address, and is translated to a physical address by the MMU.
If the line exists in the cache and is locked, it is unlocked. Otherwise nothing is done. If any MMU
exceptions happen, the operation is silently aborted.

6.2.5 The Prefetch operation
The prefetch operation will try to load the line containing the address given by the parameter into
the cache. The address is treated as a virtual address, and is translated to a physical address by
the MMU. If the line exists in the cache, nothing is done. If the line does not exist in the cache, it
will be fetched from the bus - even if the area is uncacheable. If any exceptions happen - MMU
or bus exceptions - the operation is silently aborted.

6.3 Memory coherency
Whenever code is modified in some way, e.g. through self-modifying code, there is a chance
that the instruction cache may hold cached copies of the old instructions. To ensure correct exe-
cution of the new code, the user must manually force the caches to update. The procedures for
doing so are described below.

6.3.1 DMA of program code
If some peripheral updates program code through DMA to memory, the instruction cache may
hold cached copies of the old code. The old code must be manually flushed from the instruction
cache by following these steps:

1. Flush the entire instruction cache, as described in chapter 6.2.1, or

2. Flush only the affected memory areas through one or more Invalidate operations, as
described in chapter 6.2.2.

3. Jump to the new code using an unpredicted branch

Example:

mov R0, 0

cache ICACHE_FLUSH, R0[ICACHE_INVALIDATE_ALL]

mov PC, new_code_label

6.3.2 Self-modifying code
If the CPU updates the code through writing to memory, the updated code may be buffered in
the data cache or the write buffer, and the instruction cache may hold cached copies of the old
code. The caches must be manually updated by following these steps:

1. Clean the entire data cache, as described in TODO, or

2. Clean only the affected memory areas through one or more Clean operations, as
described in TODO.

3. Empty the write buffer, as described in TODO

4. Flush the entire instruction cache, as described in chapter 6.2.1, or

5. Flush only the affected memory areas through one or more Invalidate operations, as
described in chapter 6.2.2.

6. Jump to the new code using an unpredicted branch
71
32001A–AVR32–06/06

Example:

Mov R0, 0

cache DCACHE_FLUSH, R0[DCACHE_CLEAN_ALL]

sync 0

cache ICACHE_FLUSH, R0[ICACHE_INVALIDATE_ALL]

mov PC, new_code_label

6.4 Debug access to ICache memories
It is possible to directly access the memories in the ICache through the SAB bus.

The ICache maps read or write requests to the cache memories by decoding the address as
shown below:

Figure 6-1. ICache direct access addressing.

Note that the ICache only supports word-aligned 32-bit accesses. Other sizes or alignments may
cause undefined behaviour.

Table 6-3. ICache direct access address fields

Field Size (bits) Description

T/D 1 Access tag memories if set, data memories if cleared

Way 2 Selects which line in a set to access.

Set log2(number of sets) Selects which set to access.

Byte 5
Selects which byte of the line to access.
Ignored if accessing tag memory.

Ignored T/D Way Set Byte

31 0
72
32001A–AVR32–06/06

AVR32

AVR32
6.4.1 Format of tag memory
Each word in the tag memory is formatted as shown below:

Figure 6-2. ICache direct access tag format.

Table 6-4. ICache direct access tag fields

Field Size (bits) Description

Tag 27 - log2(number of sets)
The most significant bits of the physical address of the data
in the specified line.

N/A 30 - tag size
Not used.
Reads are undefined, writes are ignored.

Lock 1 Set if the line is locked, cleared otherwise.

Valid 1 Set if the line is valid, cleared otherwise.

Tag N/A Lock Valid

31 012
73
32001A–AVR32–06/06

7. Data Cache and Write Buffer
The AVR32 AP uses a data cache and a write buffer in order to increase performance and
reduce power consumption. The data cache has the following features:

• Virtually indexed, physically tagged.

• 4-way set-associative.

• 32-byte line size

• Least recently used allocate-on-read-miss line replacements.

• Synthesizable design using standard single and two port RAMs.

• Lockable on a per-line basis.

• Cacheable or uncacheable operation configurable on a per-page basis through the MMU.

• Write-back or write-through operation configurable on a per-page basis through the MMU.

• All accesses are subject to MMU protection and translation checks.

• Powerful cache maintenance operations, allowing many common cache operations to be
performed through a single instruction.

The number of sets in the data cache is specified in the CONFIG1 register described in chapter
2.6. The total cache size is (number of sets * line size * associativity), i.e. (128 * number of sets)
bytes.

The write buffer has the following features:

• Bufferable or unbufferable writes configurable on a per-page basis through the MMU.

• Does write combining on bufferable writes.

• Holds up to 32 bytes of buffered data, plus up to 32 bytes of data that are about to be written
to the bus.

• Can be manually flushed by using the SYNC instruction.

7.1 Data cache behaviour
Reset invalidates all entries in the DCache.

All reads result in an DCache lookup and will return the cached data if the requested address is
found in the cache (a cache hit). If the address is not found (a cache miss) and the address is in
a cacheable area, a burst read access is started on the system bus in order to read an entire
cache line of data. The read data will be written to an unlocked line according to a round-robin
scheme, possibly replacing another line.

If the cache miss is in an uncacheable area, a single non-sequential read is started on the sys-
tem bus.

All writes result in a DCache lookup and will update the cached data if the requested address is
found in the cache (a cache hit). If the address is not found (a cache miss) or the address is con-
figured as write-through, the write will also update the write buffer (if bufferable) or be written to
the bus (if unbufferable).

If the MMU is disabled or the fetch is from an unmapped segment, the cacheability, bufferability
and write-back/write-through attributes of memory areas are predefined as shown in the archi-
tecture manual. If the MMU is enabled and the access is to a mapped segment, the attributes
are configured through the C, B and W bits in the TLB.
74
32001A–AVR32–06/06

AVR32

AVR32
7.2 Write buffer behaviour
Reset invalidates the entire write buffer.

Writes are separated into "write now" (unbufferable) and "write later" (bufferable) writes. Multiple
bufferable writes to the same aligned 32-byte line may be merged for performance, and reads
may forward buffered data directely from the buffer. Bufferable writes will stay in the write buffer
until forced out when one of the following occur:

A buffered write is to another 32-byte line than the one currently in the buffer. The old data are
moved to the "write now" part of the buffer, and the new data are kept as "write later".

A read finds only part of the requested data in the write buffer, e.g a word read finds one byte of
the word in the write buffer. The buffered data are moved to the "write now" part of the buffer,
and the read is qued until the write has completed. This ensures data consistency.

A SYNC instruction is executed. All data in the write buffer are written to the bus.

Unbufferable writes are put in the "write now" part of the buffer. These are written to the bus at
the earliest oportunity, in the same order as issued, and without any write combining. These
data cannot be forwarded by reads, and are always performed before any read misses.

7.3 Cache and write buffer operations

7.3.1 The Cache instruction
The cache instruction can be used to send special commands to the cache with a 32-bit param-
eter. Se the architecture reference manual for description of the instruction. The following
commands are currently defined:

Table 7-1. Cache instruction parameters

Op[4:3] Op[2:0] Operation Parameter

01 000 Flush Flush Mode

01 001 Lock Virtual Address

01 010 Unlock Virtual Address

01 011 Invalidate Virtual Address

01 100 Clean Virtual Address

01 101 Clean & Invalidate Virtual Address

01 110 Reserved for future use Undefined

01 111 Reserved for future use Undefined

Other xxx Reserved for other caches N/A
75
32001A–AVR32–06/06

7.3.2 Flush
The flush operation is used to reset the contents of the cache. While a flush is active, all other
operations are stalled. The parameter is used to select one of the following flush modes:

7.3.3 Lock
The lock operation will try to lock the line containing the address given by the parameter into the
cache. If the line exists in the cache, the lock bit is set. If the line does not exist in the cache, it
will be fetched from the bus and locked - even if the area is uncacheable. If any MMU exceptions
happen, the operation is silently aborted. If the requested address maps to a set with four lines
already locked, the operation is silently aborted.

7.3.4 Unlock
The unlock operation will try to unlock the line containing the address given by the parameter. If
the line exists in the cache and is locked, it is unlocked. Otherwise nothing is done. If any MMU
exceptions happen, the operation is silently aborted.

If the line referred to is still being fetched from the bus, the unlock operation will complete but the
line could be locked after the unlock completes. This is only possible if a lock is closely followed
by an unlock to the same line - in this case use the sync instruction to make sure any pending
locks are completed before the unlock is performed.

7.3.5 Invalidate
The invalidate operation will try to invalidate the line containing the address given by the param-
eter. If the line exists in the cache, it is marked as invalid. Otherwise nothing is done. If the line
has dirty data, these updates will be lost! If any MMU exceptions happen, the operation is
silently aborted.

If the line referred to is still being fetched from the bus, the invalidate operation will complete but
the line could become valid after the invalidate completes. This is only possible if a read or
prefetch is closely followed by an invalidate to the same line - in this case use the sync instruc-
tion to make sure any pending reads are completed before the invalidate is performed.

7.3.6 Clean
The invalidate operation will try to clean the line containing the address given by the parameter.
If the line exists in the cache and has dirty data, it will be written to the write buffer and marked

Table 7-2. Flush modes

Mode Name Description

0 Invalidate all
All lines are invalidated and unlocked.

Dirty lines are not cleaned!

1 Invalidate unlocked
All unlocked lines are invalidated.

Dirty lines are not cleaned!

2 Clean all All lines are cleaned, but no lines are invalidated.

3 Clean Unlocked All unlocked lines are cleaned, but no lines are invalidated.

4 Clean & Invalidate all All lines are cleaned, invalidated and unlocked.

5 Clean & Invalidate unlocked All unlocked lines are cleaned and invalidated.

6 Unlock all All locked lines are unlocked.

Others Undefined Should not be used - operation is undefined.
76
32001A–AVR32–06/06

AVR32

AVR32
as clean. If the write buffer is full the instruction will stall. If the line is not found or the line is
clean, nothing is done. If any MMU exceptions happen, the operation is silently aborted.

7.3.7 Clean & Invalidate
This operation performs a clean (as described in chapter 7.3.6) and then a invalidate (as
described in chapter 7.3.5).

7.4 Prefetch instruction
The prefetch operation will try to load the line containing the address given by the parameter into
the cache. If the line exists in the cache, nothing is done. If the line does not exist in the cache, it
will be fetched from the bus - even if the area is uncacheable. If any MMU exceptions happen,
the operation is silently aborted.

7.5 Sync instructions
The sync instruction will flush the write buffer, by forcing it to write any dirty data to the bus. This
can be used to ensure the data in main memory is consistent.

It will also ensure all pending read operations are completed, so e.g. invalidate and unlock oper-
ations are guaranteed to complete correctly.

7.6 Memory mapped cache memories
Both the data and tag memories of the DCache are mapped into the global address space, and
can be accessed by programs or through the SAP or OCD system. This can be used for com-
plex cache control, or simply as a very fast scratch RAM. The base address of the memory map
is IMPLEMENTATION DEFINED, but will always be in an unmapped privileged segment. The
size of the memory mapped area is always twice the cache size.

This mapped area is not available through the instruction cache or from peripherals, so it is not
possible to run programs from this area, or DMA data to or from it.

Note: Incorrect values written to the memory mapped cache memories may cause data corrup-
tion or unpredictable behaviour.

The DCache maps read or write requests to the cache memories by decoding the address as
shown below:

Figure 7-1. DCache direct access addressing.

Base T/D Way Set Byte

31 0
77
32001A–AVR32–06/06

The DCache data memories supports any access that is aligned to the size of the access. The
tag memories only supports aligned 32-bit accesses, other accesses are undefined.

7.6.1 Format of tag memory
In the tag part of the memory mapped area the following data can be found for each line:

Table 7-3. DCache direct access address fields

Field Size (bits) Description

Base 26 - log2(number of sets)

Base address of the memory mapped area. Memory
mapped cache access is only enabled if this field
matches the IMPLEMENTATION DEFINED base
address.

T/D 1 Access tag memories if set, data memories if cleared

Way 2 Selects which line in a set to access.

Set log2(number of sets)
Selects which set to access.

Number of sets is (cache size / (associativity * line
size))

Byte 5 Selects which byte of the line to access.

Table 7-4. Memory map tag layout

Word Data

0

Address, lock and valid bits.

The valid bit is bit 0, the lock bit is bit 1, the address bits are the upper n bits where n is 27
- log2(number of sets).

The remaining bits read as zero, and are ignored on writes.

1

Dirty bits.

The lower 8 bits contain one dirty bit per word of data. The word at address zero
correspond to bit zero.

The remaining bits read as zero, and are ignored on writes.

2
Empty.

Read as zero, and is ignored on writes.

3

Replace data.

The lower 6 bits contain the replace data used by the cache for selecting which line to
replace within the set. This data is the same for all lines in a set.

Bits 5:4 hold the index of the most recently used line within the set.
Bits 3:2 hold the index of the second most recently used line within the set.

Bits 1:0 hold the index of the third recently used line within the set.

The least used line within the set, i.e. the one selected for replacement, is the one not
listed in the above fields.

The remaining bits read as zero, and are ignored on writes.

Note: Setting two or more of the above fields to the same index may lead to unpredictable
behaviour.

> 3 Words 0-3 are repeated over the entire line.
78
32001A–AVR32–06/06

AVR32

AVR32
8. Coprocessor interface
The coprocessor interface allows custom peripherals such as graphics coprocessors to be
tightly coupled to the CPU. No hazard detection is performed on coprocessor registers, so soft-
ware must schedule instructions with care so that no hazards exist.

Figure 8-1. The coprocessor pipeline.

Command, operand and address passing to coprocessors is done via a dedicated, pipelined
bus. This bus is called the Tightly Coupled Bus (TCB), and is used by the system register inter-
face as well. Using a bus allows for easy attachment of coprocessors. The simple
synchronization between the coprocessor and the CPU allows the coprocessor clock frequency
to differ from that of the CPU.

The TCB bus is also used for transporting data to and from the external system registers.
Accesses to these registers can be performed by placing an opcode on tcb_cmd, as done for
tlbr, tlbw and tlbs.

8.1 Coprocessor pipeline
The coprocessor interface does not specify any special construction or architecture of the copro-
cessor pipelines. A coprocessor only needs to comply to the rules of the TCB. Special
handshaking signals are implemented so that the coprocessor can stall the CPU pipeline if it is
unable to reply to a request from the CPU.

8.2 TCB specification
The TCB bus is implemented as a pipelined bus in order to achieve maximum performance.
Additionaly, handshaking has been implemented so that slow coprocessors can insert the
required number of wait states. The CPU is the single master on the TCB bus, and all coproces-
sors are slaves. The coprocessors will only respond to transactions issued by the master, and
can never initiate a transfer.

Since the TCB is a pipelined bus, a bus transaction consists of an address phase and a data
transfer phase.

ID IS A1 A2

WB

DA D

TCB BUS
79
32001A–AVR32–06/06

Table 8-1. TCB signals

Name Dir Description

tcb_cmd[7:0] Out

Value Semantic Comment

0 IDLE No TCB activity

1 write.w
CRd on tcb_cprega
Data to coprocessor on tcb_wdataa

2 write.d
CRd+1:CRd on tcb_cprega:tcb_cpregb
Data to coprocessor on
tcb_wdataa:tcb_wdatab

3 read.w
CRs on tcb_cprega

Data from coprocessor on tcb_rdataa

4 read.d
CRs+1:CRs on tcb_cprega:tcb_cpregb

Data from coprocessor on
tcb_rdataa:tcb_rdatab

5 mtsr

SysRegNo[3:0] on tcb_cprega

SysRegNo[7:4] on tcb_cpno

Data to system register on tcb_wdataa

6 mfsr

SysRegNo[3:0] on tcb_cprega

SysRegNo[7:4] on tcb_cpno
Data from system register on tcb_rdataa

7 mtdr
DebugRegNo[3:0] on tcb_cprega
DebugRegNo[7:4] on tcb_cpno

Data to debug register on tcb_wdataa

8 mfdr

DebugRegNo[3:0] on tcb_cprega

DebugRegNo[7:4] on tcb_cpno

Data from debug register on tcb_rdataa

9 tlbr tcb_cpreg* and tcb_cpno not used

10 tlbs tcb_cpreg* and tcb_cpno not used

11 tlbw tcb_cpreg* and tcb_cpno not used

128-
255

COP opcode The opcode of the COP instruction.

tcb_cpno[3:0] Out

Used to address coprocessors or system register blocks. 8 Different
coprocessors and 16 different system register blocks are supported in
AVR32 AP.

Bits 2:0 are used for carrying the coprocessor number for coprocessor
instructions. Bits 3:0 are used for carrying the system register block
address for mt(s,d)r and mf(s,d)r, which is given by SysRegNo[7:4].
80
32001A–AVR32–06/06

AVR32

AVR32
tcb_cprega[3:0],
tcb_cpregb[3:0],
tcb_cpregc[3:0]

Out

Address bus for the three operands required by the coprocessor
instructions. Also used to carry part of the system register address
together with tcb_cpno.

Operat
ion

tcb_cprega tcb_cpregb
tcb_cpre
gc

COP CRd CRx CRy

write.w CRd

write.d CRd+1 CRd

read.w CRs

read.d CRs+1 CRs

mtsr/m
tdr

SysRegNo[3:0]

mfsr/m
fdr

SysRegNo[3:0]

tcb_cpuflushed Out

Asserted by the CPU if the CPU LS pipeline was flushed in the
previous cycle. This typically occurs if a coprocessor memory operation
caused an address exception in the D stage. The coprocessor must be
informed that any data output from the data cache will be invalid so that
any pending coprocessor load instructions must be flushed. The
coprocessor or system register block must take appropriate action in
order to ensure the correct semantic on the TCB bus.

tcb_cpustalled Out
Asserted by the CPU if the CPU LS pipeline was stalled in the previous
cycle. The coprocessor or system register block must take appropriate
action in order to ensure the correct semantic on the TCB bus.

tcb_wdataa[31:0],
tcb_wdatab[31:0]

Out

Data to write to coprocessor. For word transfers, tcb_wdataa contains
the data to transfer, and tcb_wdatab is UNDEFINED. For doubleword
transfers, tcb_wdataa contains the most significant part of the data,
and tcb_wdatab contains the least significant part of the data.

Table 8-1. TCB signals

Name Dir Description
81
32001A–AVR32–06/06

8.3 Connecting coprocessors to the TCB bus
Connecting new coprocessors to the TCB bus is simple. Just assert the bit number in
tcb_present corresponding to the desired coprocessor number, and AND the tcb_ready,
tcb_rdataa and tcb_rdatab signals from the coprocessor together with the same signals from the
other coprocessors. The TCB signals output from the CPU must also be routed to the corre-
sponding inputs on the coprocessor.

8.4 Execution of coprocessor instructions
All coprocessor instructions flow through the LS pipeline. The state machine in the DA stage is
responsible for correct execution of the coprocessor instructions. The coprocessor data transfer
instructions behave very similarly to their corresponding load/store instructions. The main differ-
ence is that data is written/read from the TCB bus instead of the integer register file. The timing

tcb_ready In

Acknowledge signal from the coprocessor slaves. Indicates if the
coprocessor or system register was able to process the command from
the master. If not, the LS pipeline should stall until the tcb_ready signal
is asserted. Each slave connected to the TCB has an individual ready
signal, and all these are AND-ed together to form tcb_ready. All slaves
connected to the TCB should therefore leave their ready signal HIGH
AT ALL TIMES unless they really want to stall the TCB. If one or more
slaves drive their ready signal low, the TCB and LS pipe is stalled.
A TCB slave may only start a stall during the address phase of the TCB
operation. If tcb_ready stays asserted on the first clock edge after the
operation is initiated, tcb_ready must stay asserted until the data is
ready.

tcb_present[7:0] In

Indicates which coprocessors are present on the TCB bus. AVR32
supports 8 coprocessors, and each of the 8 coprocessor addresses is
either in use by a coprocessor or not in use. When attaching a
coprocessor on the TCB bus, the system integrator must assert the
corresponding bit position in the tcb_present bus to 1. The bit position
of unconnected TCB addresses must be disasserted. The tcb_present
bus is used by the ID stage when decoding a coprocessor instruction,
in order to detect whether a coprocessor absent exception should be
triggered.

The tcb_present signal is static, ie. it should not change during
execution.

If bit n asserted, coprocessor n is present. Otherwise, no coprocessor
with address n is present on the TCB bus.

tcb_rdataa[31:0]
tcb_rdatab[31:0] In

Data read from the coprocessor to the CPU. The supported data widths
are word and doubleword. Each slave connected to the TCB has
individual tcb_rdataa and tcb_rdatab outputs, and all these are AND-ed
together to form the tcb_rdataa and tcb_rdatab that is input to the CPU.
All slaves connected to the TCB should therefore leave their
tcb_rdataa and tcb_rdatab outputs HIGH AT ALL TIMES unless they
really want to perform a write to the TCB.
For word transfers, tcb_rdataa contains the data to transfer, and
tcb_rdatab is UNDEFINED. For doubleword transfers, tcb_rdataa
contains the most significant part of the data, and tcb_rdatab contains
the least significant part of the data.

Table 8-1. TCB signals

Name Dir Description
82
32001A–AVR32–06/06

AVR32

AVR32
requirements of the TCB bus must be obeyed. This may require stalling of the LS pipeline for the
required number of clock cycles.

8.4.1 Stalling of the TCB bus and the LS pipeline
An addressed TCB slave may stall the TCB bus and the LS pipeline if it is unable to fulfill the
required TCB timing. The addressed slave can perform this stalling by outputting a logical-0
value on its tcb_ready output. Writing a value of zero on tcb_ready will cause the LS pipeline
and the data cache to stall until tcb_ready is written to one again. When the CPU LS pipeline
stalls, all outputs from the CPU to the TCB bus will remain unchanged.

If the CPU LS pipeline stalls for some reason, the TCB may need to be informed if the LS stall
affects a TCB transfer. The tcb_cpustalled signal is a registered version of the stall signal in the
LS pipeline. If the CPU was stalled in the previous cycle, tcb_cpustalled is asserted. Otherwise,
tcb_cpustalled is disasserted. Since disassertion of tcb_ready will cause the LS pipeline to stall,
tcb_cpustalled will always be high the cycle following a cycle where tcb_ready was low.

8.4.2 Coprocessor operation
The cop instruction issues a command in the form of an opcode and three operand addresses to
the addressed coprocessor. The coprocessor operation only uses the address phase of the bus
transaction, while the data phase is unused and all signals are considered don’t care.

If the CPU stalls immediately after issuing a coprocessor operation, a coprocessor operation
opcode will be present on tcb_cmd for multiple cycles. If the TCB slave needs to avoid the oper-
ation being executed several times, the TCB slave must qualify any coprocessor operation
opcodes with tcb_cpustalled being low.

8.4.3 Writing data to coprocessor
There are several instructions that transfer data to coprocessors. These instructions are: ldc.d,
ldc.w, ldcm.d, ldcm.w, mvrc, mtdr and mtsr. Mtdr and mtsr are not coprocessor instructions, but
use the TCB in a manner very similar to mvrc, and is therefore included here. Data can be trans-
ferred to coprocessor registers in sizes of word and doubleword. The data transferred to the
coprocessor register file is either read from memory or from one of the integer registers in the
CPU.

The ldcm instructions behave similarly to the ldm and popm instructions. The hardware always
try to transfer a doubleword from the cache in order to speed up the data transfer. This is suc-
cessful if the memory pointer is doubleword aligned. Otherwise, a word access is performed
first, then the remaining transfers are performed as doubleword accesses.

The FSM in the DA stage decomposes load of multiple registers into a sequence of load of
words and doublewords. These accesses are pipelined according to the TCB rules, allowing a
bus transfer of word or doubleword per clock cycle.

If the CPU stalls after issuing a TCB write command, tcb_wdataa and tcb_wdatab will contain
the write data for the previous TCB bus cycle. This write data will be present on the bus until the
last cycle where tcb_cpustalled is high. In this cycle, the write data for the stalled TCB write com-
mand will be present on the bus. If the TCB slave needs to avoid that the write data for the
previous TCB command is written to the TCB slave destination registers for the stalled (current)
write, the TCB slave must not update the TCB destination registers when tcb_cpustalled is high.
83
32001A–AVR32–06/06

8.4.4 Reading data from coprocessor
There are several instructions that transfer data from coprocessors. These instructions are:
stc.d, stc.w, stcm.d, stcm.w, mvcr, mfdr and mfsr. Mfdr and mfsr are not coprocessor instruc-
tions, but use the TCB in a manner very similar to mvcr, and is therefore included here. Data can
be transferred from coprocessor registers in sizes of word and doubleword. The data transferred
from the coprocessor register file is either stored to memory or into one of the integer registers in
the CPU.

The stcm instructions behave similarly to the stm and pushm instructions. The hardware always
try to transfer a doubleword to the cache in order to speed up the data transfer. This is success-
ful if the memory pointer is doubleword aligned. Otherwise, a word access is performed first,
then the remaining transfers are performed as doubleword accesses.

The FSM in the DA stage decomposes store of multiple registers into a sequence of store of
words and doublewords. These accesses are pipelined according to the TCB rules, allowing a
bus transfer of word or doubleword per clock cycle.

A TCB slave must take special action if it was read from in the previous cycle, and
tcb_cpustalled gets asserted. In this case, the slave must continue to output the data values it
put on tcb_rdataa and tcb_rdatab in the previous cycle for as long as tcb_cpustalled is asserted,
even though a new command is present on tcb_cmd.

8.5 Timing diagrams

8.5.1 Coprocessor operation

Figure 8-2. COP bus timing.

clock

tcb_cmd COMMAND A COMMAND B COMMAND C

tcb_cpno COP # (A) COP # (B) COP # (C)

tcb_cprega CRd (A) CRd (B) CRd (C)

tcb_cpregb CRx (A) CRx (B) CRx (C)

tcb_cpregc CRy (A) CRy (B) CRy (C)

tcb_cpustalled

tcb_wdataa

tcb_wdatab

tcb_ready

tcb_rdataa

tcb_rdatab
84
32001A–AVR32–06/06

AVR32

AVR32
8.5.2 Writes to coprocessor register file

Figure 8-3. Write to CP timing.

8.5.2.1 Reads from coprocessor register file

Figure 8-4. Read from CP timing.

clock

tcb_cmd WRITEW A WRITED B WRITED C

tcb_cpno COP # (A) COP # (B) COP # (C)

tcb_cprega CRd (A) CRd+1 (B) CRd+1 (C)

tcb_cpregb CRd (B) CRd (C)

tcb_cpregc

tcb_cpustalled

tcb_wdataa Data(A) DataMSP(B) DataMSP(C)

tcb_wdatab DataLSP(B) DataLSP(C)

tcb_ready

tcb_rdataa

tcb_rdatab

clock

tcb_cmd READW A READD B READD C

tcb_cpno COP # (A) COP # (B) COP # (C)

tcb_cprega CRd (A) CRd+1 (B) CRd+1 (C)

tcb_cpregb CRd (B) CRd (C)

tcb_cpregc

tcb_cpustalled

tcb_wdataa

tcb_wdatab

tcb_ready

tcb_rdataa Data (A) DataMSP(B) DataMSP(C)

tcb_rdatab DataLSP(B) DataLSP(C)
85
32001A–AVR32–06/06

9. OCD system

9.1 Overview
The AVR32 CPU is targeted at a wide range of 32-bit applications. The CPU can be delivered in
very different implementations in various ASIC’s, ASSP’s, and standard parts to satisfy require-
ments for low-cost as well as high-speed markets. According to the cost sensitivity and
complexity of these applications, a similar span in debug complexity must be expected. While
some users expect very simple debug features, or none at all, others will demand full-speed
trace and RTOS debug support. This also applies to the debug tools: While the simplest devel-
opment takes place on simulators and development boards, most will require basic on-chip
debug emulators, and a few will require complex emulators with full-speed trace.

To match these criteria, the AVR32 AP OCD system is designed in accordance with the Nexus
2.0 standard (IEEE-ISTO 5001™-2003), which is a highly flexible and powerful open on-chip
debug standard for 32-bit microcontrollers.

9.1.1 Features

• Nexus compliant debug solution

• OCD supports any CPU speed

• Execute debug specific CPU instructions (debug code) from program memory monitor or
external debugger

• Debug code can read and write all registers and data memory

• Debug code can communicate with debugger through the debug port

• Debug mode can be entered by external command, breakpoint instruction, or hardware
breakpoints

• Six program counter hardware breakpoints are supported

• Two data breakpoints are supported

• Breakpoints can be configured as watchpoints (flagged to the external debugger)

• Hardware breakpoints can be combined to give break on ranges

• Real-time program counter branch tracing

• Real-time data trace

• Real-time read/write access to data memory and data cache

• Real-time process trace

• ASID-specific breakpoints

9.1.2 OCD controller overview
The OCD system interfaces provides the external debugger with access to the on-chip debug
logic through the JTAG port and the Auxiliary (AUX) port, as shown in Figure 9-1. The operation
is described briefly below and in more detail in separate chapters.

9.1.2.1 Host, debugger, and emulator
At the host side, the user debugs his software using a source level debugger, which can read his
compiled and linked object code. The source level debugger accesses features in the emulator
and OCD system through an API (defined by the vendor or based on the Nexus recommenda-
tions), which constitutes the abstract interface between the source level debugger and the
emulator. The API translates high-level functions, such as setting breakpoints or reading mem-
86
32001A–AVR32–06/06

AVR32

AVR32
ory areas, to sets of low level commands understood by the OCD controller. Certain operations
(such as reading the register file) may require running sections of debug code on the CPU,
which can also be handled in this level. The emulator translates the communication from the
host into commands transmitted to the target over the JTAG port. If trace is enabled, trace mes-
sages are transmitted from the device on the Nexus-defined auxiliary (AUX) port. The AUX port
can be scaled to the number of output pins needed to sustain the estimated bandwidth require-
ment. The Nexus protocol defines the format of the messages and signals, the pin count options
and pinout of the debug port, and the type of connector used.

Figure 9-1. Block diagram of the OCD system (shaded) and its main connections.

9.1.2.2 Accessing the debug features
A number of blocks handle the various debug functions specified by the Nexus standard. The
emulator communicates with registers in these blocks by commands on the JTAG port, as spec-
ified by the Nexus standard. OCD registers are typically used for configuration, control, and
status information. Trace information and debug events can also generate messages to be
transmitted on the AUX port.

Registers are indexed and are accessed through Read Register and Write Register messages
from the emulator. Alternatively, they can be accessed by the CPU through mtdr and mfdr
instructions, which gives a debug monitor in the CPU access to most of the debug features in
the OCD system, as described in “OCD Register Access” on page 98.

H o s t

O C D s ys te m

D e b u g g e r

T A P

AU X P o r t

A V R 3 2 A P
C P U

I-c a c h e

M M U

D -
c a c h e

D a ta b u s

D a ta T ra c e

P ro g ra m
T ra c e

M e m o ry
In te r fa c e

U n it

T ra n s m it Q u e u e

F lo w
C o n tro l

U n it

OC D
c o n tro l
s ig n a ls

In s t

D e b u g
in s t

B u s
A rb i te r

H ig h S p e e d B u s

B u s
M a s te r

B u s
M a s te r

D a ta A d r

B re a k p o in t U n it

W a tc h p o in t
m s g

T r ig g e r

T r ig g e r

Br
ea

kp
oi

nt

PC

O w n e rs h ip
T ra c e

U n it

O w n e rs h ip
T ra c e

M e s s a g e

C P U o b s e rva tio n u n i tsD e b u g
S ta tu s m s g B ra n c h

T ra c e
M e s s a g e

D a ta
T ra c e m s g

S e rvic e Ac c e s s B u s
(S AB)

CPU
o b s e rva tio

n
s ig n a ls

P C
C o m p a ra to rs

D a ta
C o m p a ra to rs

AS ID

J T AG P o r t

C o -p ro c e s s o r
b u s

S e rv ic e Ac c e s s
P o r t (S AP)

N a n o T ra c e
m e s s a g e s
87
32001A–AVR32–06/06

9.1.2.3 Transmit Queue
Trace and watchpoint messages are inserted into the Transmit Queue (TXQ) before being trans-
mitted on the AUX port. This provides some flexibility between the peak rate of trace message
generation and the average rate of message transmission on the AUX port.

9.1.2.4 Flow Control Unit
The Flow Control Unit (FCU) can bring the CPU into and out of Debug Mode, and control the
CPU operation in Debug Mode. The behavior is controlled by accessing OCD registers.

Debug Mode can be configured as OCD Mode or Monitor Mode. In OCD mode, The CPU
fetches instructions from the Debug Instruction Register. If the register is empty, the CPU is
halted. In Monitor Mode, the CPU fetches debug instructions from a monitor code in the program
memory, and the Debug Instruction Register is not used.

The FCU also handles single stepping by returning the CPU to normal mode, letting the CPU
fetch one instruction from the program memory, and then returning to Debug Mode on the fol-
lowing instruction.

9.1.2.5 Breakpoint modules
A number of instruction and data breakpoint modules can be configured for run-time monitoring
of the instruction fetches and data accesses by the CPU. The modules can report if the moni-
tored operation matches a predefined address, alternatively, also a data value. The modules
operate on virtual addresses.

A breakpoint will bring the CPU into Debug Mode. Watchpoints are reported to the debugger,
but does not affect CPU operation. A watchpoint can also be configured to start or stop data and
program trace.

The breakpoint modules can be combined to produce a watchpoint or breakpoint. Complex
breakpoint/watchpoint conditions are supported, e.g. trigger when a specific procedure writes a
certain variable with a specific value.

9.1.2.6 Program and Data Trace
The Program Trace Unit sends Branch Trace Messages to the debugger, which allows the pro-
gram flow to be reconstructed. To keep the amount of debug information low to save bandwidth,
only change of program flow are reported (such as unconditional branches, taken conditional
branches interrupts, exceptions, return operations, and load operations with PC as destination),
hence the term "branch tracing". Messages are typically relative to the previously transmitted
message, to be able to compress information as much as possible. Thus, the trace messages
are sent out in temporal order, and regularly, synchronization messages with uncompressed,
absolute addresses, are transmitted in case synchronization is lost.

The Data Trace Unit similarly traces data accesses, for read or write accesses, or both. Similar
relative address compression and synchronization schemes are used for Data Trace Messages.
Since new trace messages can be generated before the previous ones have been transmitted,
all trace messages are queued before being transmitted by the AUX interface. If the queue over-
flows, the CPU can be halted to avoid losing trace information, or an error message followed by
synchronization trace messages will be transmitted.

9.1.2.7 RTOS debug support
Applications developed on an RTOS platform places special requirements on the OCD controller
and the debug software. For high-level debugging, the user will want to see which process is
88
32001A–AVR32–06/06

AVR32

AVR32
running at any time, without having to interrupt the CPU or trace the program flow. This is
accomplished through Ownership Trace Messaging, in which the process ID of the running pro-
cess is reported at every process switch. The CPU writes the process ID to an OCD register in
the Ownership Trace Unit, which in turn generates an Ownership Trace Message.

9.1.2.8 Timestamps
The emulator can tag events with a timestamp when they are extracted from the OCD system
and transmitted to the emulator, to provide timing information for these events when they are
transmitted to the debug host. However, due to the delay of the transmit queue and transmit time
over the AUX port, this timing will have limited accuracy. To compensate for this, the EVTO pin
can be configured to toggle every time a message is inserted into the Transmit Queue, thus indi-
cating very precisely when each event occurs. The emulator would then store a queue of
timestamp tags with each event, and associate each tag with the corresponding message, as
they are extracted on the AUX port.

9.1.2.9 Real-time memory access
Real-time block transfers of data to or from system memory is also possible through the Memory
Interface Unit (MIU). The tool initiates these transfers by writing to OCD registers in the MIU.
Unlike the comparator units, the MIU operates on physical addresses, since no interference with
the operating system can be expected. This means that the debug software must perform the
translation between the virtual and physical address map before accessing the memory. This
mapping is typically specified through page tables located in a privileged, unmapped area of the
RAM, and can be read out by the debugger to calculate the physical address. Since the location
and format of the page table is OS specific, the debugger must be "OS aware" to employ this
feature.

The CPU can also use the MIU to perform an efficient transfer of data from user memory to the
tool, without a prior read request from the tool.

9.1.2.10 Java debug features
AVR32 AP has native support for Java bytecode programs, executing on a Java Virtual Machine
(JVM) platform. The OCD features mentioned above are also available in Java mode, enabling
the same debug support for Java programs as for C/C++/assembly programs. The JVM will
implement a debug protocol which the debugger can use to extract key information about tasks
and objects in the execution environment. Alternatively, if the format of the data structures cre-
ated by the JVM is known by the debugger, the debugger can read out all JVM and task
information by block read commands.
89
32001A–AVR32–06/06

9.2 CPU Development Support
The OCD system can bring CPU into and out of Debug Mode, and control the CPU operation in
Debug Mode. The behavior is controlled by OCD register configuration, stop commands from
the debugger, or breakpoints. The OCD registers can be accessed by Nexus messages or from
the CPU as memory-mapped registers.

9.2.1 Debug Mode
Debug Mode is an execution mode dedicated to application debugging and is not intended for
running application code. Debug Mode can execute a debug code either from an external
debugger through the OCD system (OCD Mode), or from a debug routine in program memory
(Monitor Mode). The debug code will typically read out system registers and information about
the various processes running in the system before restarting.

The Nexus class 3 compliant OCD system contains breakpoint and trace modules, and other
features for debugging code on the CPU. These features are generally accessible both in OCD
Mode and Monitor Mode. In OCD Mode, the debugger accesses the features through messages
over the AUX debug port, and in Monitor Mode, the CPU accesses the features through mtdr
and mfdr instructions. The OCD system runs at system speed to stay synchronous with the CPU
at all times. If the CPU is in a low-power sleep mode, it is woken up before entering Debug
Mode.

9.2.1.1 Operations in Debug Mode
Debug Mode is characterized by the Debug (D) bit in the Status Register (SR) in the CPU.
Debug Mode is a privileged mode, and all legal instructions and memory operations are permit-
ted Illegal opcodes or memory operations which would normally cause an exception will be
ignored in Debug Mode.

The Debug Mode has a dedicated Return Address and Return Status Register (RAR_DBG and
RSR_DBG, respectively) but no other masked registers. RAR_DBG and RSR_DBG are not
observable as part of the register file, only as system registers. The register file view is mapped
according to the mode bits in the Status Register (M[2:0]). These bits are set to the exception
context when entering Debug Mode, but can be changed freely within Debug Mode by writing to
SR. In this way, different register contexts can be observed and modified, while maintaining the
execution and access privileges of Debug Mode.

Debug Mode is exited by the retd instruction, both in Monitor Mode and OCD Mode. This
restores PC from RAR_DBG and SR from RSR_DBG.

9.2.1.2 A typical debug session flow
Figure 9-2 shows an example of a typical flow in Debug Mode. A software or hardware break-
point aborts the execution of an instruction and causes Debug Mode to be entered. If the Monitor
Mode (MM) bit in the Development Control (DC) OCD register is set, Monitor Mode is entered,
and the CPU jumps to the software debug monitor starting at EVBA+0x01C. Otherwise, OCD
Mode is entered, and the CPU stalls while waiting for instructions to be entered by the external
debugger through the Debug Instruction (DINST) OCD register. In either case, the D bit in the
CPU Status Register is set during the whole debug session, giving access to all privileged oper-
ations. Any number of instructions can be executed before returning to the breakpointed
instruction by the retd instruction. RAR_DBG stores the address of the breakpointed instruction,
and manipulating RAR_DBG in Debug Mode is useful if a different return address is desired (for
instance, to avoid repeated hits on a breakpoint instruction).
90
32001A–AVR32–06/06

AVR32

AVR32
Figure 9-2. Example of flow in Debug Mode.

9.2.2 Monitor Mode
If the Monitor Mode (MM) bit in the Development Control register (DC) is set, the CPU will enter
Debug Mode in Monitor Mode. Instructions are fetched from the monitor code located in the pro-
gram memory at the Exception Vector Base Address (EVBA) + 0x01C. The monitor code
contains the necessary mechanisms to read and modify CPU and system registers, and memory
areas. All other exceptions and interrupts are masked by default when entering Monitor Mode,
but the monitor code can explicitly unmask interrupts to allow critical interrupts to be serviced
while the system is being debugged.

The monitor code will typically communicate with an external debug tool, or (in cases of
advanced systems like PDA’s) a debug tool running within the application (self-hosted debug-
ger). Communication with the external tool may take place over any communication link present
in that device (e.g. USB, RS232), if such a communication line can be reserved for debug
purposes.

Alternatively, the Debug Communication Mechanism in the OCD system can be used to commu-
nicate between the CPU and emulator over the JTAG port. This is a set of OCD registers which
can be written by the CPU or emulator, allowing a communication protocol to be developed in
software. This mechanism can be used in any privileged CPU mode, including OCD Mode.

Monitor Mode is exited with the retd instruction.

User code
Breakpointed instruction

Software debug monitor
SR:D = 1

EVBA+0x300

DC:MM?

1 = Monitor Mode

0 = OCD Mode

LR_DBG

Instructions from
external debugger

SR:D = 1

Debug Mode

retd

retd

External
Debugger

DINST Inst

Write Register commands
91
32001A–AVR32–06/06

9.2.2.1 Debugging a monitor code
Each execution mode has a mask bit in SR, which indicates if a request to enter that mode will
be taken or masked. The default priority of modes are reflected in these bits: When entering an
execution mode, modes of the same or lower priority are masked. Privileged modes can over-
ride the mask, to dynamically change priorities (e.g. to allow critical interrupts to be serviced).

By default, Debug Mode has priority above all other execution modes. This implies that any
supervisor or user code can be interrupted by Debug Mode. Other modes can be explicitly
unmasked by a monitor code to allow critical interrupts to be serviced. By default, Debug Mode
is masked by the Debug Mask (DM) bit in SR when executing in Monitor Mode. The Monitor
Mode can stack away the RAR_DBG and RSR_DBG and then explicitly clear the DM bit to
enable Debug Mode to be re-entered. If a debug exception occurs in Monitor Mode, the OCD
system will bring the CPU into OCD Mode, even if the MM bit is set. This allows Monitor Mode
programs to be debugged.

9.2.3 OCD Mode
If the Monitor Mode (MM) bit in the Development Control register (DC) is cleared, the CPU will
enter Debug Mode in OCD Mode. When the CPU is in OCD Mode, the Debug Status (DBS) bit
in the Development Status (DS) register is set, in addition to the D bit in SR in the CPU. OCD
Mode is similar to Monitor Mode, except that instructions are fetched from the OCD system.
OCD instructions are loaded by the debug tool by writing the opcode to the Debug Instruction
register (DINST). Once an instruction is written to DINST, the CPU will fetch it, and the Instruc-
tion Complete bit in DS (DS:INC) will be cleared until the CPU has completed the operation. The
CPU is then halted until DINST is written again.

The first instruction entered must be aligned to the MSB of DINST. A sequence of instructions
can be entered to DINST one word at a time, in the same sequence they would appear in pro-
gram memory, i.e. they do not need to be word aligned. If the upper halfword of an extended
instruction is written to the lower halfword of DINST, the lower halfword of the instruction is writ-
ten as the upper halfword of DINST in the next access. If the last instruction in a sequence is
written to the upper halfword of DINST, the lower halfword should be written with a nop opcode.

See Figure 9-3 for an illustration of a sequence of operations used to execute instructions in
OCD Mode.

Any instruction valid in Monitor Mode is also valid in OCD Mode. Memory operations can be con-
ducted without any special synchronization with external hardware.

All OCD units can be configured while the CPU executes in OCD Mode, but the following debug
features are disabled:

• PC breakpoints

• Data breakpoints

• Watchpoints

• Program Trace

• Data Trace

• Nano Trace

OCD Mode is exited by writing the retd instruction to DINST.
92
32001A–AVR32–06/06

AVR32

AVR32
Figure 9-3. Executing instructions on the CPU in OCD Mode.

9.2.4 Entry into Debug Mode
Debug Mode can only be entered when the OCD is enabled, and Debug Mode is not masked.
The following ways of entry are then possible:

• Debug request from the debugger

• Program counter breakpoint

• Data address or value breakpoint

• breakpoint instruction

• Trapping opcode 0x0000

• Single step

• Hardware error

• Event on EVTI pin

• NanoTrace buffer full

• Abort command from the debugger

The debugger can identify the condition which caused entry into Debug Mode by examining the
status bits in the Development Status register (DS). Each cause of entry has a particular bit
associated with it. Several exceptions can trigger simultaneously, causing more than one bit to
be set.

Note that any privileged CPU mode may write the SR:D bit to one directly, but this will not cause
entry to Debug Mode.

9.2.4.1 Debug request
The debugger may want to stop CPU operation, unrelated to current instruction execution, e.g. if
the user presses a "STOP" button in the debug tool GUI. The debugger will then write the Debug
Request (DBR) bit in the Development Control Register (DC). This causes the CPU to enter
Debug Mode on the next instruction to be executed, before execution.

9.2.4.2 Program counter breakpoint
The Program Counter breakpoints can be configured to halt the CPU when executing code at a
specific address, or address range. This will cause the CPU to be halted before the break-
pointed instruction is executed.

OCD
Instructions

mov r12,r7

sub r12,0x01

mov r6,r12

adc r6,r12,r7

retd

Opcode

0x0E9C

0x201C

0x1896

0xF807 0046

0xD623

Written by
tool to DINST

0x0E9C201C

0x1896F807

0x0046D623

Changes in DS

INC→0→1

INC→0→1

INC→0→1

DBS→0
93
32001A–AVR32–06/06

The Ignore First Match (IFM) bit in the Development Control (DC) register should be written to
one before exiting Debug Mode, to avoid re-triggering the program breakpoint. This bit only pre-
vents program breakpoints from re-triggering. If the instruction causes a breakpoint for another
reason (e.g. a breakpoint instruction or a data breakpoint), Debug Mode will be re-entered.

9.2.4.3 Data address or value breakpoint
CPU memory accesses can be monitored by data breakpoint comparators in the OCD system. If
the access matches a set of predefined conditions (e.g. address, value, or access type), Debug
Mode is entered after the memory operation completes, but before the next instruction is
executed.

Data breakpoints are precise, halting on the instruction immediately after the memory operation
which caused the breakpoint. The CPU will return to the first non-executed instruction when a
retd is executed.

9.2.4.4 breakpoint instruction
The breakpoint instruction is programmed along with the object code into the program memory
or instruction cache, and is decoded by the CPU. When this instruction is scheduled for execu-
tion and Debug Mode is enabled, the CPU will enter Debug Mode. If Debug Mode is disabled
(e.g. masked by the DM bit in the Status Register, or DBE in DC is zero), the breakpoint instruc-
tion will execute as a nop (no operation).

For devices based on volatile program memory, the breakpoint instruction can be dynamically
inserted into the code by the debug tool, enabling an unlimited number of program breakpoints
in the code. This involves replacing an existing opcode with a breakpoint instruction. The
replaced opcode has to be re-inserted before exiting Debug Mode. Note that this is only possible
in OCD Mode.

For devices based on non-volatile program memory, the breakpoint instruction can be statically
compiled or linked into the code before downloading, marking all points the program can be
halted. Debug Mode will be entered for all breakpoints (if Debug Mode is enabled), and the
debugger would return immediately if it does not want to halt at a particular breakpoint location in
the code.

Alternatively, the Instruction Cache memory can be directly written by the debugger through the
JTAG port. The page containing the software breakpoint can be programmed into a cache page
and locked, to prevent it from being flushed. Every time the CPU executes the breakpointed sec-
tion of the code, it fetches these instructions from the cache instead of the program memory.
This method can only be used to insert software breakpoints in cacheable regions of the mem-
ory space, as defined by the Memory Management Unit.

The breakpoint will be taken before the breakpoint instruction is actually executed. This has the
effect that the CPU will return from Debug Mode to the same breakpoint instruction, re-entering
Debug Mode immediately, unless the OCD system is configured to modify the return address or
replace the breakpoint instruction from the instruction flow. The IFM bit does not have an effect
when Debug Mode returns to a breakpoint instruction.

9.2.4.5 Trapping opcode 0x0000
In Flash-based microcontrollers, the opcode 0x0000 can overwrite any other opcode without
having to erase and reprogram the Flash. Therefore this instruction can enter Debug Mode, as
for the breakpoint instruction. However, the opcode 0x0000 is also a valid part of the instruction
94
32001A–AVR32–06/06

AVR32

AVR32
set (ADD R0,R0 in AVR32) and can be part of the software to be debugged. Therefore, the user
must write the DC:TOZ (Trap Opcode Zero) bit to one to enable this feature.

The DS:BOZ bit will be set if Debug Mode is entered due to a trapped 0x0000 instruction. The
debugger must then identify whether this opcode belongs to the original object file or has been
inserted by the debugger as a software breakpoint. If it was part of the object file, the debugger
should use the Instruction Replacement to return to the program, and insert the 0x0000 opcode
in DINST.

9.2.4.6 Single stepping
The debugger will typically allow the user to step through the application source or object code,
line by line. This single stepping can be either of step-into or step-over type. Step-into will exe-
cute exactly one instruction and halt the CPU at the start of the next instruction, regardless of
whether this instruction is part of the main program, subroutine, interrupt, or exception. Step-
over will execute the current instruction and any lower-level events generated before the follow-
ing instruction (including subroutines, interrupts, and exceptions).

Step-over in the object code and all single stepping in the source code are implemented by con-
figuring a program breakpoint on the address of the next object code instruction where the
debugger expects to halt.s

Step-into is implemented in OCD hardware and is controlled by the Single Step (SS) bit in the
Development Control register. When Debug Mode is exited by retd, exactly one instruction from
the program memory will be executed before Debug Mode is re-entered. This mechanism works
identically for OCD and Monitor Mode.

9.2.4.7 Hardware Error
The CPU might encounter problems which cannot be handled in software. This includes access-
ing a memory area reserved for NanoTrace. These types of errors should never occur in a
correctly written application, and will normally trigger a soft reset.

To ease debugging of these types of errors, the debugger can write the DC:TSR (Trap Soft
Reset) bit to one. The CPU will then enter Debug Mode if a soft reset occurs. This includes any
kind of soft reset in the device, such as watchdog reset. The Hardware Error bit (HWE) in the
Development Status register will be set to indicate that a trapped soft reset caused entry to OCD
mode.

Note that if OCD mode is disabled (i.a. also when Monitor Mode is enabled), the soft reset allows
the software to restart in a defined manner.

Since the soft reset causes may corrupt CPU execution, the RAR_DBG and RSR_DBG are
undefined when Debug Mode is entered due to a hardware error.

9.2.4.8 Event on EVTI pin
If the Event In Control (EIC) bits in DC are written to 0b01, a high-to-low transition on the EVTI
pin will generate a breakpoint. EVTI must stay low for one CPU clock cycle to guarantee that the
breakpoint will trigger. The External Breakpoint (EXB) bit in DS will be set when a breakpoint is
entered due to an event on the EVTI pin.

9.2.4.9 NanoTrace buffer full
When using NanoTrace to write trace information to memory, the user can configure a break-
point when the buffer becomes full. This will set the NanoTrace Buffer Full (NTBF) bit in DS.
RAR_DBG will point to the last non-executed instruction.
95
32001A–AVR32–06/06

9.2.4.10 Abort command
Some software errors could cause the CPU to get stuck in a state which does not allow Debug
Mode to be entered through the mechanisms described above. An example is if a privileged
mode writes SR:DM to one, without clearing the bit.

To prevent the debugger from hanging indefinitely, the debugger can write the DC:ABORT bit to
one after some timeout period, and force the CPU to enter Debug Mode. The abort command
behaves identical to a debug request, except that the DM bit and any pending exception will be
ignored, regardless of exception priority. The RAR_DBG and RSR_DBG will reflect the last non-
executed instruction, which can aid in locating the error.

If Debug Mode is entered due to an abort command, DS:DBA will be set, as for debug requests.

9.2.5 Exceptions and Debug Mode
Debug Mode has priority over any execution mode, so that breakpoints can be set in exception
and interrupt routines. However, if a breakpoint is set on an instruction which triggers a critical
exception, the breakpoint is flushed. Critical exceptions are exception which are asynchronous
to the CPU (interrupts), exceptions which invalidate the currently fetched instruction (e.g.
instruction address exceptions), and exceptions which indicate that the system has become
unstable and should abort the program flow (e.g. bus error). The complete list of exceptions with
higher priority than Debug Mode are listed in the exception chapter in the AVR32 Architecture
Manual.

If a PC breakpoint, a breakpoint instruction, or a trapped 0x0000 opcode is flushed by an excep-
tion, Debug Mode will not be entered. If another type of breakpoint has triggered, Debug Mode
will be entered on the first instruction in the exception handler.

In the rare cases where the first instruction in a critical exception also triggers a critical exception
(e.g. if EVBA is set incorrectly, triggering an infinite loop of instruction address exceptions), the
debugger must write the DC:ABORT bit to one to halt the CPU and enter Debug Mode to identify
the error.

9.2.6 Instruction replacement
A convenient way of implementing an unlimited number of instruction breakpoints is letting the
debugger replace an instruction by a breakpoint instruction. This mechanism is only available in
OCD Mode on devices implemented with writeable program memory or writeable instruction
cache. If this instruction executes, Debug Mode will be entered, and the debugger identifies the
breakpointed location. When returning, the breakpoint instruction must be replaced by the origi-
nal instruction. The debugger will write the Instruction Replace (IRP) bit in DC and the
appropriate instruction in the Debug Instruction Register and its corresponding PC value in the
Debug Program Counter (DPC). When retd is executed, PC and SR are restored, but one more
instruction is fetched from the OCD system before returning to fetching from program memory.

Note that instruction replacement operates on word boundaries. The debugger must store the
whole word containing the replaced opcode before inserting the breakpoint instruction. Also note
that DPC should always be written when performing an instruction replacement to ensure the
correct instruction is executed.

The debugger will then perform the following sequence when exiting OCD Mode. Note that
RAR_DBG is accessed through executing CPU instructions through the Debug Instruction regis-
ter (DINST). The same sequence can be used both for compact and extended instructions,
regardless if the extended instruction is unaligned (in which case only the upper halfword of the
instruction is replaced).
96
32001A–AVR32–06/06

AVR32

AVR32
1. Write RAR_DBG to the Debug Program Counter.

2. Increment RAR_DBG by 2 or 4, so the register points to the start of the next word in the
program memory.

3. Write 1 to Instruction Replace (IRP) in DC.

4. Write a retd instruction to DINST. The CPU will exit Debug Mode and stall while waiting
for new instructions.

5. Write the stored word to DINST. This instruction is fetched by the CPU, and the CPU
continues normal program execution.

9.2.6.1 Instruction replacement example
Table 9-1 shows an example of a code where the user wants to insert a breakpoint.

The tool wants to insert a software breakpoint on the instruction "adc r6,r12,r7" on
PC=0x000016. This is an extended instruction, and only the upper halfword needs to be
replaced by the breakpoint instruction.

1. The upper halfword is contained within the word located at 0x000014, and the debug
tool stores this value (0xC0ACF807).

2. The debugger writes a breakpoint instruction (opcode 0xD673) to location 0x000016 in
the CPU’s program memory to replace the most significant word of the breakpointed
instruction.

3. When the breakpoint instruction executes, the CPU will enter OCD Mode, and DS:DBS
and DS:SWB are set, indicating that OCD Mode is entered due to a software
breakpoint.

4. The tool performs a normal sequence of operation in OCD Mode.

5. When the tool is ready to return to normal CPU operation, it reads the RAR_DBG value
to find the return address.

6. The tool inserts CPU instructions to DINST to increment RAR_DBG by 2, so it is
aligned to the next word in the program memory.

7. The tool inserts a "retd" instruction to DINST. The tool will receive a Debug Status mes-
sage, which indicates that the CPU has exited OCD Mode, and is now waiting for one
more instruction from the tool.

8. The tool writes the return address (0x000016) to the Debug Program Counter (DPC).

9. The tool looks up the stored instruction word (based on the return address) and writes
this value (0xC0ACF807) to the Debug Instruction Register (DINST). The CPU now
resumes normal operation.

Table 9-1. Example of a user code section

PC value Opcode Instruction

0x000010 0x0E9C mov r12,r7

0x000012 0x201C sub r12,0x01

0x000014 0xC0AC rcall label1

0x000016 0xF8070046 adc r6,r12,r7

0x00001A 0x2027 sub r7,0x02
97
32001A–AVR32–06/06

9.2.7 Sleep Mode
If the CPU is in sleep mode, it will not receive clocks nor respond to an OCD request from the
debugger. Thus, if the Debug Request bit in DC is written to one while the CPU is in sleep mode,
the CPU will automatically return to active mode. The instruction following the sleep instruction
will be tagged with an OCD exception, and the CPU will jump directly to Debug Mode. The nor-
mal debug procedure can be followed while executing in Debug Mode. If Debug Mode is entered
from sleep mode, the Stop Status (STP) bit in the Development Status register will be set.

When returning from Debug Mode, the CPU will by default return to the instruction following the
sleep instruction. The debugger can handle this situation in two ways:

1. Allow the CPU to wake up from sleep mode on a debug request.

2. Decrement RAR_DBG in Debug Mode to return to the sleep instruction. This places the
CPU back into sleep mode after exiting Debug Mode.

9.2.8 OCD Register Access
The OCD registers control the OCD system. Their specification is based on the Nexus Recom-
mended Registers as outlined in the Nexus Standard Specification [IEEE-ISTO 5001™-2003].
All registers can be accessed through the JTAG interface.

9.2.9 OCD features in Debug Mode
When the CPU executes in Debug Mode, certain OCD features will be disabled. The following
table indicates how the various OCD features will behave in Debug Mode. For more information
on the specific features, please see the indicated page.

9.2.10 OCD Registers Accessed by CPU
A monitor program running on the target can access the OCD registers through mtdr and mfdr
instructions. These instructions transfer data between a register in the register file and an OCD
register, according to the register index given in “OCD Register Summary” on page 152. These
instructions can also be used in OCD mode to transfer information from the register file and sys-
tem registers to the debugger, through the Debug Communication Mechanism.

Table 9-2. OCD features in Debug Mode

Feature Available in Debug Mode?

Program Breakpoints (HW) Yes, in Monitor Mode when SR:DM is cleared

Software Breakpoints Yes, in Monitor Mode when SR:DM is cleared

Data Breakpoints Yes, in Monitor Mode when SR:DM is cleared

Watchpoints (program and data) Yes, in Monitor Mode

Program Trace No

Data Trace No

Ownership Trace Yes

NanoTrace No

Direct Memory Access Yes

Debug Communication Mechanism Yes
98
32001A–AVR32–06/06

AVR32

AVR32
9.2.11 Runtime write access to OCD registers
The OCD registers can always be accessed by JTAG when the when the OCD system is not
enabled or the CPU is in OCD Mode. The OCD registers can also be read by JTAG at any time,
and by the CPU in any privileged mode.

When the CPU is in other modes - either running normal code, or executing in Monitor Mode -
the OCD registers can be written by JTAG as specified in Table 9-3. If the registers are
accessed in another way than specified, undefined operation may result.

The OCD Register Protect (ORP) bit in DC define the allowed write access to OCD registers in
privileged modes. If the ORP bit in DC does not allow CPU access to OCD registers in the cur-
rently executing mode, only PID and DCCPU can be written. Illegal access to the registers will
be ignored with no error reporting.

Table 9-3. OCD Register access

Register
Can be written by JTAG
while CPU is running?

Can be written by
CPU in Monitor
Mode?

Development Control (DC) Yes Yes

Read/Write Access Control/Status (RWCS) Yes No

Read/Write Access Address (RWA) Yes No

Read/Write Access Data (RWD) Yes No

Watchpoint Trigger (WT) Yes Yes

Data Trace Control (DTC)
Can be written to disable /
enable trace channels.

Yes

Data Trace Start Address (DTSA) Channel 1 to
2

Can only be written while
trace channel is disabled

Yes

Data Trace End Address (DTEA) Channel 1 to
2

Can only be written while
trace channel is disabled

Yes

PC Breakpoint/Watchpoint Control (BWC)
Can be written to disable /
enable watchpoints /
breakpoints.

Yes, if SR:DM is set.

Data Breakpoint/Watchpoint Control (BWC)
Can be written to disable /
enable watchpoints /
breakpoints.

Yes, if SR:DM is set.

PC Breakpoint/Watchpoint Address (BWA)
Can only be written while
breakpoint / watchpoint is
disabled

Yes, if SR:DM is set
or breakpoint
disabled.

Data Breakpoint/Watchpoint Address (BWA)
Can only be written while
breakpoint / watchpoint is
disabled

Yes, if SR:DM is set
or breakpoint
disabled.

Breakpoint/Watchpoint Data (BWD)
Can only be written while
breakpoint / watchpoint is
disabled

Yes, if SR:DM is set
or breakpoint
disabled.

Ownership Trace Process ID (PID) Yes Yes

Debug Optimization Control (DOC) No No
99
32001A–AVR32–06/06

9.2.12 Debugging Java programs

9.2.12.1 Java mode operation
To run Java programs, a Java Virtual Machine (JVM) must be implemented in software. Java
bytecode programs can then be executed natively on the CPU by placing the CPU in Java
mode. This mode is described in the "AVR32 CPU Architecture" document. The Java mode
characteristics include:

• The CPU decodes instructions as Java bytecodes, each consisting of 1 or more bytes.

• Complex Java instructions are trapped and executed as a RISC routine embedded in the
JVM.

• Java programs can execute in Application or Supervisor mode, thus using the Application or
Supervisor register context, respectively.

• The lower half of the register file is remapped to operate as a push/pop stack for operands

• Other register file registers and system registers hold pointers to memory structures created
by the JVM.

9.2.12.2 Java and debug functionality
The operating mode of the CPU is contained in the bits in the upper half of the Status Register
(SR) in the CPU. When Debug Mode (OCD or Monitor Mode) is entered from Java mode, the
CPU switches to RISC mode (SR:D=1, SR:J=0) and the exception register context (SR:M=6).
By changing SR:M to Application or Supervisor mode, the debugger can execute RISC instruc-
tions on the CPU and still read out the register context of the Java program. The SR:J bit should
never be set in Debug Mode, as this can cause undefined behavior of the CPU.

The debug features available in RISC mode are also available for Java mode. Note the following
particularities about Java debugging:

• Software breakpoints are set by the Java breakpoint bytecode instead of the RISC
breakpoint opcode.

• Instruction replacement is possible when exiting from Debug Mode to Java mode. The same
procedure as for RISC mode can be used. The Java bytecode for the return instruction must
be written to the Debug Instruction Register, and the address of this instruction must be
written to the Debug Program Counter.

• If the memory allocation scheme for the JVM implementation is known, memory block read
commands can be used to extract any task information created by the JVM.

Event Pair Control (EPC)
Can only be written while
breakpoint / watchpoint is
disabled

Yes, if SR:DM is set
or breakpoint
disabled.

Debug Instruction Register No No

Debug Program Counter No No

Debug Communication CPU (DCCPU) Yes Yes

Debug Communication Emulator (DCEMU) Yes Yes

Table 9-3. OCD Register access (Continued)

Register
Can be written by JTAG
while CPU is running?

Can be written by
CPU in Monitor
Mode?
100
32001A–AVR32–06/06

AVR32

AVR32
• The incjosp RISC instruction is only used in JVM implementations. This instructioncannot be
breakpointed. Single stepping over the instruction will result in stepping over the next
instruction as well.

9.2.13 CPU optimization control
The CPU contains a number of optimization features which could obscure visibility and compli-
cate debugging. These features are normally controlled by the CPUCR system register, but are
automatically disabled by the OCD system according to which OCD features are enabled.

It is possible to for the debugger to override the default disabling of CPU optimization features by
writing the CPU Control Mask Register. The debugger can thus manually tune which features
should be disabled to enhance debugging of performance critical code, trading CPU perfor-
mance against debug visibility. CPUCM will retain its written value until written with a new value
or the OCD is reset.

The user should be familiar with the operation of the CPU pipeline and Data Cache to utilize
these optimization features. Changing the CPUCM register is only recommended for advanced
users who require high CPU performance during their debug sessions.

9.2.13.1 Branch prediction
By default, the CPU will optimize branch execution by attempting to predict the target address
for the branch. This has an adverse effect for program trace, since extended branch (br{cond4})
and extended rcall (rcall k21) could generate messages with incorrect target addresses.

The OCD system automatically disables this feature when program trace is enabled. If the code
does not contain extended rbanch or rcall instructions, or the user accepts incorrect target
addresses for these instructions, the user can write CPUCM:BEM to one.

It is not recommended to write both CPUCM:BEM and CPUCM:FEM to one during program
trace, as this will cause many errors in the program trace output.

9.2.13.2 Branch folding
The CPU pipeline can compress a branch instruction and the instruction following the branch
into one pipeline instruction, to improve instruction throughput. This process is known as branch
folding. If branch folding is enabled, the OCD is unable to observe the PC of a folded branch,
which can cause PC breakpoints on branch instructions to failt to trigger. Branch folding is there-
fore by default disabled when the OCD is enabled.

Branch folding can be kept enabled by writing CPUCM:FEM to one. This means that instructions
following a branch can not always be breakpointed.

9.2.13.3 Return stack
To speed up subroutine and interrupt handling, the CPU can buffer the most recently used
return addresses in the Return Stack instead of having to fetch them from the regular data mem-
ory stack.

If returning from a subroutine using a ld/ldm or popm to PC, and this address is fetched from the
return stack, program trace will not report an Indirect Branch message, as it should.

For this reason, the OCD system disables the return stack when program trace is activated. If
the code does not contain loads or pop to PC, the user can keep the return stack enabled by
writing CPUCM:REM to one.
101
32001A–AVR32–06/06

9.2.13.4 Imprecise breakpoints
The CPU will normally issue more instructions for execution before previous instructions are
completed. When breakpointing memory operations which cause exceptions, the exception may
already have been started. This causes the breakpoint to behave incorrectly, typically triggering
for a later instruction instead. To avoid confusion, the OCD ensures breakpoints are precise
when the OCD is enabled. This forces the CPU to delay the exception check for memory opera-
tions until a possible breakpoint has been resolved. This normally causes one cycle penalty for
memory operations.

It is possible, but not recommended, to allow imprecise breakpoints during debugging by writing
CPUCM:IBEM to one.

9.2.13.5 Imprecise execution
The AVR32 AP CPU contains logic to optimize instruction execution, which implies that instruc-
tions may complete out-of-order. In a debug context, this may lead to imprecise behavior.
Specifically, when a data breakpoint triggers, one or more instructions following the breakpoint
may have been executed. Also, when using DC:OVC to prevent data trace overruns, several
memory operations may have already been started, possibly causing an overrun situation.

For this reason, the OCD system forces the CPU to use precise execution when data break-
points are enabled or DC:OVC prevents data trace overruns. Precise execution will reduce
memory performance significantly. Imprecise execution can be kept enabled by writing
CPUCM:IEEM to one.

9.2.14 Messages

9.2.14.1 Debug Status (DEBS)
This message is output when the CPU enters or exits Debug Mode or a low-power mode. The
message is output whenever the AUX port is enabled. The STATUS field of this message con-
tains the information in the Development Status register. The field will contain these values:

• The CPU enters Debug Mode: STATUS bits indicate cause of entry to Debug Mode. DBS is
set if OCD Mode was entered.

• The CPU exits Debug Mode: STATUS = 0.

• The CPU enters a low-power mode: Only the STP bit is set, while the other bits are zero.

• The CPU exits a low-power mode: STATUS = 0

Table 9-4. Debug Status

Debug Status Message

Packet
Size

Packet
Name

Packet
Type Description

32 STATUS Fixed The contents of the Development Status register.

6 TCODE Fixed Value = 0
102
32001A–AVR32–06/06

AVR32

AVR32
9.2.15 Registers

9.2.15.1 Device ID Register (DID)
The Device ID Register (DID) provides key attributes to the development tool concerning the
embedded processor. This is the same as the value returned by the JTAG ID instruction.

9.2.15.2 Nexus Configuration Register (NXCFG)
The Nexus Configuration Register (NXCFG) provides key information about the specific imple-
mentation of the CPU and OCD architecture, and the configuration of the Nexus development
features on this device. This information is static, and may be used to develop generic Nexus
debuggers which will work across a family of AVR32 devices with different Nexus configurations.

Table 9-5. DID Register

R/W Bit Number Field Name Init. Val. Description

R 31:28 RN
Part
specific

RN - Revision Number

R 27:12 PN
Part
specific

PN - Product Number

R 11:1 MID 0x01F
Manufacturer ID

0x01F = ATMEL

R 0 Reserved 1
Reserved

This bit always reads as 1

Table 9-6. Nexus Configuration Register

R/W Bit Number Field Name Init. Val. Description

R 31:29 Reserved 0

R 28 NXDMA 0

Direct Memory Access support

0 = Not supported

1 = Supported

R 27:25 NXDTC 0

Data Trace Channels

0 = Not supported
1 = Supported

R 24 NXDRT 0
Data Read Trace Support
0 = Not supported

1 = Supported

R 23 NXDWT 0

Data Write Trace Support

0 = Not supported

1 = Supported

R 22 NXOT 0

Ownership Trace support

0 = Not supported
1 = Supported

R 21 NXPT 0

Program Trace support

0 = Not supported
1 = Supported
103
32001A–AVR32–06/06

9.2.15.3 Debug Communication CPU Register (DCCPU)
If the CPU wants to transmit data to the debugger tool, it writes data to the Debug Communica-
tion CPU Register using mtdr. By writing this register, a dirty bit is set in the Debug
Communication Status Register. The emulator should poll the status register and read DCCPU if
the dirty bit is set.

9.2.15.4 Debug Communication Emulator Register (DCEMU)
When the emulator writes to this register, a dirty bit is set in the Debug Communication Status
register. The CPU can poll this bit to see if DCEMU contains unread data..

R 20:17 NXMDO 6

AUX MDO pins

0 = no MDO or MSEO pins
n = n MDO pins, NXMSEO MSEO pins

R 16 NXMSEO 1

AUX MSEO pins

0 = 1 MSEO pin
1 = 2 MSEO pins

R 15:12 NXDB 2 Number of Data breakpoints

R 11:8 NXPCB 6 Number of PC breakpoints

R 7:4 NXOCD 0

OCD Version

0000 = AVR32 AP OCD

Other = Reserved

R 3:0 NXARCH 0

Architecture

0000 = AVR32B
0001 = AVR32A

Other = reserved

Table 9-6. Nexus Configuration Register

R/W Bit Number Field Name Init. Val. Description

Table 9-7. Debug Communication CPU Register

R/W Bit Number Field Name Init. Val. Description

R/W 31:0 DATA
0x0000_
0000

Data Value

Data written by CPU

Table 9-8. Debug Communication Emulator Register

R/W Bit Number Field Name Init. Val. Description

R/W 31:0 DATA
0x0000_
0000

Data Value

Data written by Emulator
104
32001A–AVR32–06/06

AVR32

AVR32
9.2.15.5 Debug Communication Status Register (DCSR)
To avoid overruns the CPU must poll this register before writing a new value to DCCPU. Note
that the bits in this register are not automatically cleared in OCD mode. This allows a debugger
to update views and observe the system without accidentally modifying the DCSR register.

9.2.15.6 Development Control Register (DC)
DC is used for basic development control of the CPU.

Table 9-9. Debug Communication Status Register

R/W Bit Number Field Name Init. Val. Description

R 31:2 Reserved
0x0000_
0000

Reserved
These bits are reserved, and will always read as 0

R/W 1 EMUD 0

Emulator Data Dirty
0 = DCEMU has not been written to since last read
from CPU.
1 = DCEMU contains a new data value.

This bit is cleared by reading DCEMU.

R/W 0 CPUD 0

CPU Data Dirty

0 = DCCPU has not been written to since last read
from emulator.

1 = DCCPU contains a new data value.

This bit is cleared by reading DCCPU.

Table 9-10. Development Control Register

R/W Bit Number Field Name Init. Val. Description

R/W 31 ABORT 0

ABORT
Writing ABORT to one while DBE is asserted
causes the CPU to enter Debug Mode, regardless
of SR:DM and any pending exceptions. If the CPU
was in sleep mode, it will first be woken up before
entering Debug Mode. The ABORT bit is cleared
automatically when Debug Mode is entered.

S 30 RES 0

RES - Application Reset

Writing this bit causes an application reset, which
will reset the CPU and other system modules. The
OCD state machines will be reset and the
Transmit Queue flushed, but the OCD control and
configuration registers will not be cleared.

R/W 29 MM 0

MM - Monitor Mode
1 = The CPU will enter Debug Mode in Monitor
Mode
0 = The CPU will enter Debug Mode in OCD Mode

Changing this bit in Debug Mode does not take
effect until the CPU enters Debug Mode the next
time.

R/W 28 ORP 0

ORP - OCD Register Protect

0 = OCD registers can be written by any privileged
CPU mode

1= OCD registers can be written only in Debug
Mode
105
32001A–AVR32–06/06

R/W 27 RID 0

RID - Run In Debug

0: Peripherals are frozen in Debug Mode
1: Peripherals keep running in Debug Mode

R/W 26 TSR 0

TSR - Trap Soft Reset

0: A soft reset event causes the CPU to be reset
1: A soft reset event causes the CPU to enter
Debug Mode.

R/W 25 TOZ 0

TOZ - Trap Opcode Zero

0: The opcode 0x0000 is executed as a normal
CPU instruction

1: The opcode 0x0000 causes entry to Debug
Mode

R/W 24 IFM 0

IFM - Ignore First Match

When written to one, a PC breakpoint on the first
instruction after exiting Debug Mode with the retd
instruction will not trigger re-entry to Debug Mode.
Typically used when returning from a program
breakpoint. This bit stays one until written to zero.

R/W 23 IRP 0

IRP - Instruction Replace
If IRP is written to one before exiting OCD Mode
with the retd instruction, the first instruction after
exiting OCD Mode will be fetched from the Debug
Instruction Register. This bit is cleared
automatically after this fetch takes place. This bit
will not have any effect if written at the same time
as RES.

R/W 22 SQA 0
SQA - Software Quality Assurance
0: Regular program trace

1: SQA enhanced program trace

R/W 21:20 EOS 0

EOS - Event Out Select

00 = No operation

01 = Emit event out when the CPU enters Debug
Mode

10 = Emit event out for breakpoints/watchpoints
11 = Emit event out for message insertion into the
TXQ

R 19:14 Reserved

R/W 13 DBE 0

DBE - Debug Enable

DBE enables Debug Mode and all debug features
in the CPU. DBE must be written to one to enable
breakpoints, debug requests, or single steps.

R/W 12 DBR 0

DBR - Debug Request

Writing DBR to one while DBE is asserted causes
the CPU to enter Debug Mode. If the CPU was in
sleep mode, it will first be woken up before
entering Debug Mode. The DBR bit is cleared
automatically when Debug Mode is entered.

Table 9-10. Development Control Register

R/W Bit Number Field Name Init. Val. Description
106
32001A–AVR32–06/06

AVR32

AVR32
9.2.15.7 Development Status (DS) register
This register is used to examine the debug state of the CPU and the cause for entering Debug
Mode. Note that multiple sources may trigger Debug Mode simultaneously, causing more than
one bit to be set. The register is read-only. All bits are dynamic and do not require clearing.

11:9 Reserved

R/W 8 SS 0

SS - Single Step

If SS is written to one before exiting Debug Mode
with the retd instruction, exactly one instruction will
be executed before returning to Debug Mode. SS
stays one until written to zero by the debugger.

R/W 7:5 OVC 0

OVC[2:0] - Overrun Control
OVC controls the action taken if Branch, Data, or
Ownership trace messages are generated while
the Transmit Queue is full. Settings 111 though
100 are reserved.

000 = Generate overrun messages

001 = Delay CPU to avoid BTM and Ownership
Trace overruns

010 = Delay CPU to avoid DTM and Ownership
Trace overruns

011 = Delay CPU to avoid BTM, DTM, and
Ownership Trace overruns

111-100 = Reserved

R/W 4:3 EIC 0

EIC[1:0] - EVTI Control

The EIC bits control the action performed when
the EVTI pin on the Nexus debug port receives a
high-to-low transition. If trace is enabled, EVTI can
be configured to cause a trace synchronization
message. If Debug Mode is enabled, EVTI can be
configured to cause a breakpoint.

00 = EVTI for program and data trace
synchronization

01 = EVTI for breakpoint generation

10 = No operation
11 = Reserved

R/W 2:0 TM 0

TM[2:0] - Trace Mode
The TM bits select which trace modes are
enabled.
000 = No Trace

XX1 = OTM Enabled

X1X = DTM Enabled
1XX = BTM Enabled

If Data or Branch tracing is triggered or stopped by
a watchpoint , the DTM and BTM bits are updated
accordingly.

Table 9-10. Development Control Register

R/W Bit Number Field Name Init. Val. Description
107
32001A–AVR32–06/06

This register is undefined when the CPU is not in Debug Mode.

Table 9-11. Development Status register

R/W Bit Number Field Name Init. Val. Description

R 31:29 Reserved 0

R 28 NTBF 0

NTBF - NanoTrace Buffer Full

This bit is set if Debug Mode was entered due to
the NanoTrace buffer being full. This bit is cleared
when Debug Mode is exited.

R 27 EXB 0

EXB -External Breakpoint

This bit is set if Debug Mode was entered due to
an event on the EVTI pin. This bit is cleared when
Debug Mode is exited.

R 26 DBA 0

DBA - Debug Acknowledge
This bit is set if Debug Mode was entered due to
setting the Debug Request or ABORT bit in the
DC register. This bit is cleared when Debug Mode
is exited.

R 25 BOZ 0

BOZ - Break on Opcode Zero
This bit is set if Debug Mode was entered due to
opcode 0x0000 being executed. This bit is cleared
when Debug Mode is exited.

R 24 INC 0

INC - Instruction Complete

0: The CPU is executing one or more instructions,
or is not in OCD Mode.

1: The CPU is in OCD Mode and is not executing
any instructions.

R 23:16 Reserved 0

R 15:8 BP[7:0] 0

BP - Breakpoint Status

The BP bits identify which hardware breakpoint
caused Debug Mode to be entered:

BP[0]: BP0A
BP[1]: BP0B

BP[2]: BP1A

BP[3]: BP1B
BP[4]: BP2A

BP[5]: BP2B

BP[6]: BP3A
BP[7]: BP3B

These bits are cleared when Debug Mode is
exited.

R 7:6 Reserved 0

R 5 DBS 0

DBS - Debug Status

DBS is set when the CPU is in OCD Mode,
otherwise cleared. This bit stays cleared also
when the CPU operates in Monitor Mode.
108
32001A–AVR32–06/06

AVR32

AVR32
9.2.15.8 Debug Instruction Register (DINST)
The Debug Instruction Register contains the instruction to be executed in OCD Mode. The CPU
fetches and executes the instruction faster than they can be written by the Debug port. DINST is
also used to store the instruction to replace the breakpoint instruction.

9.2.15.9 Debug Program Counter (DPC)
This register contains the PC value of the last executed instruction in any non-debug mode. This
allows a debugger to sample program execution addresses for statistical purposes without inter-
rupting the CPU.

If this register is read in Debug Mode, it will reflect the last executed instruction before Debug
Mode was entered. Note that several types of breakpoints trigger before an instruction is exe-
cuted, so this value is not necessarily identical to RAR_DBG.

R 4 STP 0

STP - Stop Status

STP is set if OCD Mode is entered from sleep
mode. This bit can be used by the debugger to
determine the proper return sequence from OCD
Mode. This bit is cleared when OCD Mode is
exited.

R 3 HWE 0

HWE - Hardware Error
This bit is set if a hardware error has triggered
entry to Debug Mode. The debugger should
assume that all status information has been lost,
and write the RES bit in DC to reset the system.
The OCD control and configuration registers
should be reconfigured.

R 2 HWB 0

HWB - Hardware Breakpoint Status

This bit is set if Debug Mode was entered due to a
hardware breakpoint. The BP[7:0] bits should be
examined to determine the breakpoint(s) which
triggered. This bit is cleared when Debug Mode is
exited.

R 1 SWB 0

SWB - Software Breakpoint Status
This bit is set if Debug Mode was entered due to a
breakpoint instruction being executed. Returning
from a software breakpoint may require special
handling by the debugger. This bit is cleared when
Debug Mode is exited.

R 0 SSS 0

SSS - Single Step Status

This bit is set when Debug Mode is entered due to
a single step. This bit is cleared when Debug
Mode is exited.

Table 9-11. Development Status register

R/W Bit Number Field Name Init. Val. Description

Table 9-12. Debug Instruction register

R/W Bit Number Field Name Init. Val. Description

R/W 31:0 DINST 0
DINST - Debug Instruction
The instruction to be executed on the CPU.
109
32001A–AVR32–06/06

When replacing the return instruction from Debug Mode, the CPU will see the DPC value as the
PC value for the executed instruction. The user only needs to write this register when replacing
the return instruction from OCD Mode.

9.2.15.10 CPU Control Mask Register (CPUCM)
This register prevents the OCD from overriding the operation of the CPU Control Register
(CPUCR). A value written to this register is kept until a new value is written or the OCD is reset..

Table 9-13. Debug Program Counter

R/W Bit Number Field Name Init. Val. Description

R/W 31:0 DPC 0
DPC - Debug Program Counter

PC of the last executed instruction

Table 9-14. CPU Control Mask Register

R/W Bit Number Field Name Init. Val. Description

R 31:6 Reserved 0

R/W 5 IEEM 0
Imprecise Execution Enable Mask

When set, the OCD will not disable imprecise
execution.

R/W 4 IBEM 0
Imprecise Breakpoint Enable Mask

When set, the OCD will not disable imprecise PC
breakpoints.

R/W 3 REM 0
Return stack Enable Mask
When set, the OCD will not disable the return
stack.

R/W 2 FEM 0
Branch Folding Enable Mask

When set, the OCD will not disable branch folding.

R/W 1 BEM 0
Branch Prediction Enable Mask

When set, the OCD will not disable branch
prediction.

R/W 0 Reserved 0
110
32001A–AVR32–06/06

AVR32

AVR32
9.3 Debug Port

9.3.1 Overview
The OCD debug port consists of the JTAG port and the AUX port. The low bandwidth JTAG port
handles all register access, while the high bandwidth AUX port transfers all Nexus messages
from the OCD system.

The Nexus standard defines the maximum clock frequency for JTAG to be 33 MHz, and for AUX
200 MHz.

9.3.2 JTAG
Access to OCD register is done through an IEEE1149.1 JTAG-port. The JTAG TAP controller is
shared with the rest of the system. In order to enable access to OCD register the emulator must
perform the following sequence.

1. Put the TAP controller in the state "test logic reset".

2. Insert the OCD Instruction to prepare the Debug Port to receive OCD register access.
The OCD instruction is inserted using the IR scan path.

3. Use the DR scan path to insert the OCD register address and operation (Read / Write).

4. Use the DR scan path to read / write the data to / from the register.

5. Repeat 3 through 4 for every register operation. The TAP controller will remain in OCD
mode until a test logic reset is detected.

To be able to use JTAG-based debug tools for AVR32 without adapters, it is recommended that
a circuit design using an AVR32 device should use a standard 10-pin 50-mil IDC connector with
the pinout shown in Table 9-15. The signals are described in Table 9-16.

Table 9-15. AVR32 standard JTAG connector pinout. All directions relative to processor

Signal Dir Pin Pin Dir Signal

TCK In 1 2 GND

TDO Out 3 4 Out VREF

TMS In 5 6 In RESET_N

N/C 7 8 N/C

TDI In 9 10 N/C

Table 9-16. JTAG signals

Pin Direction Description

TRST_N Input Asynchronous reset for the TAP controller and JTAG registers

TCK Input Test Clock. Data is driven on falling edge, sampled on rising edge.

TMS Input Test Mode Select

TDI Input Test Data In
111
32001A–AVR32–06/06

Figure 9-4. JTAG TAP controller state diagram.

9.3.3 AUX port
The Auxiliary (AUX) port and messaging protocol follow the definitions of the Nexus standard.
This standard allows varying the number of signalling pins. The following configuration is
selected for AVR32 AP.

• 6 data output pins (MDO)

• 2 message start/end output pins (MSEO)

• 1 EVTO pin

• 1 EVTI pin

The configuration is based on the presumed needs for bandwidth in a system being traced at
100+ MIPS, balanced against the desire to keep debug pincount low. This configuration can be
changed in future implementations to allow for greater or smaller bandwidth over the AUX port.

TDO Output Test Data Out

RESET_N Input Device reset

VREF Output Reference voltage from target. Signals should be driven relative to this
voltage level.

Table 9-16. JTAG signals

Pin Direction Description

Test-Logic-
Reset

Run-Test/
Idle

Select-DR
Scan

Select-IR
Scan

Capture-DR Capture-IR

Shift-DR Shift-IR

Exit1-DR Exit1-IR

Pause-DR Pause-IR

Exit2-DR Exit2-IR

Update-DR Update-IR

0

1 1

1

0

0

1

0

1

1

0

0

1

0

1

1

1

0

1 1

0 0

11

0

1

0

0 0

0

0

1

112
32001A–AVR32–06/06

AVR32

AVR32
The AUX pins may be multiplexed with GPIO in a device. By default, the MCKO, MDO, and
MSEO pins are tristated or used as GPIO, and the Nexus functionality must be explicitly enabled
by the debugger. EVTO, EVTI, and the JTAG pins are always available to the debugger.

If the AUX pins are needed for Nexus functionality in an application, it is recommended not to
use these pins for GPIO purposes, as this can affect the signal integrity required for Nexus
operation.

The complete signal list of the AUX port is shown in Table 9-17.

Table 9-17. Auxiliary pins

Auxiliary
pins Width

Direct
ion Description

MCKO 1 O
Message Clockout (MCKO) is a free-running output clock to
development tools for timing of MDO and MSEO pin functions.

MDO 6 O

Message Data Out (MDO[5:0]) are output pins used for all messages
generated by the device. In single datarate mode, external latching of
MDO shall occur on rising edge of MCKO. In double datarate mode,
external latching of MDO shall occur on both edges of MCKO.

MSEO 2 O

Message Start/End Out (MSEO[1:0]) pins indicate when a message on
the MDO pins has started, when a variable length packet has ended,
and when the message has ended. In single datarate mode, external
latching of MSEO shall occur on rising edge of MCKO. In double
datarate mode, external latching of MSEO shall occur on both edges
of MCKO.

EVTO 1 O

Event Out (EVTO) is an output pin which can be configured to toggle
every time a message is inserted into the Transmit Queue, when the
CPU entered OCD Mode, or when a breakpoint or watchpoint hit
occured, as configured by the EOS bits in the Development Control
register .

EVTI 1 I

Event In (EVTI) is an input which, when a high-to-low transition occurs,
a processor is halted (breakpoint) or program and data
synchronization messages are transmitted from the OCD controller, as
configured by the EIC bits in the Development Control register.

RESET_N 1 I System reset
113
32001A–AVR32–06/06

To be able to use AUX-based debug tools for AVR32, a circuit design using an AVR32 device
should use a Mictor38 connector (AMP P/N 767054-1) as defined in the Nexus standard, with
the pinout shown in Table 9-18.

9.3.3.1 Reset configuration
Message transmission can be enabled or disabled according to the state of the EVTI pin when
the JTAG TAP controller is reset. When messaging is enabled, output messages are transmitted
normally. If message transmission is disabled, the auxiliary output pins (MCKO, MDO, MSEO)
are tristated, and no messages will be transmitted.

Reset configuration information must be valid on EVTI at least 2 TCK periods prior to negation of
TRST or exit from the TEST-LOGIC-RESET TAP state. The AUX port will be enabled as shown
in Table 9-19.

If the Nexus port is disabled after reset, the debugger can still enable the port by writing to the
AXC:AXE (Auxiliary Enable) bit to enable trace functionality at any time before trace is activated.

Table 9-18. AVR32 standard Nexus connector pinout. All directions relative to processor

Signal Dir Pin Pin Dir Signal

MSEO0 Out 38 37 N/C

MSEO1 Out 36 35 N/C

MCKO Out 34 33 N/C

EVTO_N Out 32 31 N/C

MDO0 Out 30 29 N/C

MDO1 Out 28 27 N/C

MDO2 Out 26 25 N/C

MDO3 Out 24 23 N/C

MDO4 Out 22 21 In TRST_N

MDO5 Out 20 19 In TDI

N/C 18 17 In TMS

N/C 16 15 In TCK

N/C 14 13 N/C

VREF Out 12 11 Out TDO

EVTI_N In 10 9 In RESET_N

N/C 8 7 N/C

N/C 6 5 N/C

N/C 4 3 N/C

N/C 2 1 N/C
114
32001A–AVR32–06/06

AVR32

AVR32
Debug functionality based on the JTAG or EVTI or EVTO pins is still available even if the AUX
port is disabled.

9.3.3.2 Message protocol
The OCD System implements the Auxiliary Port Message Protocol defined in the Nexus stan-
dard. The following section is merely a summary of this protocol. For details, please see the
Nexus standard.

Messages are composed of a Start-of-Message (SOM) token, followed by one or more packets
of information, each of fixed or variable length, and ended by an End-of-Message (EOM) token.
SOM/EOM and End-of-Variable-Length-Packets (EVLP) are signalled by MSEO for transmitted
messages. Packet information is carried by the MDO pins. The number of MDO pins available is
known as the port boundary. The information carried by the MDO and MSEO pins each cycle is
known as a frame.

9.3.3.3 Message rules
MDO is valid whenever MSEO does not indicate "idle".

Fixed length packets are implicitly recognized from the message format, and are not required to
end on a port boundary. Thus, packets may also start within a port boundary if following a fixed
length packet. The end of variable length packets is identified through the MSEO pins, and to
identify the end of the packet uniquely, these packets must end on a port boundary. If neces-
sary, the packet must be stuffed with zeroes to align the end to a port boundary. Variable length
packets may be truncated by omitting leading zeroes so that the packet ends on the first possi-
ble port boundary.

• The MSEO pins behave the following way ("x" means "don’t care"):

• 0b11 followed by 0b00 indicates SOM

• 0b0x followed by 0b11 indicates EOM

• 0b00 followed by 0b01 indicates EVLP

• MSEO is 0b00 at all other clocks during transmission of a message

• MSEO is 0b11 at all clocks when idle.

9.3.3.4 Clock and frame rate
In single datarate mode (default), MDO and MSEO should be sampled by an external tool on the
rising edge of MCKO. In double datarate mode, the MCKO clock runs at half frequency, so MDO
and MSEO should be sampled on both edges of MCKO. This is configured by the Double Dat-
arate bit in the AUX Port Control Register.

It is also possible to reduce the frequency of the AUX port compared to the CPU clock by writing
the AXC:LS and AXC:DIV bits. If LS=1, the DIV value selects the frame rate of the AUX port:

fAUX = fCPU/(DIV+1)

If LS=1 and DIV=0, fAUX = fCPU/2.

Table 9-19. EVTI pin reset configuration

Reset state Description

0 Message transmission enabled

1 Message transmission disabled (default)
115
32001A–AVR32–06/06

 This can be combined with the single or dual datarate mode, as described above. In either
case, the sampling edge will be as close to the middle of the MDO data frame as possible. The
duty cycle of the MCKO clock will stay within the 40-60 duty cycle requirement of the Nexus
standard for all settings apart from DIV=2.

9.3.3.5 Example
Figure 9-5 shows an example of transmission of a Program Trace Indirect Branch message. The
TCODE is fixed at 6 bits (=4 for PTIB), followed by a fixed-length packet (EVT-ID = 2), and a
variable-length packet (I-CNT = 63). I-CNT is stuffed with zeroes to fit the port boundary. Finally,
the variable packet U-ADDR (=5) is transmitted. Since this leading zeroes of this packet can be
truncated, it fits within a single frame.

Figure 9-5. Example of a Nexus message transmission with single and double datarate.

9.3.3.6 Transmit queue and overruns
Messages from various sources are inserted in a Transmit Queue (TXQ), which stores a number
of frames. This queue acts as a FIFO which allows messages to be inserted more rapidly than
they can be retrieved by the emulator.

The queue holds 16 frames. If more messages are inserted than there is room for in the queue,
information will be lost, and an overrun situation occurs. The TXQ will block any more messages
from being inserted, and allow the queue to be emptied by the emulator before allowing any
more messages to be inserted. The first message to be inserted after the overrun is cleared, is
an Error message, which informs the emulator that an overrun has occurred and which types of
trace messages have been lost. After this, transmission continues as normal.

Alternatively, the user can configure the OCD to halt the CPU to prevent overruns. This can be
done selectively for different message types, and is controlled by writing to the Overrun Control
(OVC) bits in the DC register.

9.3.3.7 Trace and reset
All pending trace messages in the Transmit Queue are flushed if: the OCD is reset by a system
reset; the OCD is disabled; or an application reset is triggered by writing to the DC:RES bit.

Thus, if the CPU is reset, but not the OCD, the program flow can be observed by program trace.
However, if the debugger resets the system, the remaining messages in the queue are of no
value, and expected to be flushed.

MCKO (DDR=1)

MCKO (DDR=0)

MSEO[1..0] 1 1 0 0 0 1 1 1

MDO[5..0] 0 0 0 1 0 0 1 1 1 1 1 0 0 0 0 0 1 1 0 0 0 1 0 1

TCODE = 4
EVT-ID = 2

I-CNT = 63

U-ADDR = 5
Zero stuffing

IDLE SOM NORMAL EVLP EOM
116
32001A–AVR32–06/06

AVR32

AVR32
Note that if the OCD is disabled (by clearing DC:DBE or by a system reset), trace is suspended
until DC:DBE is written to one. The DC:TM bits must be written simultaneously, and define which
trace features should now be active.

Similarly, when an application reset is triggered by writing DC:RES, the DC:TM bits are written
simultaneously and define which trace features should now be active.

9.3.4 Messages

9.3.4.1 Error
The error message indicates various errors that can occur during trace or debugging. Table 9-21
lists the various errors that can be reported, along with the associated ECODE.

If trace messages are lost because of insufficient space in the Transmit Queue, an error mes-
sage is transmitted, followed by a synchronization message, as soon as space is available in the
Transmit Queue.

Table 9-20. Error

Indirect Branch Message with Sync Direction: From target

 Packet Size
(bits) Packet Name Packet Type Description

5 ECODE Fixed Error code. Refer to Table 9-21.

6 TCODE Fixed Value = 8

Table 9-21. Error codes

ECODE Description

0b00000 Ownership trace overrun

0b00001 Program trace overrun

0b00010 Data trace overrun

0b00011 -
0b00101

Reserved

0b00110 Watchpoint overrun.

0b00111 Program and/or data and/or ownership trace overrun.

0b01000 Program trace and/or data and/or ownership trace and/or watchpoint overrun.

0b01001 -
0b11111

Reserved
117
32001A–AVR32–06/06

9.3.5 Registers

9.3.5.1 Auxiliary Port Control Register (AXC)
Table 9-22 shows the description of the Auxiliary Port Control Register. This register allows
greater flexibility in controlling the operation of the AUX port than specified by the Nexus stan-
dard. This includes enabling the AUX port, and controlling the speed of the clock and data
compared to the CPU clock.

Table 9-22. AUX Port Control Register

R/W Bit Number Field Name Init. Val. Description

R 31:14 Reserved 0
Reserved

These bits are reserved, and will always read as 0

R/W 13 REXTEN 0
This bit is reserved for internal test purposes and
should be written to zero.

R/W 12 REX 0
This bit is reserved for internal test purposes and
should be written to zero.

R/W 11 LS 0

LS - Low Speed

0:AUX port runs at the same speed as the CPU

1:AUX port runs at reduced speed compared to
the CPU.

R/W 10 DDR 0

DDR - Double Data Rate

Setting this bit halves the MCKO rate so that MDO
data must be sampled on both edges of MCKO.

1 = Double data rate mode

0 = Single datarate mode

R/W 9 AXS 0

AXS - Auxiliary Port Select

0: AUX port is used for GPIO
1: AUX port is used for Nexus operation.

This bit does not need to be written in devices with
dedicated AUX pins

R/W 8 AXE 0
AXE - Auxiliary Port Enable
0: AUX port is tristated

1: AUX port is used for Nexus operation.

R 7:4 Reserved 0
Reserved

These bits are reserved, and will always read as 0

R/W 3:0 DIV 0
DIV - Division factor

If LS=1, the DIV value selects the frame rate of the
AUX port.
118
32001A–AVR32–06/06

AVR32

AVR32
9.4 Breakpoints

9.4.1 Overview
The Nexus Recommended Register map supports up to 8 universal breakpoints. However since
the AVR32 AP hardware employs separate instruction and data memories, the OCD system
must also separate program and data breakpoints. Any breakpoint can also be programmed as
a watchpoint. The watchpoint will trigger a Watchpoint Hit message. The OCD system supports
up to six program breakpoints modules and two data breakpoint modules. In addition to this, the
data trace modules can also be used as data address watchpoints. The trace watchpoints result
in a vendor defined Trace Watchpoint Hit message.

Figure 9-6. Breakpoint modules.

Program
BP/WP

Data
BP/WP

CPU

PC

Trace
BP/WP

Data
Address
Data Value

Data
Address
119
32001A–AVR32–06/06

Figure 9-7. Breakpoint unit overview.

9.4.2 Breakpoint Unit description
The Breakpoint unit consists of the units shown in Figure 9-7. The PC Breakpoint Unit (PBU)
handles the program counter breakpoints. The PBU can have up to 6 PC breakpoint modules
that can match on a single PC. Two modules can be combined to give a match on a range of PC
values, thus up to three ranges can be defined. The PBU is configured with registers Breakpoint
/ Watchpoint Control (BWC) and Breakpoint / Watchpoint Address (BWA) 0A, 0B, 1A, 1B, 2A,
and 2B.

The Data Breakpoint Unit handles data breakpoints. The data breakpoints can be configured
with the BWC / BWA / BWD 3A and 3B registers, as well as EPC3.

Data
Breakpoint
Unit

PC
Breakpoint
Unit

PC
Breakpoint
Module 0A

PC
Breakpoint
Module 0B

PC
Breakpoint
Module 1A

PC
Breakpoint
Module 1B

PC
Breakpoint
Module 2A

PC
Breakpoint
Module 2B

Data
Breakpoint
Module 3A

Event Pair 3
Address Range
Double Word

Data
Breakpoint
Module 3B

6 PC
Breakpoints

6 PC
Watchpoints

2 Data
Breakpoints

2 Data
Watchpoints

Watchpoint
Message
Generator

Messages to
Transmit Queue

Program
Trace
Unit

Data
Trace
Unit

Trigger
Unit

5 PC Watchpoints
2 Data Watchpoints

Start/
Stop

Start/
Stop

2 Range Data
Watchpoints

Debug
Optimization
Unit

CPU
Control signals
120
32001A–AVR32–06/06

AVR32

AVR32
The Watchpoint Message Generator (WMG) generates watchpoint messages for all breakpoint
modules and data trace watchpoints.

Optionally, a breakpoint or watchpoint can be signalled by a pulse on the EVTO pin. This
requires DC:EOS bits to be set to 1 and EOC in the corresponding Breakpoint/Watchpoint Con-
trol Register must be written to one.

9.4.2.1 Program Breakpoints
In order to enable a simple program breakpoint the Breakpoint / Watchpoint Address (BWA) and
Breakpoint / Watchpoint Control (BWC) registers for that breakpoint must be updated.

The BWA register must be written with the address of the instruction where the debugger wants
to halt.

BWA operates on virtual addresses. In order to get a precise match on a virtual address if MMU
is enabled, Address Space Identifier (ASID) matching must be enabled in the BWC, and the
ASID must be written to the ASID field of the BWC. If the ASID to match on will be read from the
current ASID in the MMU.

The BWC must have the Breakpoint / Watchpoint Enable (BWE) field set to breakpoint.

Program breakpoints break on the instruction pointed to by BWA. The instruction will cause a
debug exception and the Debug Mode Return Address Register (RAR_DBG) and Debug Mode
Return Status Register (RSR_DBG) will point to the instruction that caused the debug exception.
The Development Status register will also be updated to indicate which breakpoint caused the
exception. In OCD Mode the debug tool can then feed the CPU with debug code to ascertain the
state of the processor. In OCD Mode the breakpoint modules are disabled.

Upon return from Debug Mode, the PC and SR will be restored from the RAR_DBG and
RSR_DBG and the instruction that caused the debug exception will be fetched again. If the pro-
gram breakpoint has not been disabled in Debug Mode, the Ignore First Match (IFM) bit in the
Development Control (DC) register must be written to one to avoid triggering another breakpoint
on the first instruction after exiting Debug Mode. The IFM bit prevents any Program Breakpoint
operation on the first instruction after exiting Debug Mode.

The AME bit in the BWCA registers can be used to enable a bitwise address masking. When
AME is enabled the BWA register in the B module is used as a noninverting bitwise mask that is
applied to the PC and the value in BWA register in the A module. The A breakpoint will thus trig-
ger when PC = BWAnA & BWAnB. The B breakpoint will never trigger when AME is enabled.

9.4.2.2 Watchpoints
When enabled in the BWC, a watchpoint message is sent when the instruction address matches
the address stored in BWA. If both a Trace watchpoint and a Watchpoint triggers at the same
time, the Trace watchpoint will be ignored and only a Watchpoint Hit message will be generated.

Note that Program, Data, and Trace watchpoints are generated at different pipeline stages and
will not be synchronized when the messages are generated. A Program Watchpoint on a load
store instruction will hit before a data watchpoint on the same instruction.
121
32001A–AVR32–06/06

9.4.2.3 Data Breakpoints
Data Breakpoint modules listen on the data address and data value lines between the CPU and
the data cache and can halt the CPU, or send a watchpoint message, if the address and / or
value meets a stored compare value. Unlike program breakpoints, data breakpoints halt on the
next instruction after the load / store instruction that caused the breakpoint has completed.

The BWA register must be written with the address of the data the debugger wants to halt on.
BWA matches on virtual addresses. In order to get a precise match on a virtual address when
MMU is enabled, the Address Space Identifier (ASID) matching must be enabled in the BWC,
and the ASID must be written to the ASID field of the BWC. The ASID to match on will be read
from the current ASID in the MMU.

As shown in Figure 9-8 the data breakpoint modules snoop on the address and data lines
between the CPU and the data cache. This ensures that the data breakpoints only trigger on
actual load / store operations and not on prefetch or other automated cache related accesses.
This is required for data breakpoints to be consistent with the CPUs view of the data memory. It
does however, have the effect that a write to cached memory will trigger before the write has
been flushed to memory. Uncached writes will trigger as they are written to the memory.

Data breakpoints are not available in Monitor Mode.

Figure 9-8. Data breakpint interface.

9.4.2.4 Data alignment
The AVR32 can read or write data in bytes, halfwords, or words. The same data location can be
accessed through either operation, e.g. a byte location can be accessed as part of a double
word. The data bus operations seen by the OCD system are always aligned, i.e. halfwords start
on halfword boundaries, word accesses start on word boundaries, as illustrated in Figure 9-9. If
the data bus operation is a double word load / store, the breakpoint module will see the word
data value which corresponds to the address in BWA.

CPU

Data Cache

Memory

DataData
Address

System Bus

Data
Breakpoints
122
32001A–AVR32–06/06

AVR32

AVR32
One data breakpoint module can only compare 32 bits of data. The data to be matched can
therefore not cross a word boundary if the data breakpoint is to match correctly. When the
debugger wants to match on a byte or halfword, the BWD register must be written with the LSB
aligned, and the BWC:BME bits must be set to mask the upper bits of the BWD register.

For example, if the debugger wants to match against Byte 1 in Figure 9-9, the BWA must be set
to the byte address of Byte 1 and the BWD written with the value to match on aligned to LSB.
Also the BWC:BME must be set to mask the 24 most significant bits of the BWD register (BME =
0xE).

By default, the data breakpoint module will match on the data value regardless of the size of the
access. The data BWC can also be set to match on a specific access size if the SIZE bits are
set. The debugger can for example, set the breakpoint module to match only on byte writes to
byte 1 in Figure 9-9. The BWD register must still be aligned correctly, and the byte mask must be
set, but the data breakpoint will only trigger if a single byte is written to byte 1 and not if, for
example, a whole word is written to byte 0, 1, 2, and 3.

The OCD system can also break on a 64-bit value if both data breakpoint modules are combined
as shown in Figure 9-10. Setting the Double Word Enable (DWE) bit in EPC3 will cause break-
point module A to trigger only if both breakpoint module A and B matches. The debugger can
then set the BWA3A and BWD3A to the least significant word in the double word and the
BWA3B and BWD3B to the most significant word of the double word. BWC3A:BWE control the
breakpoint operation of the combined breakpoint, while BWC3B:BWE is disregarded.

For example , to se t a b reakpo in t when the add ress 0x800C is w r i t ten to
0x0123456789ABCDEF, the registers must be configured as follows:

• EPC3 = (DWE)

• BWC3A = (BWE | BRW | BWO*3 | SIZE*7)

• BWC3B = (BWE | BRW | BWO*3 | SIZE*7)

• BWA3A = 0x8010

• BWA3B = 0x800C

• BWD3A = 0x89ABCDEF

• BWD3B = 0x01234567

Figure 9-9. Memory access data alignment.

Word

Byte 0 Byte 3Byte 2Byte 1

Halfw ord 0 Halfw ord 1

0x8008

0x8004

0x8000

0123

W
ord Address

Double w ord byte 4 to 7

Double w ord byte 0 to 3

0x800C

0x8010
123
32001A–AVR32–06/06

Figure 9-10. Data breakpoint alignment.

9.4.2.5 Unaligned accesses
The CPU supports unaligned accesses by breaking the operation down into multiple aligned
accesses. This means that one ld/st instruction from the CPU can be seen as many sequential
operations on the databus, depending on the alignment of the data to be accessed:

• Unaligned double word load / store is seen as a sequence of word loads / stores.

• Unaligned store word is seen as a sequence of stores which may have different sizes. Eg
st.b , st.h, st.b for byte aligned st.w

• Unaligned load word is always done as two load words.

9.4.3 Advanced features

9.4.3.1 Ranges
It is possible to compine both data breakpoint modules to break on a range of data addresses.
Range is enabled using the EPC3 register. Whenever a data breakpoint range is used data
value matching should be disabled.

The debugger can set up an event pair to give a breakpoint or watchpoint on a range of instruc-
tion addresses. The event pair will then configure the A and B address comparator to give a
match if the instruction address is less than or equal to the BWA. Using the Range (RNG) bits of
the Event Pair Control (EPC) register either inclusive or exclusive ranges can then be set up as
shown in Table 9-23.

When ranges are enabled, the BWC:BWE of module A will control the ranged breakpoint, mod-
ule B will be disabled.

9.4.4 Triggering trace
A watchpoint from the program or data breakpoint modules can be used to start or stop program
or data trace. This is done using a trigger unit. The trigger unit can be configured using the
watchpoint trigger register. When the trigger unit is set to start trace upon a watchpoint, DC:TM
will be set accordingly, and trace will then be enabled. If a data watchpoint enables data trace,
the data event is not included in the data trace output, while an event which disables data trace
is included in the data trace output.

Data Breakpoint Module B Data Breakpoint Module A

Doublew ordWord

Byte 0 Byte 3Byte 2Byte 1

Halfw ord 0 Halfw ord 1

MSB LSB LSBMSB
Data Breakpoint Module

LSBMSB

0x800C 0x8010

Table 9-23. Range settings.

EPC3: RNG Resulting Range

10 BWA3A < ADDR <= BWA3B

01 ADDR <= BWA3A or ADDR > BWA3B
124
32001A–AVR32–06/06

AVR32

AVR32
9.4.5 Messages

9.4.5.1 Watchpoint Hit (WH)

9.4.5.2 Trace Watchpoint Hit (TWH)

9.4.6 Registers

9.4.6.1 PC Breakpoint/Watchpoint Address registers (BWA0A, BWA0, BWA1A, BWA1B, BWA2A, BWA2B)
The 6 BWA registers contains one instruction address each. The address can be used for a sin-
gle breakpoint match or used as bitwise mask to create a range.

Table 9-24. Watchpoint Hit

Watchpoint Message Direction: From target

Packet
Size

Packet
Name

Packet
Type Description

8 WPHIT Fixed

XXXXXXX1 = Watchpoint 0 matched

XXXXXX1X = Watchpoint 1 matched
...

X1XXXXXX = Watchpoint 6 matched

1XXXXXXX = Watchpoint 7 matched

6 TCODE Fixed Value = 15

Table 9-25. Trace Watchpoint Hit

Trace Watchpoint Message Direction: From target

Packet
Size

Packet
Name

Packet
Type Description

2 WPHIT Fixed
X1 = Watchpoint 0 matched
1X = Watchpoint 1 matched

6 TCODE Fixed Value = 56

Table 9-26. PC BWAnx Register

R/W Bit Number Field Name Init. Val. Description

R/W 31:0 BWA 0 Breakpoint/Watchpoint Address
125
32001A–AVR32–06/06

9.4.6.2 PC Breakpoint/Watchpoint Control registers - (BWC0A, BWC0B, BWC1A, BWC1B, BWC2A, BWC2B)

Table 9-27. PC BWCnx Register

R/W Bit Number
Field
Name Init. Val. Description

RW 31:30 BWE 00

BWE - Breakpoint / Watchpoint Enable
00 = Disabled

01 = Breakpoint enabled

10 = Reserved
11 = Watchpoint enabled

R 29:26 Reserved 0 Reserved

RW 25 AME 0

AME - Address Mask Enable

This bit is only present in BWCxA registers.
0 = Disabled.

1 = Enabled. BWAxB will be used to bitwise mask
the PC compare according to this function:

BP A: (PC & BWA_B) == (BWA_A & BWA_B)

BP B: Will never trigger

R 24:15 Reserved 0 Reserved

R 14 EOC 0

EOC - EVTO Control

0 = Breakpoint/watchpoint status indication not
output on EVTO

1 = Breakpoint/watchpoint status indication is
output on EVTO

R 13:9 Reserved 0 Reserved

RW 8:1 ASID 0x00
ASID - Asid to match

The 8 bit ASID to match when ASID matching is
enabled.

RW 0 ASIDEN 0

ASIDEN - ASID match enable

0 = Disabled.

1 = Enabled. The breakpoint module will only give
a match if the ASID also matches.
126
32001A–AVR32–06/06

AVR32

AVR32
9.4.6.3 Event Pair Control 3 (EPC3)

9.4.6.4 Data Breakpoint / Watchpoint Address (BWA3A, BWA3B)

9.4.6.5 Data Breakpoint / Watchpoint Data (BWD3A, BWD3B)

Table 9-28. Data Event Pair Control (EPC3) Register

R/W Bit Number Field Name Init. Val. Description

R 31:3 - Reserved

RW 2 DWE 0

DWE - Enable combined Double Word value
compare

0 = Disabled (Default)
1= Combine two event units to do 64 bit
compare
If enabled both data breakpoint modules units
will be combined to do a single 64 bit value
compare

RW 1:0 RNG 0b00

RNG - Range Enable

00: disabled

01: Exclusive range (PC <= Even or PC >
Odd)

10: Inclusive range (Even < PC <= Odd)
11: Reserved

Table 9-29. Data Breakpoint/Watchpoint address (BWA3x) register

R/W Bit Number Field Name Init. Val. Description

RW 31:0 BWA 0x00000000
Address of data for breakpoint or watchpoint
generation.

Table 9-30. Data Breakpoint/Watchpoint data (BWD3x) register

R/W Bit Number Field Name Init. Val. Description

RW 31:0 BWD 0x00000000
Data value for breakpoint or watchpoint
generation.
127
32001A–AVR32–06/06

9.4.6.6 Data Breakpoint / Watchpoint Control (BWC3A, BWC3B)

Table 9-31. Data Breakpoint / Watchpoint Control (BWC3x)

R/W Bit Number Field Name Init. Val. Description

RW 31:30 BWE 00

BWE - Breakpoint / Watchpoint Enable

00 = Disabled

01 = Breakpoint enabled
10 = Reserved

11 = Watchpoint enabled

RW 29:28 BRW 00

BRW - Breakpoint/Watchpoint Read/Write
Select
00 = Break on read access

01 = Break on write access

10 = Break on any access
11 = Reserved

R 27:24 Reserved 00 Reserved

RW 23:20 BME 0x0

BME - Breakpoint/Watchpoint Data Mask

1XXX = Mask bits 31:24 in BWD
X1XX = Mask bits 23:16 in BWD

XX1X = Mask bits 15:8 in BWD

XXX1 = Mask bits 7:0 in BWD

R 19:18 Reserved 00 Reserved

RW 17:16 BWO 000

BWO - Breakpoint/Watchpoint Operand

1X = Compare with BWA value

X1 = Compare with BWD value

R 15:12 Reserved 0 Reserved

R/W 11:9 SIZE 000

SIZE - Size bits to match

0xx = Disregard access size (Default)

100 = Byte access
101 = Halfword access

110 = Word access

111 = Reserved

RW 8:1 ASID 0x00
ASID - Asid to match

The 8 bit ASID to match when ASID matching
is enabled.

RW 0 ASIDEN 0

ASIDEN - ASID match enable

0 = Disabled.

1 = Enabled. The breakpoint module will only
give a match if the ASID also matches.
128
32001A–AVR32–06/06

AVR32

AVR32
9.4.6.7 Watchpoint Trigger

Table 9-32. WT, Watchpoint Trigger Register

R/W Bit Number Field Name Init. Val. Description

R/W 31:29 PTS 000

PTS - Program Trace Start

000 = Trigger disabled

001 = Program watchpoint 0b
010 = Program watchpoint 1a

011 = Program watchpoint 1b

100 = Program watchpoint 2a
101 = Program watchpoint 2b

110 = Data watchpoint 3a

111 = Data watchpoint 3b

R/W 28:26 PTE 000

PTE - Program Trace End

000 = Trigger disabled
001 <-> 111 Watchpoint selected as for PTS

R/W 25:23 DTS 000
DTS - Data Trace Start
000 = Trigger disabled

001 <-> 111 Watchpoint selected as for PTS

R/W 22:20 DTE 000

DTE - Data Trace End

000 = Trigger disabled

001 <-> 111 Watchpoint selected as for PTS

R 19:0 Reserved - Reserved
129
32001A–AVR32–06/06

9.5 Program trace

9.5.1 Program trace overview
The AVR32 OCD system provides program trace support via the debug port. The program trace
feature implements a Program Flow Change Model in which the program trace is synchronized
at each program flow discontinuity. This occurs at taken indirect branches and exceptions. A
record of taken / not taken direct branches is included so that the complete program flow can be
decoded.

The development tool can then interpolate what transpires between each program trace mes-
sage by correlating information from branch target messaging and static source or object code
files. Self-modifying code cannot be traced with the Program Flow Change Model because the
source code is not static.

The TM[2] bit in the Development Control register must be set to enable program trace.

9.5.1.1 Branch message summary
Five types of branch messages can be generated:

1. Program Trace, Indirect Branch is transmitted on most subroutine calls, returns, inter-
rupts, exceptions, and any situation where the target address of a branch cannot be
determined from the source code. This message contains the instruction count to iden-
tify the branch and the target PC to identify the branch target.

2. Program Trace Synchronization is transmitted to indicate the current PC after starting
trace or after trace synchronization is lost.

3. Program Trace, Indirect Branch messages with sync contain both instruction count and
PC, and are transmitted instead of a Program Trace Synchronization message if a syn-
chronization condition occurs and the current instruction is a taken direct/indirect
branch.

4. Program Trace, Resource full messages is transmitted when an internal buffer over-
flows. ICNT is transmitted whenever it overflows with this message.

5. Program Trace Correlation. This message is transmitted to synchonize the program
trace with an event. Sent when trace is disabled, debug mode is entered or sleep mode
is entered.

The Nexus standard also specifies Program Trace Correction messages to correct for specula-
tively transmitted trace messages, but these are not implemented in the AVR32, since program
trace messages are only transmitted for actually executed instructions. Similarly, the Nexus-
specified CANCEL packet of synchronized branch messages is not implemented in AVR32.

Entry into Debug Mode will generate an program trace correlation message, while no trace mes-
sages are generated while executing in Debug Mode. A Program Trace Synchronization
message is transmitted when Debug Mode is exited.

9.5.2 Branch message packets
The program trace messages contain packets which identify the address of the taken branch,
the target of the branch, and the current program counter value. These packets are discussed
below.
130
32001A–AVR32–06/06

AVR32

AVR32
9.5.2.1 Instruction count packet
In several of the program trace messages, an Instruction Count (I-CNT) packet is included, to
identify the number of sequentially executed instruction units since the last program trace mes-
sage. In AVR32, this figure refers to bytes, i.e. compact instructions count two bytes and
extended instructions are four bytes.

The following rules apply to instruction counts:

• A taken indirect branch which generates a trace message is not included in the instruction
count.

• An indirect branch which is not taken is included in the instruction count.

• Speculatively fetched instructions are not counted until they are actually executed.

• The instruction counter is reset every time a program trace message is generated.

9.5.2.2 Compressed program counter packets
To save bandwidth, the Nexus messages employ compressed versions of the program counter
address. These include:

U-ADDR = StripLeadingZeros (Previous sent addr xor uncompressed address from pipeline).

F-ADDR = Full target address for a taken branch. Leading zeroes may be truncated.

9.5.3 Special cases

9.5.3.1 Debug Mode
When entering Debug Mode, a PTC message is generated with EVCODE = 0.

When exiting Debug Mode, a PTSY message is generated. If the instruction also generates a
branch message, the branch message with sync (i.e. PTDBS or PTIBS) is generated instead of
PTSY. In this case, the address of the instruction which generated the branch message can not
be explicitly reconstructed from the trace log, but the debugger will normally know which address
was returned to when Debug Mode was exited.

If a breakpoint occurs on the first instruction after exiting Debug Mode, a PTC message with
EVCODE = 0 is generated.

9.5.4 Messages

9.5.4.1 Program Trace, Direct Branch
This message is output by the target processor whenever there is a change of program flow
caused by a conditional or unconditional branch. The instruction count (I-CNT) is included to
identify the branch address. The following AVR32 instructions can cause a direct branch:

Table 9-33. Direct branch instructions

Mnemonic Description

br{cond3} Compact
Branch if condition satisfied.

br{cond4} Extended

rjmp Compact Branch if condition satisfied.
131
32001A–AVR32–06/06

9.5.4.2 Program Trace, Direct Branch with Target Address
This message is transmitted instead of the Direct Branch message when SQA enhanced pro-
gram trace is enabled by writing DC:SQA to one. This simplifies real-time PC reconstruction in
the emulator for real-time code coverage and performance analysis purposes.

9.5.4.3 Program Trace, Indirect Branch
An indirect branch is output by the target processor whenever there is a change of program flow
caused by a subroutine call, return instruction, interrupt, or exception.

Messages for taken indirect branches and exceptions include how many sequential bytes were
executed since the last taken branch or exception, and the unique portion of the branch target
address or exception vector address. The unique portion of the branch is found by doing an
exclusively or on the branch target and the last sent UADDR / FADDR. Additionally, the cause
of the indirect branch is identified through an Event ID packet. Operations causing indirect
branches and their corresponding EVT-ID are shown below.

Note that subrotine returns are often accomplished by a mov pc, lr, popm or ldm instruction with
PC included in the argument list. This generates an EVT-ID of 0 instead of 1.

Table 9-34. Direct Branch message without sync

Direct Branch Message Direction: From target

Packet Size
(bits)

Packet
Name

Packet
Type Description

8 I-CNT Variable Number of bytes executed since the last taken branch.

6 TCODE Fixed Value = 3

Table 9-35. Direct Branch message with Target Address

Direct Branch Message with Sync Direction: From target

 Packet
Size (bits)

Packet
Name

Packet
Type Description

32 U-ADDR Variable
The unique portion of the branch target address for a taken
indirect branch or exception. Most significant bits that have a
value of 0 are truncated.

8 I-CNT Variable Number of bytes executed since the last taken branch.

6 TCODE Fixed Value = 57

Table 9-36. Operations causing indirect branch messages

Description Operation EVT-ID

Exception entry Exception, interrupts (0 to 3), NMI, entry to Debug Mode 3

Subroutine call acall, icall, mcall, jcall, scall, rcall instruction 2

Branch via register
contents

Any mov (except mov pc, lr) or load (except popm/ldm) with
PC as destination.

Any arithmetic instruction with PC as destination.
1

Return
ret{cond4}, rete, rets, retj, (mov pc, lr), popm/ldm loading
PC

0

132
32001A–AVR32–06/06

AVR32

AVR32
.

9.5.4.4 Program Trace Synchronization
This message is output by the PTU when any of the following conditions occurs:

1. Upon exit from reset. This is required to allow the number of instruction units executed
packet in a subsequent Program Trace Message to be correctly interpreted by the tool.

2. When program trace is enabled during normal execution of the embedded processor.

3. Upon exit from a power-down state. This is required to allow the number of instruction
units executed packet in a subsequent Program Trace Message to be correctly inter-
preted by the tool.

4. Upon exiting from Debug Mode.

5. An overrun condition had previously occurred in which one or more branch trace occur-
rences were discarded by the target processor’s debug logic.To inform the tool that an
overrun condition occurred, the target outputs an Error Message (TCODE = 8) with an
ECODE value of 00001 or 00111 immediately prior to the Program Trace Synchroniza-
tion Message.

6. A debug control register field specifies that EVTI pin action is to generate program trace
synchronization, and the Event-In (EVTI) pin has been asserted.

7. Upon overflow of the sequential instruction unit counter.

8. After 256 branch messages without sync.

Table 9-37. Indirect branch message without sync

Indirect Branch Message Direction: From target

Packet
Size (bits)

Packet
Name

Packet
Type Description

32 U-ADDR Variable
The unique portion of the branch target address for a taken
indirect branch or exception. Most significant bits that have a
value of 0 are truncated.

8 I-CNT Variable Number of bytes executed since the last taken branch.

2 EVT-ID Fixed

Cause of indirect branch:

3: Exception entry
2: Call

1: Branch via register contents

0: Return

6 TCODE Fixed Value = 4

Table 9-38. Program Trace Synchronization Message

Program Trace Sync Message Direction: From target

 Packet
Size (bits)

Packet
Name

Packet
Type Description

32 PC Variable
The full current instruction address. Most significant bits that
have a value of 0 are truncated.

8 I-CNT Variable Number of bytes executed since the last taken branch.

6 TCODE Fixed Value = 9
133
32001A–AVR32–06/06

9.5.4.5 Program Trace, Direct Branch with Sync
If a Program Trace Synchronization message occurs on an instruction which transmits a direct
branch message, the Direct Branch with Sync message is transmitted instead of the Program
Trace Synchronization message. The Direct Branch with Sync message contains the instruction
count referring to the taken branch, as well as the complete PC value of the branch target.

The format for direct branch messages with sync is shown below. The AVR32 OCD system
never issues speculative branch messages and there is therefore no CANCEL packet.

9.5.4.6 Program Trace, Indirect Branch with Sync
If a Program Trace Synchronization message occurs on an instruction which transmits an indi-
rect branch message, the Indirect Branch with Sync message is transmitted instead of the
Program Trace Synchronization message. The Indirect Branch with Sync message contains the
instruction count referring to the taken branch, as well as the complete PC value of the branch
target.

The format for indirect branch messages with sync is shown below. The AVR32 OCD system
never issues speculative branch messages and there is therefore no CANCEL packet.

9.5.4.7 Program Trace, Resource Full
This message is output whenever an internal resource (sequential instruction counter) has
reached its maximum value. To avoid losing information when this resource becomes full, the
Resource Full message is transmitted. The information from this message is added with infor-
mation from subsequent messages to interpret the full picture of what has transpired. Multiple

Table 9-39. Direct Branch message with Sync

Direct Branch Message with Sync Direction: From target

 Packet
Size (bits)

Packet
Name

Packet
Type Description

32 F-ADDR Variable
The full target address for a taken direct branch. Most
significant bits that have a value of 0 are truncated.

8 I-CNT Variable Number of bytes executed since the last taken branch.

6 TCODE Fixed Value = 11

Table 9-40. Indirect Branch message with Sync

Indirect Branch Message with Sync Direction: From target

 Packet
Size (bits)

Packet
Name

Packet
Type Description

32 F-ADDR Variable
The full target address for a taken direct branch. Most
significant bits that have a value of 0 may be truncated.

8 I-CNT Variable Number of bytes executed since the last taken branch.

2 EVT-ID Fixed

Cause of indirect branch:

3: Exception entry
2: Call

1: Branch via register contents

0: Return

6 TCODE Fixed Value = 12
134
32001A–AVR32–06/06

AVR32

AVR32
Resource Full messages can occur before the arrival of the message that the information
belongs with.

9.5.4.8 Program Trace Correlation
Program Trace Correlation messages are used to correlate events to the program flow that may
not be associated with the instruction stream (e.g. Data Trace Messages). The occurrence of an
event listed in Table 9-43 will cause this message to be transmitted.

Table 9-41. Resource Full message

Program Trace, Resource Full Direction: From target

 Packet
Size (bits)

Packet
Name

Packet
Type Description

8 RDATA Variable Number of bytes executed since the last taken branch.

4 RCODE Fixed
Resource Code. This code indicates which internal resource
has reached its maximum value. Refer to Table 9-42 for
details.

6 TCODE Fixed Value = 27

Table 9-42. Resource Code (RCODE) description

Resource
Code Resource Data Packet Value

0b0000
Program Trace - Sequential Instruction
Counter

Number of instruction units executed since
the last taken branch.

0b0001 -
0b1111

Reserved

Table 9-43. Program Trace Correlation message

Program Trace Correlation Direction: From target

 Packet
Size (bits)

Packet
Name

Packet
Type Description

8 I-CNT Variable
Number of instruction units executed since the last taken
branch.

4 EVCODE Fixed Event Code. Refer to Table 9-44.

6 TCODE Fixed Value = 33

Table 9-44. Event Code (EVCODE) description

Event Code
(EVCODE) Event Description

0b0000 Entry into Debug Mode

0b0001 Entry into Low Power Mode
135
32001A–AVR32–06/06

9.5.5 Registers
Program trace is enabled using the TM field in the Development Control register.

9.6 Data Trace

9.6.1 Overview
The AVR32 OCD system provides data trace via the AUX port. The CPU data memory accesses
can be monitored real-time using the Nexus class 3 compliant Data Trace Unit. Both reads and
writes can be traced. Information is traced between the CPU and data cache, which gives imme-
diate access to modified data for cached memory accesses. This provides a direct
correspondence between the CPU program and traced data, even if there may be a delay
before the written cache data is actually flushed to the data memory.

Data Trace information is transmitted through data trace messages, which can be of read or
write type, with or without sync. The messages contain information about the data address and
value which triggered the trace. Data addresses can be complete (with sync), or compressed
relative to the previous transmitted message (without sync). The value contains the data value
read or written from the data cache, and is of the same width as the access size (byte, halfword,
word, or doubleword).

The TM[1] bit in the Development Control register must be set to enable data trace. It is also
possible to trigger data trace using watchpoints. In this case, TM[1] will be set or cleared
automatically.

9.6.2 Using data trace channels as watchpoints
Data Trace is enabled for address ranges (trace channels) specified by pairs of Data Trace Start
and End Address registers (DTSA/DTEA). Each data access within that boundary will generate
an action as specified by the corresponding bits in the Data Trace Control register (DTC). The
AVR32 OCD system currently supports two data trace channels.

While each channel can be used to trigger data trace messages, it is also possible to trigger
watchpoint messages, providing flexibility when using the OCD system. Watchpoints can be
ranged, i.e. trigger on all accesses between DTSA through DTEA, or trigger on a single location,
if DTSA and DTEA are written to the same value.

Writing TnWP to one enables a watchpoint on accesses for data trace channel n. The watch-
point message is sent as a vendor defined trace watchpoint message.

It is possible to enable both trace and watchpoint on the same channel, but typically, only one of
the options will be used.

9.6.3 Messages
The Trace Watchpoint Hit message is described in Section 9.4.5.2 on page 125.

0b0010 - 0b0011 Reserved

0b0100 Program Trace Disabled

0b0101 - 0b1111 Reserved

Table 9-44. Event Code (EVCODE) description

Event Code
(EVCODE) Event Description
136
32001A–AVR32–06/06

AVR32

AVR32
9.6.3.1 Data Trace, Data Write (DTDW)
This message is output by the target processor when it detects a memory write that matches the
OCD system’s data trace attributes.

9.6.3.2 Data Trace, Data Write with Sync (DTDWS)
This message is an alternative to the Data Trace, Data Write Message. It is output instead of a
Data Trace, Data Write Message whenever a memory write occurs that matches the debug
logic’s data trace attributes, and when one of the following conditions has occurred:

1. The processor has exited from reset. This synchronization message is required to allow
the unique portion of the data write address of following Data Trace, Data Write Mes-
sages to be correctly interpreted by the tool.

2. When data trace is enabled during normal execution of the embedded processor.

3. Upon exit from a power-down state. This synchronization message is required to allow
the unique portion of the data write address of following Data Trace, Data Write Mes-
sages to be correctly interpreted by the tool.

4. The Event-In pin has been asserted and a debug control register field specifies that
EVTI pin action is to generate data trace synchronization.

5. An overrun condition had previously occurred in which one or more data trace occur-
rences were discarded by the target processor’s debug logic. To inform the tool that an
overrun condition occurred,the target outputs an Error Message (TCODE = 8) with an
ECODE value of 00010 or 00111 immediately prior to the Data Trace, Data Write with
Sync Message.

6. The Data Trace Message counter has expired indicating that at most 256 without-sync
versions of Data Trace Messages have been sent since the last with-sync version.

7. A data write is detected following the processor exiting from Debug Mode.

Table 9-45. Data Trace, Data Write message

Data Trace, Data Write message Direction: From target

Packet
Size

Packet
Name

Packet
Type Description

8 / 16 /
32

DATA Variable
The data value written. The size will vary depending on the load
/ store instruction being traced.

32 U-ADDR Variable
The unique portion of the data write address, which is relative to
the previous Data Trace Message (read or write).

2 DSZ Fixed

Data size:
00 = 8 bits

01 = 16 bits

10 = 32 bits

6 TCODE Fixed Value=5
137
32001A–AVR32–06/06

9.6.3.3 Data Trace, Data Read (DTDR)
This message is output by the target processor when it detects a memory read that matches the
OCD system’s data trace attributes.

9.6.3.4 Data Trace, Data Read with Sync (DTDRS)
This message is an alternative to the Data Trace, Data Read Message. It is output instead of a
Data Trace, Data Read Message whenever a memory read occurs that matches the debug
logic’s data trace attributes, and when one of the following conditions has occurred:

The processor has exited from reset. This synchronization message is required to allow the
unique portion of the data write address of following Data Trace, Data Read Messages to be cor-
rectly interpreted by the tool.

When enabling data trace is during normal execution of the embedded processor.

Upon exit from a power-down state. This synchronization message is required to allow the
unique portion of the data write address of following Data Trace, Data Read Messages to be cor-
rectly interpreted by the tool.

Table 9-46. Data Trace, Data Write with Sync message

Data Trace, Data Write with Sync
message Direction: From target

Packet
Size

Packet
Name

Packet
Type Description

8 / 16 /
32

DATA Variable
The data value written. The size will vary depending on the load /
store instruction being traced.

32 F-ADDR Variable
The full address of the memory location written. Most significant
bits that have a value of 0 are truncated.

2 DSZ Fixed

Data size:

00 = 8 bits

01 = 16 bits
10 = 32 bits

6 TCODE Fixed Value=13

Table 9-47. Data Trace, Data Read message

Data Trace, Data Read message Direction: From target

Packet
Size

Packet
Name

Packet
Type Description

8 / 16 /
32

DATA Variable
The data value read. The size will vary depending on the load /
store instruction being traced.

32 U-ADDR Variable
The unique portion of the data read address, which is relative to
the previous Data Trace Message (read or write).

2 DSZ Fixed

Data size:

00 = 8 bits

01 = 16 bits
10 = 32 bits

6 TCODE Fixed Value=6
138
32001A–AVR32–06/06

AVR32

AVR32
The Event-In pin has been asserted and a debug control register field specifies that EVTI pin
action is to generate data trace synchronization.

An overrun condition had previously occurred in which one or more data trace occurrences were
discarded by the target processor’s debug logic. To inform the tool that an overrun condition
occurred, the target outputs an Error Message (TCODE = 8) with an ECODE value of 00010 or
00111 immediately prior to the Data Trace, Data Read with Sync Message.

The periodic Data Trace Message counter has expired indicating that 255 without-sync versions
of Data Trace Messages have been sent since the last with-sync version.

A data read is detected following the processor exiting from Debug Mode.

9.6.4 Registers

9.6.4.1 Data Trace Control register (DTC)
This register controls actions taken on data accesses within all data trace channels.

Table 9-48. Data Trace, Data Read with Sync message

Data Trace, Data Read with Sync
message Direction: From target

Packet
Size

Packet
Name

Packet
Type Description

8 / 16 /
32

DATA Variable
The data value read. The size will vary depending on the load /
store instruction being traced.

32 F-ADDR Variable
The full address of the memory location written. Most significant
bits that have a value of 0 are truncated.

2 DSZ Fixed

Data size:
00 = 8 bits

01 = 16 bits

10 = 32 bits

6 TCODE Fixed Value=14

Table 9-49. Data Trace Control Register

R/W Bit Number Field Name Init. Val. Description

R/W 31:30 RWT0 0

RWT0 - Read/Write Trace channel 0

00 = No trace enabled
x1 = Enable data read trace

1x = Enable data write trace

R/W 29:28 RWT1 0

RWT1 - Read/Write Trace channel 1

00 = No trace enabled

x1 = Enable data read trace
1x = Enable data write trace

R 27:20 Reserved 0

R/W 19:12 ASID1 0 ASID to match for channel 1

R/W 11 ASID1EN 0 ASID1EN - ASID 1 enable

R/W 10:3 ASID0 0 ASID to match for channel 0
139
32001A–AVR32–06/06

9.6.4.2 Data Trace Start/End Address register (DTSA/DTEA)
DTSAn and DTEAn define the inclusive data access range [DTSAn : DTEAn] for trace channel
n. Each trace channel 0 and 1 has its own DTSA/DTEA register pair. If DTSA=DTEA, the trace
channel will match on accesses to a single location. If DTSA>DTEA, no match will occur for the
trace channel.

DTSA0, DTSA1

DTEA0, DTEA1

9.7 Ownership Trace

9.7.1 Functional description
The AVR32 OCD system implements Ownership Trace in compliance with the Nexus standard.

Ownership trace provides a macroscopic view, such as task flow reconstruction, when debug-
ging software written in a high level (or object oriented) language. It offers the highest level of
abstraction for tracking operating system software execution. This is especially useful when the
developer is not interested in debugging at lower levels.

Ownership trace is especially important for embedded processors with a memory management
unit, in which all processes can use the same virtual program and data spaces. Ownership trace
offers development tools a mechanism to decipher which set of symbolics and sources are
associated for lower levels of visibility and debugging.

Ownership trace information is transmitted out the AUX using an Ownership Trace Message.
OTM facilitates ownership trace by providing visibility of which process ID or operating system
task is activated. An Ownership Trace Message is transmitted to indicate when a new pro-
cess/task is activated, allowing development tools to trace ownership flow. Additionally, an
Ownership Trace Message is also transmitted periodically during runtime at a minimum fre-
quency of every 256 Program Trace or Data Trace Messages.

In the AVR32, this feature is supported through an Ownership Trace Register, which automati-
cally produces an Ownership Trace Message when written to. The RTOS scheduler routine
writes the new process ID to this register during process switching using the mtdr instruction.

The TM[0] bit in the Development Control register must be set to enable ownership trace.

R/W 2 ASID0EN 0 ASID1EN - ASID 0 enable

R/W 1 T1WP 0 T1WP - Trace Channel 1 Watchpoint

R/W 0 T0WP 0 T0WP - Trace Channel 0 Watchpoint

Table 9-49. Data Trace Control Register

R/W Bit Number Field Name Init. Val. Description

Table 9-50. Data Trace Start Address Register

R/W Bit Number Field Name Init. Val. Description

R/W 31:0 DTSA 0 DTSA - Start address for trace visibility

Table 9-51. Data Trace End Address Register

R/W Bit Number Field Name Init. Val. Description

R/W 31:0 DTEA 0 DTEA - End address for trace visibility
140
32001A–AVR32–06/06

AVR32

AVR32
9.7.2 Messages

9.7.2.1 Ownership Trace (OT)

• The ownership trace message is sent:

• When the Ownership Trace Process ID (PID) register is written.

• When program trace with sync message is generated due to overflow in the periodic
message counter.

• When a data trace with sync message is generated due to overflow in the periodic message
counter.

• After a Transmit Queue overrun if the CPU has written to PID when the queue was full.

If there is no room in the Transmit Queue for the message, and the CPU is not halted to prevent
overruns, an error message is produced.

9.7.3 Registers

9.7.3.1 Ownership Trace Process ID (PID)
The CPU should write the current Process ID value to this register, whenever the RTOS per-
forms a process switch. This will automatically create an Ownership Trace Message to be
transmitted to the tool. This register can be written from any privileged CPU mode.

The tool can read and write this register, although it is recommended that only the CPU writes
this register.

9.8 Memory Interface

9.8.1 Overview
The Memory Interface provides the debug tool with a mechanism for a DMA-like access to mem-
ory mapped resources both run-time and in Debug Mode. Memory mapped resources include
main memory and memory mapped peripheral modules. Access to registers in peripheral mod-
ules may trigger unintended operation of the module, and the debug tool should generally
include a list of access restrictions for the peripherals. The CPU register file is not memory
mapped, and not accessible through the Memory Interface.

Note that the tool uses physical addresses when accessing memory mapped data through the
Memory Interface, as opposed to Breakpoint/Watchpoints, which use virtual addresses.

Table 9-52. Ownership Trace Message

Ownership Trace Message Direction: From target

Packet
Size

Packet
Name

Packet
Type Description

32 PROCESS Fixed Task / process ID.

6 TCODE Fixed Value = 2

Table 9-53. Ownership Trace Process ID (PID)

R/W Bit Number Field Name Init. Val. Description

RW 31:0 PROCESS 0
PROCESS - Process ID

The unique Process ID number of the currently
running process.
141
32001A–AVR32–06/06

9.8.2 Memory (Block) Access
The Memory Block Access is controlled by the registers Read/Write Access Data (RWD),
Read/Write Access Address (RWA), and Read/Write Control/Status (RWCS). The tool accesses
these registers via the JTAG port. A Memory Block Access provides the debug tool with a mech-
anism for a DMA-like access to memory mapped resources. In this document, the terms
Memory Block Access and Memory Access refer to a memory block of any length from one sin-
gle location (CNT = 1), to the full range supported by the OCD system (CNT = 16 383). When
using the maximum size of word, the maximum memory that can be transferred in one block is
thus 64KB.

9.8.2.1 Memory Read Operations

1. The tool writes RWA with physical address to be read.

2. The tool configures RWCS Register, including CNT, AC=1, and RW=0 to indicate
(block) read.

3. The tool must wait until the data is ready from the MIU. If very slow memory is
accessed the tool can check that the DV bit in RWCS is one before reading RWD.

4. The tool reads RWD. The MIU outputs the data and auto-increments the address.

5. Step 3 and 4 are repeated until the number of data specified by the CNT field has been
read.

6. When the entire block has been read AC will be cleared by the MIU. RWA will point to
the last location that was read. If the tool wishes to continue reading from this point
RWCS must be written again.

9.8.2.2 Special cases:

• If the memory read operation results in an error, the ERR bit in RWCS will be set, and the
data in RWD will not be valid (DV=0). AC will also be cleared.

• Any write to RWCS will abort an ongoing block access.

9.8.2.3 Memory Write Operations

1. The tool writes RWA with the first physical address to be written.

2. The tool configure the RWCS Register, including CNT, AC=1, and RW=1 to indicate
(block) write.

3. The tool writes one data value to RWD.

4. The tool must wait until the MIU is ready to accept more data. This can be done by
reading the ready bit in RWCS or by using the NEXUS-STATUS JTAG command.

5. Step 3 and 4 are repeated until the number of data specified by the CNT field has been
transmitted.

6. When the entire block has been read AC will be cleared by the MIU. RWA will point to
the last location that was written. If the tool wishes to continue reading from this point
RWCS must be written again.

9.8.2.4 Special cases:

• If the memory write operation results in an error, the ERR bit in RWCS will be set and DV
cleared. AC will also be cleared.

• Any write to RWCS will abort an ongoing block access.
142
32001A–AVR32–06/06

AVR32

AVR32
9.8.3 Address Space
The SZ field of RWCS determines the word size (data type) of the memory access, while the
CNT-field of the RWCS register determines the number of accesses of size SZ. Since Avr-32 is
byte addressed, the accessed address range is from RWA through RWA + k * (CNT+1), where k
is given by Table 9-54. The address in RWA must correspond to the Most Significant Byte of the
data of size SZ in physical memory.

Note that the AVR32 uses a big-endian memory model. E.g., if the word located at address
0x0000 contains 0x12345678, the byte at 0x0000 will read 0x12, and the halfword at 0x0000 will
read 0x1234.

9.8.4 Error Conditions
Errors during a memory access are indicated to the tool by setting the ERR and clearing the DV
bit of the RWCS register.

There are 3 sources of errors:

1. The system bus signals an error

2. If the tool writes to the RWCS register during a single or block access, the access is ter-
minated and indicated as an error.

3. The Tool writes SZ or CNT to an illegal value.

9.8.5 Data Cache operation
Memory accesses from the OCD system are served by the Data Cache. Since the Data Cache
can buffer CPU accesses to memory, there may be an inconsistent data view between the
cache and system memory. The OCD system will specify whether or not the access should be
cached or uncached. By default, reads will be cached, and writes uncached. This can be altered
by writing the Cache Control (CCTRL) bits in RWCS.

Uncached reads return the value in system memory, which may differ from the value in the
cache if the CPU has written to this location. Cached reads return the value in the cache, i.e. the
same as the value seen by the CPU. If the data is not present inside the cache, the Data Cache
accesses the data through the system bus. Unlike a memory access from the CPU, a cache
miss for an OCD access does not update the Data Cache memory or registers.

Uncached writes will change the value both in the cache and system memory. Cached writes will
only change the cache value, and tag the cache line as dirty, ensuring it will be written to mem-
ory on the next cache flush. Cached writes are faster than uncached writes, but can cause
temporary inconsistency between system and cache memory.

Access error indicated by the system bus results in an exception in the CPU if cached operation
is used. When the error is due to an uncached memory access from the OCD System, the
exception is not generated, but the Error bit is set in the Read Write Control Register (RWCS).

The Data Cache is a shared resource between the CPU and the OCD System. This resource is
allocated solely to the CPU in normal operation. Hence, the OCD System will degrade perfor-

Table 9-54. Address Increment as a Function of Word Size / Data Type

Access Type SZ k = 2SZ

Byte access 000 1

Half-word access 001 2

Word access 010 4
143
32001A–AVR32–06/06

mance. This delay is particularly large for uncached accesses or cached accesses to locations
not present in the cache.

9.8.6 NanoTrace
NanoTrace is an AVR32 specific debug feature which allows a JTAG-based emulator to observe
limited trace information without the need for an AUX interface. Instead, the trace messages will
be written to a circular buffer in a reserved space in the data memory, configured by the RWCS
and RWA registers. NanoTrace employs the block write mechanism to write trace data to the
internal SRAM, so block read/write is not available when NanoTrace is enabled. All messages
normally written to the AUX port will be written to memory, so all kinds of trace, as well as watch-
point messages are written to the internal memory and can be reconstructed.

The AUX port does not need to be active for NanoTrace to function.

9.8.6.1 NanoTrace operation
To enable NanoTrace, the RWCS must be written with AC=1, RW=1, SZ=010, NTE=1 and
CNT=2n, where n is an integer between 0 and 28. The start address of the circular buffer must
be written to RWA. The CNT field must be written to log2("size of buffer in bytes">>2), this
restricts the size of the NanoTrace buffer to 2n boundaries but permits up to 1 GB of trace buffer.

Once NanoTrace is enabled, messages are extracted frame by frame from the Transmit Queue
and written to the RWD register. Only valid (i.e. non-idle) frames are extracted. When RWD has
no room for more frames, it is written to the circular buffer in memory, as shown in Figure 9-11.
The buffer is repeatedly overwritten with trace messages until NanoTrace is halted. This occurs
when the NTE bit in RWCS is written to zero. Every time the buffer wraps, the next trace mes-
sage is inserted with sync, to increase the portion of the trace buffer which can be uniquely
reconstructed.

When NanoTrace is halted, the block read/write mechanism can again be used to access mem-
ory locations from the debugger.

Figure 9-11. NanoTrace memory arrangement.

9.8.6.2 Extracting NanoTrace messages
When NanoTrace is halted, or no more trace messages are generated (e.g. in OCD Mode), the
RWA register will point to the word following the last message written to memory. If the circular
buffer has been completely filled and thus overwritten at least once, the RWCS:WRAPPED bit

New est message

RWA

RWA[31:(CNT+2)]

2CNT words
Oldest message

Word
144
32001A–AVR32–06/06

AVR32

AVR32
will be set. This means that the word pointed to by RWA is part of the oldest message. If
RWCS:WRAPPED is cleared, only the messages from RWA[31:(CNT+2)] to RWA-4 contain
valid message data.

The trace log can thus be reconstructed by reading words from RWA (or RWS[31:(CNT+2)] if
RWCS:WRAPPED is cleared) to RWA-4 in the circular RAM buffer. When reaching the address
RWA+CNT*4, the address should be wrapped down to RWA[31:(CNT+2)]. Frames consist of
the value of the MSEO pins in the most significant bit positions, and the value of the MDO pins in
the least significant bit positions. Frames are aligned to the most significant bit within each word,
as shown in Figure 9-12.

Since RWD is only written to the buffer when a whole word of data is filled, the last frames of the
last message may not have been transmitted to memory. RWCS:DV will be set to indicate that
RWD contains valid trace data, and these frames can be extracted by reading RWD. Empty
frame positions within RWD are tagged as "Idle", i.e. MSEO = 0b11.

Figure 9-12 shows an example of a NanoTrace buffer, with RWA starting at 0x1000 and CNT =
10 (i.e. the buffer size is 1024 words, or 4096 frames). When the trace was stopped,
RWCS:WRAPPED is set and RWA = 0x1234, so the last word of frame data written to the mem-
ory is located at 0x1230, and a partially filled word is in RWD. In this example, the last message
(shown in white) in the Transmit Queue was an Indirect Branch message with Sync. The same
example was shown for regular AUX port transmission. The last two frames of the message still
reside in RWD, which has been only partially filled.

Figure 9-12. Frame organization within a word.

Figure 9-13. Reconstructing a NanoTrace message.

9.8.6.3 NanoTrace access protection
If the CPU attempts to write the data memory reserved for NanoTrace messages, the CPU soft-
ware or message reconstruction can fail. To automatically detect this source of error, it is
possible to write the NanoTrace Access Protection (NTAP) bit in RWCS to one. This will cause a

08162431

MSEO MDO MSEO MDO MSEO MDO MSEO MDO
Frame0 Frame1 Frame2 Frame3

Frame4090 Frame4091

Frame2 Frame3

Frame4088 Frame4089

Frame4092 Frame4093

Frame0 Frame1

Empty Empty

08162431

01 000011 11 000101 11 000000 11 000000
Frame4096 Frame4097

MSEO MDO MSEO MDO MSEO MDO MSEO MDO

MSEO MDO 11 MDO 00 000100 00 111110
Frame4094 Frame4095

MSEO MDO MSEO MDO MSEO MDO 00 MDO

.

.

.

.

.

RWA = 0x1234

RWD
145
32001A–AVR32–06/06

hardware error to be triggered if the CPU attempts to access the protected area. This allows the
emulator to abort the program execution and notify the user about the illegal access.

NanoTrace access protection will only function correctly when physical and virtual addresses
are the same for the memory region reserved for NanoTrace. If this is not the case, NTAP
should stay zero to avoid incorrect access error breakpoints.

Note that NanoTrace access protection will never trigger in Monitor Mode.

9.8.6.4 Overrun control
The DC:OVC bits works for NanoTrace as well as for AUX port messages. However, the overrun
prevention will not be as efficient for NanoTrace. If the Transmit Queue becomes full, the CPU
will not issue any more instructions, but already issued instructions will be allowed to complete. If
these instructions generate trace information, the Transmit Queue may overrun even when the
CPU is stalled.

9.8.6.5 NanoTrace Buffer Control
By default, the NanoTrace buffer will be repeatedly overwritten until NanoTrace is stopped. How-
ever, by writing the RWCS:NTBC bits, it is possible to control the behavior when the buffer
becomes full. In this case, RWD will not contain trace information, and does not need to be read
out. RWA will point to the first address in the buffer, so RWA does not need to be rewritten if
NanoTrace is restarted.

In some cases, only the first trace messages after NanoTrace is enabled are interesting. In this
case, NanoTrace can be disabled when the buffer is full. The debugger will detect that this has
occurred by observing when RWCS:NTE is negated. RWCS:AC and DV will also be cleared, to
indicate that the memory operation is complete, and no valid trace information exists in RWD. To
restart NanoTrace, RWCS:NTE and AC must be written to one.

Alternatively, Debug Mode can be triggered when the buffer is full. This will set the NanoTrace
Buffer Full bit in the Development Status register (DS:NTBF). RWCS:NTE will stay set, but AC
and DV will be cleared. The debugger can then read out the NanoTrace buffer in Debug Mode,
before restarting execution. To restart NanoTrace when exiting Debug Mode, RWCS:NTE and
RWCS:AC must be written to one.

9.8.6.6 CRC-32 check of a memory block
The memory interface unit can generate a CRC-32 checksum on a memory block.

The standard CRC-32 (802.3) polynomial is used:

x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x + 1

To enable this feature the debugger must set the AC=1, CRC=1, SIZE=2 (word) and
CNT=<number of words in block> bit in RWCS and the start of the block in RWA. The MIU will
then read the memory block and put a CRC-32 of the memory block in RWD when AC is cleared
and DV is set. The debugger can continue the CRC generation on a new block by rewriting the
RWCS with AC, CRC, SIZE and CNT when a CRC block is finished and the CRC bit is still set.
The CRC in RWD after the second block will be CRC32(block1 + block2).

9.8.7 Messages
The Memory Interface generates no messages, all features are accessed with regular read /
write messages on the JTAG interface.
146
32001A–AVR32–06/06

AVR32

AVR32
9.8.8 Registers

9.8.8.1 Read/Write Access Control/Status (RWCS) Register

Table 9-55. Read/Write Access Control/Status (RWCS)

R/W Bit Number Field Name Init. Val. Description

R/W 31 AC 0

AC - Access

0 = No access ongoing

1 = Start access

R/W 30 RW 0

RW - Memory Access Read/Write

0 = Read
1 = Write

R/W 29:27 SZ 0

SZ - Data Size
000 = Byte

001 = Half-Word

010 = Word
011 = Reserved

1xx = Reserved

R/W 26:25 CCTRL 00

CCTRL - Cache Control

00 = Auto

01 = Always use cached memory view
10 = Always use uncached memory view

11 = Reserved

R/W 24 WRAPPED 0
WRAPPED - NanoTrace Buffer wrapped

Indicates that the RWA pointer to the nanotrace
buffer has wrapped at least once.

R/W 23 NTAP 0
NTAP - NanoTrace Access Protection
Enables NanoTrace access protection.

R/W 22 NTE 0
NTE - NanoTrace Enable
Enables NanoTrace.

R/W 21:20 NTBC 00

NTBC - NanoTrace Buffer Control
00 = Overwrite buffer

01 = Disable trace when buffer full

10 = Trigger breakpoint when buffer full
11 = Reserved

R/W 19 CRC 0
CRC - CRC Enable
Enables CRC of memory area.

R 18:16 - 0 Reserved

R/W 15:2 CNT 0
CNT - Access Count

Number of accesses of word size SZ.CNT is an
unsigned number.

R 1 ERR 0 Last access generated an error

R 0 DV 0 Data Valid in RWD
147
32001A–AVR32–06/06

AC

The tool writes the AC bit to one to initiate an access. The AC field is negated by the MIU upon
completion of the access requested by the tool. Any write operation to the RWCS register will
terminate any access in process, including the remaining of the block access. If the write opera-
tion sets AC=1, the previous (block) access will be terminated, but a new one will be initiated.

SZ

SZ determines the access size. The bits are written to by the tool.

RW

RW determines whether the access is a read or write. The RW bit is written by the tool.

NTE

Enable nanotrace. When NanoTrace is enabled, trace messages will be written to the data
memory.

CRC

When this bit is set the MIU will read the entire memory area specified with RWA and CNT and
place a CRC-32 signature of this area in RWD when AC is cleared and DV is set. NTE and CRC
is mutually exclusive, SZ must be word. When the CRC generation of a block is complete the
CRC-32 will be in RWD. If the tool wishes to continue calculating CRC beyond the first block it
must rewrite RWCS with AC=1, CRC=1, SZ=10 and appropriate CNT.

WRAPPED

This bit is set when the RWA pointer into the NanoTrace buffer has wrapped at least once. The
emulator should reset this bit when a new NanoTrace session is started.

CCTRL

MIU memory access is routed through the Data Cache. There are two ways of accessing the
data cache, cached and uncached. The safest way of accessing the memory is using cached
reads and uncached writes, the Auto setting of CCTRL automatically uses this configuration.

Note that when the Auto setting is used with NanoTrace, the MIU will write to cached memory to
improve trace performance.

In the cached memory view writes will be write back, and any errors will be routed to the CPU as
bus error, the ERR bit will not be set. Reads will access the cache and see the CPU’s view of the
memory.

In the uncached memory view writes will be write through, but they will update the cache to pre-
serve memory consistency any bus errors will be reported back to the OCD and ERR bit will be
set. Reads will go straight to the bus and bypass any cache buffers. In this mode the memory
view may be different from the CPU’s view of the memory.

CNT

To request a block move, CNT is set by the tool to the number of accesses of data size SZ, zero
is an illegal value. The CNT field is incremented by the OCD system during an in-progress block
move. When CNT wraps to 0, the block move is complete, and the OCD system negates the AC
field. If an error occurs, CNT indicates how far the block access had progressed before the error
occurred.

DV and ERR
148
32001A–AVR32–06/06

AVR32

AVR32
If errors occur, the target will terminate the access, including any remaining block accesses,
within one access cycle of the target. In this case, the access in progress when the RWCS Reg-
ister is written is not guaranteed to complete. Errors are either due to errors on the system bus
during an access requested by the tool, triggered by writing the RWCS Register while any sin-
gle or block access is in progress, or attempting a block access with CNT=0. See Table 9-56 for
a description.

Note that for Read Accesses, DV is always cleared when RWD is read, including for the last
access.

9.8.8.2 Read/Write Access Address (RWA) Register
The RWA Register is used by the tool to program the physical address of memory mapped
resource to be accessed, or the lowest physical address (i.e. lowest unsigned value) for a block
access (CNT>0). RWA must correspond to the most significant byte of the data of size SZ. Refer
to “Address Space” on page 143 for a description of the address range during a Memory Block
Access..

9.8.8.3 Read/Write Access Data (RWD) Register
The RWD Register contains the data to be written for the next Memory Block Write access, and
the read data for completed memory read accesses.

Note that the data is presented in little-endian format in the RWD register as shown in Table 9-
59.

Table 9-56. Read/Write Access Status Bit Encoding

DV ERR Read Action Write Action

0 0 Read Access has not completed Write Access completed without error

0 1 Read Access error has occurred Write Access error has occurred

1 0 Read Access completed without error Write Access has not completed

1 1 Not Allowed Not Allowed

Table 9-57. Read/Write Access Address (RWA)

R/W Bit Number Field Name Init. Val. Description

R/W 31:0 RWA
0x0000_0
000

Physical address to be accessed

Table 9-58. Organization of RWD for Different Data Sizes

Access 31 24 23 16 15 8 7 0

Byte
Byte

Half-word MS Byte LS Byte

Word MS Byte LS Byte
149
32001A–AVR32–06/06

.

9.9 OCD Message Summary

Table 9-59. Read/Write Data (RWD)

R/W Bit Number Field Name Init. Val. Description

R/W 31:0 RWD
0x0000

_0000

32 bits of data read from a physical address
location or to be written to a physical address
location.

Table 9-60. Message Summary

TCODE Message

Public /
Vendor
Defined Page

0 Debug Status (DEBS) Public page 102

1 Reserved

2 Ownership Trace (OT) Public page 141

3 Program Trace, Direct Branch (PTDB) Public page 131

4 Program Trace, Indirect Branch (PTIB) Public page 132

5 Data Trace, Data Write (DTDW) Public page 137

6 Data Trace, Data Read (DTDR) Public page 138

7 Reserved

8 Error (ERROR) Public page 117

9 Program Trace Synchronization (PTSY) Public page 133

10 Reserved

11 Program Trace, Direct Branch with Sync (PTDBS) Public page 134

12 Program Trace, Indirect Branch with Sync (PTIBS) Public page 134

13 Data Trace, Data Write with Sync (DTDWS) Public page 137

14 Data Trace, Data Read with Sync (DTDRS) Public page 138

15 Watchpoint Hit (WH) Public page 125

16–26 Reserved

27 Program Trace Resource Full (PTRF) Public page 134

28–32 Reserved

33 Program Trace Correlation (PTC) Public page 135

34–55 Reserved

56 Trace Watchpoint Hit (TWH) Vendor page 125

57 Direct Branch with Target Address (DBTA) Vendor page 131

58-62 Reserved Vendor

63 (0x3F)
Vendor Defined Extension Message
Reserved

Vendor
150
32001A–AVR32–06/06

AVR32

AVR32
Table 9-60 shows the messages which can be transmitted by the target on the AUX port. OCD
registers can be written by the tool using the JTAG mechanism described in “Debug Port” on
page 111.

Table 9-61 shows the format of the transmitted messages. Packets shown in bold are variable
length, the others are fixed length. All variable length packets can be truncated by omitting lead-
ing zeroes, but will always end on a port boundary.

Table 9-61. Message formats

Nexus Message

Message format

TCODE
[5:0] Packet 1 Packet 2 Packet 3

Debug Status 0 STATUS[31:0]

Ownership Trace 2 PROCESS [31:0] - -

Error 8 ECODE[4:0] - -

Program Trace,

Direct Branch
3

I-CNT[7:0]
- -

Program Trace,
Direct Branch with
Target Address

57
I-CNT[7:0] U-ADDR[31:0]

-

Program Trace,

Indirect Branch
4 EVT-ID[1:0]

I-CNT[7:0] U-ADDR[31:0]

Program Trace

Synchronization
9

I-CNT[7:0] PC[31:0]
-

Program Trace,
Direct Branch with
Sync

11
I-CNT[7:0] F-ADDR[31:0]

-

Program Trace,
Indirect Branch with
Sync

12 EVT-ID[1:0]
I-CNT[7:0] F-ADDR[31:0]

Program Trace
Resource Full

27 RCODE[3:0]
RDATA[7:0]

Program Trace
Correlation

33 EVCODE[3:0]
I-CNT[7:0]

Data Trace, Data
Write

5 DSZ[1:0]
U-ADDR[31:0] DATA[31:0]

Data Trace, Data
Read

6 DSZ[1:0]
U-ADDR[31:0] DATA[31:0]

Data Trace, Data
Write with Sync

13 DSZ[1:0]
F-ADDR[31:0] DATA[31:0]

Data Trace, Data
Read with Sync

14 DSZ[1:0]
F-ADDR[31:0] DATA[31:0]

Watchpoint Hit 15 WPHIT[7:0] - -

Trace Watchpoint
Hit

56 WPHIT[1:0] - -
151
32001A–AVR32–06/06

9.10 OCD Register Summary
Use the index shown in the "Register index" column when accessing OCD registers by the
Nexus access mechanism (see Section 9.3.2 on page 111).Use the index shown in the
"mtdr/mfdr index" column when accessing OCD registers by mtdr/mfdr instructions from the
CPU (see Section 9.2.10 on page 98). These indexes are identical to the register index multi-
plied by 4.

Table 9-62. OCD Register Summary

Register
Index

mtdr/mf
dr index Register

Access
Type Page

0 0 Device ID (DID) R page 103

1 4 Reserved —

2 8 Development Control (DC) R/W page 105

3 12 Reserved —

4 16 Development Status (DS) R page 107

5-6 20-24 Reserved —

7 28 Read/Write Access Control/Status (RWCS) R/W page 147

8 32 Reserved —

9 36 Read/Write Access Address (RWA) R/W page 149

10 40 Read/Write Access Data (RWD) R/W page 149

11 44 Watchpoint Trigger (WT) R/W page 129

12 48 Reserved —

13 52 Data Trace Control (DTC) R/W page 139

14–15 56-60 Data Trace Start Address (DTSA) Channel 0 to 1 R/W page 140

16-17 64-68 Reserved —

18–19 72-76 Data Trace End Address (DTEA) Channel 0 to 1 R/W page 140

20-21 80-84 Reserved —

22 88 PC Breakpoint/Watchpoint Control 0A (BWC0A) R/W page 126

23 92 PC Breakpoint/Watchpoint Control 0B (BWC0B) R/W page 126

24 96 PC Breakpoint/Watchpoint Control 1A (BWC1A) R/W page 126

25 100 PC Breakpoint/Watchpoint Control 1B (BWC1B) R/W page 126

26 104 PC Breakpoint/Watchpoint Control 2A (BWC2A) R/W page 126

27 108 PC Breakpoint/Watchpoint Control 2B (BWC2B) R/W page 126

28 112 Data Breakpoint/Watchpoint Control 3A (BWC3A) R/W page 128

29 116 Data Breakpoint/Watchpoint Control 3B (BWC3B) R/W page 128

30 120 PC Breakpoint/Watchpoint Address 0A (BWA0A) R/W page 125

31 124 PC Breakpoint/Watchpoint Address 0B (BWA0B) R/W page 125

32 128 PC Breakpoint/Watchpoint Address 1A (BWA1A) R/W page 125

33 132 PC Breakpoint/Watchpoint Address 1B (BWA1B) R/W page 125
152
32001A–AVR32–06/06

AVR32

AVR32
34 136 PC Breakpoint/Watchpoint Address 2A (BWA2A) R/W page 125

35 140 PC Breakpoint/Watchpoint Address 2B (BWA2B) R/W page 125

36 144 Data Breakpoint/Watchpoint Address 3A (BWA3A) R/W page 127

37 148 Data Breakpoint/Watchpoint Address 3B (BWA3B) R/W page 127

38 152 Breakpoint/Watchpoint Data 3A (BWD3A) R/W page 127

39 156 Breakpoint/Watchpoint Data 3B (BWD3B) R/W page 127

40–65 160-260 Reserved —

64 256 Nexus Configuration (NXCFG) R page 103

65 260 Debug Instruction Register (DINST) R/W page 109

66 264 Debug Program Counter (DPC) R/W page 109

67 268 CPU Control Mask R/W

68 272 Debug Communication CPU Register (DCCPU) R/W page 104

69 276 Debug Communication Emulator Register (DCEMU) R/W page 104

70 280 Debug Communication Status Register (DCSR) R/W page 105

71 284 Ownership Trace Process ID (PID) R/W page 141

72-74 288-296 Reserved —

75 300 Event Pair Control 3 (EPC3) R/W page 127

76 304 AUX port Control (AXC) R/W page 118

77– 255
308-
1020

Reserved —

Table 9-62. OCD Register Summary

Register
Index

mtdr/mf
dr index Register

Access
Type Page
153
32001A–AVR32–06/06

10. Instruction cycle summary
This chapter presents the grouping of the instructions in the AVR32 architecture. All the instruc-
tions in each group behave similarly in the pipeline, and are discussed as a group in the rest of
this documentation.

10.1 Validity of timing information
This chapter presents information about the timing requirements of each instruction. This infor-
mation should be used together with measurements from cycle-correct simulations. Issues like
branch prediction, data hazards, cache misses and exceptions may cause the cycle require-
ments of real implementations to differ from the theoretical number presented here.

All timing presented here represents best case numbers. The following factors are assumed:

• No data hazards are experienced

• No resource conflicts are encountered in the pipeline

• All data and instruction accesses hit in the caches, and no protection violations are
experienced

10.2 Definitions
The following definitions are used in the tables below:

10.2.1 Issue
An instruction is issued when it leaves the IS stage and enters the M1, A1, or DA stage.

10.2.2 Issue latency
The issue latency represents the number of clock cycles required between the issue of the
instruction and the issue of the following instruction to the same subpipe. Generally, an instruc-
tion has an issue latency of one if the following instruction is issued to another subpipe and no
data hazards exist.

10.2.3 Result latency
The result latency represents the number of cycles between the issue of the instruction and the
availability of the result from the forwarding logic. Some instructions, like 64-bit multiplications,
produce several results. For these instructions, the result latency for both the first part of the
result and the last part of the result are presented. After the result latency period, the data is
available for forwarding, and instructions with data dependencies may execute.

10.2.4 Flag latency
The flag latency represents the number of clock cycles required between the issue of an instruc-
tion updating the flags and the issue of another instruction using the flags. Note that flags are
also forwarded, in most cases making the flags available to the following instruction. As an
example, for an add followed by a branch, the branch will read the flags updated by the add. No
stall is required between the add and the branch.
154
32001A–AVR32–06/06

AVR32

AVR32
10.3 Special considerations

10.3.1 PC as destination register
Most instructions can use PC as destination register. This will result in a jump to the calculated
address. Forwarding is not implemented, so jumping is performed when the target address is
available in WB.

10.3.2 Branch prediction
Branch prediction allows the branch penalty to be removed for correctly predicted branches. For
erroneously predicted branches, a branch delay of four cycles is imposed. For correctly pre-
dicted, folded branches, the branch executes in zero cycles. Erroneously predicted folded
branches execute in four cycles.

10.3.3 Return address stack
A return address stack is implemented, allowing the subprogram return address to be available
early. The return address stack can keep 4 elements. If more elements are pushed, the oldest
element is overwritten. Hardware keeps control over the number of valid elements on the stack.
Stack over- and underflow is handled automatically by hardware, at the cost of performance
loss. When a return is attempted with an empty return address stack, the return instruction is
considered as not predicted.

Table 10-1. Predicted branch and call cycle requirement

Instruction
Predicted
correctly

Predicted
erroneously

Folded
correctly

Folded
erroneously

Not
predicted

br disp 1 4 0 4 4

rjmp disp 1 4 0 4 4

rcall disp 1 4 NA NA 4

Table 10-2. Return instruction cycle requirement

Instruction Predicted correctly Predicted erroneously Not predicted

ret, cond != AL 1 4 4

ret, cond == AL 2 - 4

mov PC, LR 2 - 4

popm with PC in reglist 2 - 6

ldm with PC in reglist 2 - 6
155
32001A–AVR32–06/06

10.4 ALU Operations
This group comprises simple single-cycle ALU operations like add and sub. The conditional sub
and mov instructions are also in this group. All instructions in this group take one cycle to exe-
cute, and the result is available for use by the following instruction.

Table 10-3. Timing of ALU operations

Mnemonics Operands Description
Issue
latency

Result
latency

Flag
latency

abs C Rd Absolute value. 1 1 1

acr C Rd Add carry to register. 1 1 1

adc E Rd, Rx, Ry Add with carry. 1 1 1

add C Rd, Rs Add. 1 1 1

E
Rd, Rx,
(Ry << sa)

Add shifted. 1 1 1

addhh.w C
Rd, Rx<part>,
Ry<part>

Add signed halfwords.
(32 ← 16 + 16)

1 1 1

addabs E Rd, Rx, Ry Add with absolute value. 1 1 1

cp.b E Rd, Rs Compare byte. 1 1 1

cp.h E Rd, Rs Compare halfword. 1 1 1

cp.w

C Rd, Rs

Compare.

1 1 1

C Rd, imm 1 1 1

E Rd, imm 1 1 1

cpc
C Rd

Compare with carry.
1 1 1

E Rd, Rs 1 1 1

max E Rd, Rx, Ry Return signed maximum. 1 1 1

min E Rd, Rx, Ry Return signed minimum. 1 1 1

neg C Rd Two’s Complement. 1 1 1

rsub
C Rd, Rs

Reverse subtract.
1 1 1

E Rd, Rs, k8 1 1 1

sbc E Rd, Rx, Ry Subtract with carry. 1 1 1

scr C Rd
Subtract carry from
register.

1 1 1

sub

C Rd, Rs

Subtract.

1 1 1

E
Rd, Rx,

(Ry << sa)
1 1 1

C Rd, imm 1 1 1

E Rd, imm 1 1 1

E Rd, Rs, imm 1 1 1
156
32001A–AVR32–06/06

AVR32

AVR32
subhh.w C
Rd, Rx<part>,
Ry<part>

Subtract signed
halfwords

(32 ← 16 - 16)
1 1 1

sub{cond4} E Rd, imm
Subtract immediate if
condition satisfied.

1 1 1

tnbz C Rd
Test no byte equal to
zero.

1 1 1

and

C Rd, Rs

Logical AND.

1 1 1

E Rd, Rx, Ry << sa 1 1 1

E Rd, Rx, Ry >> sa 1 1 1

andn C Rd, Rs Logical AND NOT. 1 1 1

andh

E Rd, imm
Logical AND High
Halfword, low halfword is
unchanged.

1 1 1

E Rd, imm, COH
Logical AND High
Halfword, clear other
halfword.

1 1 1

andl

E Rd, imm
Logical AND Low
Halfword, high halfword
is unchanged.

1 1 1

E Rd, imm, COH
Logical AND Low
Halfword, clear other
halfword.

1 1 1

com C Rd
One’s Complement
(NOT).

1 1 1

eor

C Rd, Rs

Logical Exclusive OR.

1 1 1

E Rd, Rx, Ry << sa 1 1 1

E Rd, Rx, Ry >> sa 1 1 1

eorh E Rd, imm
Logical Exclusive OR
(High Halfword).

1 1 1

eorl E Rd, imm
Logical Exclusive OR
(Low Halfword).

1 1 1

or

C Rd, Rs

Logical (Inclusive) OR.

1 1 1

E Rd, Rx, Ry << sa 1 1 1

E Rd, Rx, Ry >> sa 1 1 1

orh E Rd, imm
Logical OR (High
Halfword).

1 1 1

orl E Rd, imm
Logical OR (Low
Halfword).

1 1 1

tst C Rd, Rs Test register for zero. 1 1 1

bfins E Rd, Rs, o5, w5
Insert the lower w5 bits of
Rs in Rd at bit-offset o5.

1 1 1

Table 10-3. Timing of ALU operations
157
32001A–AVR32–06/06

bfexts E Rd, Rs, o5, w5
Extract and sign-extend
the w5 bits in Rs starting
at bit-offset o5 to Rd.

1 1 1

bfextu E Rd, Rs, o5, w5
Extract and zero-extend
the w5 bits in Rs starting
at bit-offset o5 to Rd.

1 1 1

bld E Rd, b5 Bit load. 1 1 1

brev C Rd Bit reverse. 1 1 1

bst E Rd, b5 Bit store. 1 1 1

casts.b C Rd
Typecast byte to signed
word.

1 1 1

casts.h C Rd
Typecast halfword to
signed word.

1 1 1

castu.b C Rd
Typecast byte to
unsigned word.

1 1 1

castu.h C Rd
Typecast halfword to
unsigned word.

1 1 1

cbr C Rd, b5 Clear bit in register. 1 1 1

clz E Rd, Rs Count leading zeros. 1 1 1

sbr C Rd, b5 Set bit in register. 1 1 1

swap.b C Rd Swap bytes in register. 1 1 1

swap.bh C Rd
Swap bytes in each
halfword.

1 1 1

swap.h C Rd
Swap halfwords in
register.

1 1 1

asr

E Rd, Rx, Ry
Arithmetic shift right
(signed).

1 1 1

E Rd, Rs, sa 1 1 1

C Rd, sa 1 1 1

lsl

E Rd, Rx, Ry

Logical shift left.

1 1 1

E Rd, Rs, sa 1 1 1

C Rd, sa 1 1 1

lsr

E Rd, Rx, Ry

Logical shift right.

1 1 1

E Rd, Rs, sa 1 1 1

C Rd, sa 1 1 1

rol C Rd Rotate left through carry. 1 1 1

ror C Rd
Rotate right through
carry.

1 1 1

mov

C Rd, imm Load immediate into
register.

1 1 1

E Rd, imm 1 1 1

C Rd, Rs Copy register. 1 1 1

Table 10-3. Timing of ALU operations
158
32001A–AVR32–06/06

AVR32

AVR32
10.5 Multiply16 operations
These instructions require one pass through the multiplier array and produce a 32-bit result. For
mulrndhh, a rounding value of 0x8000 is added to the product producing the final result. This
group does not set any flags, except for the mulsat instructions which set Q if saturation
occurred. The Q flag is a sticky flag, so subsequent instructions will not stall due to Q flag
dependencies.

mov{cond4}

E Rd, Rs
Copy register if condition
is true.

1 1 1

E Rd, imm
Load immediate into
register if condition is
true.

1 1 1

csrf C b5 Clear status register flag. 1 1 1

csrfcz C b5
Copy status register flag
to C and Z.

1 1 1

ssrf C b5 Set status register flag. 1 1 1

sr{cond4} C Rd
Conditionally set register
to true or false.

1 1 1

Table 10-3. Timing of ALU operations

Table 10-4. Timing of Multiply16 operations

Mnemonics Operands Description
Issue
latency

Result
latency

Flag
latency

mul E Rd, Rs, imm Multiply immediate. 1 2 N/A

mulhh.w E
Rd, Rx<part>,
Ry<part>

Signed Multiply of
halfwords.
(32 ← 16 x 16)

1 2 N/A

mulnhh.w E
Rd, Rx<part>,
Ry<part>

Signed Multiply of
halfwords.

(32 ← 16 x 16)
1 2 N/A

mulnwh.d E Rd, Rx, Ry<part>
Signed Multiply, word
and halfword.

(48 ← 32 x 16)
1

2 +
delaye
d wb

N/A

mulwh.d E Rd, Rx, Ry<part>
Signed Multiply, word
and halfword.
(48 ← 32 x 16)

1
2 +
delaye
d wb

N/A

mulsathh.h E
Rd, Rx<part>,
Ry<part>

Fractional signed
multiply with saturation.
Return halfword.

(16 ← 16 x 16)

1 2 Q: 3

mulsathh.w E
Rd, Rx<part>,
Ry<part>

Fractional signed
multiply with saturation.
Return word.

(32 ← 16 x 16)

1 2 Q: 3
159
32001A–AVR32–06/06

10.6 Mac16 operations
These instructions require one pass through the multiplier array and produce a 32-bit result. This
result is added to an accumulator register. A valid copy of this accumulator may be cached in the
accumulator cache. Otherwise, an extra cycle is needed to read the accumulator from the regis-
ter file. Therefore, issue and result latencies depend on whether the accumulator is cached in
the AccCache.

The machh.d and macwh.d instruction uses a 48-bit accumulator. The accumulator in the MUL
pipeline is wide enough to perform an 48-bit accumulation in a single cycle. The requirements for
machh.d and macwh.d is listed separately below. In these two instructions, the high part of the
result is written back first, contrary to the other doubleword instructions. The low part of the
result is written back when the MUL write port is idle. This implies that other MUL instructions
may complete before the low part of a machh.d or macwh.d is written back. Hardware interlocks
are present in order to guarantee correct execution in this case, guaranteeing that no hazards
will occur.

This group does not set any flags, except for the macsat instruction which set Q if saturation
occurred. The Q flag is a sticky flag, so subsequent instructions will not stall due to Q flag depen-
dencies. If saturation occurred, the Q flag is set after 3 or 4 cycles, depending on an
accumulator cache hit.

mulsatwh.w E Rd, Rx, Ry<part>

Fractional signed
multiply with saturation.
Return word.

(32 ← 32 x 16)

1 2 Q: 3

mulsatrndhh.h E
Rd, Rx<part>,
Ry<part>

Signed multiply with
rounding. Return
halfword.

(16 ← 16 x 16)

1 2 Q: 3

mulsatrndwh.w E Rd, Rx, Ry<part>

Signed multiply with
rounding. Return
halfword.

(32 ← 32 x 16)

1 2 Q: 3

Table 10-4. Timing of Multiply16 operations
160
32001A–AVR32–06/06

AVR32

AVR32
10.7 MulMac32 operations
These instructions require two passes through the multiplier array to produce a 32-bit result. For
mac, a valid copy of this accumulator may be cached in the accumulator cache. Otherwise, an
extra cycle is needed to read the accumulator from the register file. Therefore, issue and result
latencies depend on whether a valid entry is found in the accumulator cache.

10.8 MulMac64 operations
These instructions require two passes through the multiplier array to produce a 64-bit result. For
macs and macu, a valid copy of this accumulator may be cached in the accumulator cache. Oth-
erwise, an extra cycle is needed to read the accumulator from the register file. Therefore, issue
and result latencies depend on whether a valid entry is found in the accumulator cache. The low

Table 10-5. Timing of Mac16 operations

Mnemonics Operands Description
Issue
latency

Result
latency

Flag
latency

machh.w E
Rd, Rx<part>,
Ry<part>

Multiply signed halfwords
and accumulate.

(32 ← 16x16 + 32)
1/2 2/3 N/A

machh.d E
Rd, Rx<part>,
Ry<part>

Multiply signed halfwords
and accumulate.
(48 ← 16x16 + 48)

1/2
2/3 +
delaye
d wb

N/A

macwh.d E Rd, Rx, Ry<part>

Multiply signed word and
halfword and
accumulate.

(48 ← 32 x 16 + 48)

1/2
2/3 +
delaye
d wb

N/A

macsathh.w E
Rd, Rx<part>,
Ry<part>

Fractional signed multiply
accumulate with
saturation. Return word.

(32 ← 16 x 16 + 32)

1/2 2/3
Q:
3/4

Table 10-6. Timing of MulMac32 operations

Mnemonics Operands Description
Issue
latency

Result
latency

Flag
latency

mac E Rd, Rx, Ry
Multiply accumulate.

(32 ← 32x32 + 32)
2/3 3/4 N/A

mul E Rd, Rx, Ry
Multiply.

(32 ← 32 x 32)
2 3 N/A
161
32001A–AVR32–06/06

part of the result is written back 1 cycle before the high part, and the result latencies presented
are for the low part of the result.

10.9 Divide operations
These instructions require several cycles in the multiply pipeline to complete. The quotient (Q) is
written back 1 cycle before the remainder (R).

10.10 Saturate operations
The saturate instructions use both the A1 and A2 stages to produce a valid result. Flags are for-
warded so that they are ready for the following instruction to use.

Table 10-7. Timing of MulMac64 operations

Mnemonics Operands Description
Issue
latency

Result
latency

Flag
latency

macs.d E Rd, Rx, Ry
Multiply signed
accumulate.

(64 ← 32x32 + 64)
3/4 4/5 N/A

macu.d E Rd, Rx, Ry
Multiply unsigned
accumulate.
(64 ← 32x32 + 64)

3/4 4/5 N/A

muls.d E Rd, Rx, Ry
Signed Multiply.
(64 ← 32 x 32)

3 4 N/A

mulu.d E Rd, Rx, Ry
Unsigned Multiply.
(64 ← 32 x 32)

3 4 N/A

Table 10-8. Timing of divide operations

Mnemonics Operands Description
Issue
latency

Result
latency

Flag
latency

divs E Rd, Rx, Ry

Divide signed.

(32 ← 32/32)
(32 ← 32%32)

33
Q:33

R:34
N/A

divu E Rd, Rx, Ry
Divide unsigned.
(32 ← 32/32)

(32 ← 32%32)

33
Q:33

R:34
N/A

Table 10-9. Timing of saturate operations

Mnemonics Operands Description
Issue
latency

Result
latency

Flag
latency

satadd.h E Rd, Rx, Ry
Saturated add
halfwords.

1 2 1

satadd.w E Rd, Rx, Ry Saturated add. 1 2 1

satsub.h E Rd, Rx, Ry
Saturated subtract
halfwords.

1 2 1

satsub.w
E Rd, Rx, Ry

Saturated subtract.
1 2 1

E Rd, Rs, imm 1 2 1
162
32001A–AVR32–06/06

AVR32

AVR32
10.11 Load and store operations
This group includes all the load and store instructions. The LS pipeline has a dedicated adder
with an operand shift functionality, which performs all the address calculations except the ones
needed for indexed addressing. The additions needed in indexed addressing is performed by
the adder in the A1 stage. The A1 adder also performs the writeback address calculation for
autoincrement and autodecrement operation.

Loaded word data are available directly after the D pipestage. Byte and halfword data must be
extended and rotated before they are valid. This is performed in the WB stage. Ldins and ldswp
instructions also require modification in the WB stage before their results are valid. Stswp
instructions require modification before their data is output to the cache. This modification is per-
formed in the D stage. All store instructions may experience write-after-read hazards, and
therefore subsequent instructions writing to the register to be stored are stalled until the store
instruction has left the D stage.

Load of unaligned word addresses will increase the issue and result latency with one or two
cycles, depending on the alignment. Store of unaligned word addresses will increase the issue
latency with one or two cycles, depending on the alignment. Load of word-aligned doubleword
will increase the issue and result latency with one cycle. Store of word-aligned doubleword will
increase the issue latency with one cycle.

satrnds E Rd >> sa, b5

Signed saturate from bit
given by sa after a right
shift with rounding of b5
bit positions.

1 2 1

satrndu E Rd >> sa, b5

Unsigned saturate from
bit given by sa after a
right shift with rounding
of b5 bit positions.

1 2 1

sats E Rd >> sa, b5
Shift sa positions and do
signed saturate from bit
given by b5.

1 2 1

satu E Rd >> sa, b5
Shift sa positions and do
unsigned saturate from
bit given by b5.

1 2 1

Table 10-9. Timing of saturate operations (Continued)

Table 10-10. Timing of load and store operations

Mnemonics Operands Description.
Issue
latency

Result
latency

Flag
latency

ld.ub

C Rd, Rp++
Load unsigned byte with
post-increment.

1 3 N/A

C Rd, --Rp
Load unsigned byte with
pre-decrement.

1 3 N/A

C Rd, Rp[disp] Load unsigned byte with
displacement.

1 3 N/A

E Rd, Rp[disp] 1 3 N/A

E Rd, Rb[Ri<<sa]
Indexed Load unsigned
byte.

1 3 N/A
163
32001A–AVR32–06/06

ld.sb

E Rd, Rp[disp]
Load signed byte with
displacement.

1 3 N/A

E Rd, Rb[Ri<<sa]
Indexed Load signed
byte.

1 3 N/A

ld.uh

C Rd, Rp++
Load unsigned halfword
with post-increment.

1 3 N/A

C Rd, --Rp
Load unsigned halfword
with pre-decrement.

1 3 N/A

C Rd, Rp[disp] Load unsigned halfword
with displacement.

1 3 N/A

E Rd, Rp[disp] 1 3 N/A

E Rd, Rb[Ri<<sa]
Indexed Load unsigned
halfword.

1 3 N/A

ld.sh

C Rd, Rp++
Load signed halfword
with post-increment.

1 3 N/A

C Rd, --Rp
Load signed halfword
with pre-decrement.

1 3 N/A

C Rd, Rp[disp] Load signed halfword
with displacement.

1 3 N/A

E Rd, Rp[disp] 1 3 N/A

E Rd, Rb[Ri<<sa]
Indexed Load signed
halfword.

1 3 N/A

ld.w

C Rd, Rp++
Load word with post-
increment.

1 2 N/A

C Rd, --Rp
Load word with pre-
decrement.

1 2 N/A

C Rd, Rp[disp] Load word with
displacement.

1 2 N/A

E Rd, Rp[disp] 1 2 N/A

E Rd, Rb[Ri<<sa] Indexed Load word. 1 2 N/A

E
Rd, Rp[

Ri<part> << 2]
Load word with extracted
index.

1 2 N/A

ld.d

C Rd, Rp++
Load doubleword with
post-increment.

1 2 N/A

C Rd, --Rp
Load doubleword with
pre-decrement.

1 2 N/A

C Rd, Rp Load doubleword. 1 2 N/A

E Rd, Rp[disp]
Load double with
displacement.

1 2 N/A

E Rd, Rb[Ri<<sa] Indexed Load double. 1 2 N/A

ldins.b E
Rd<part>,
Rp[disp]

Load byte with
displacement and insert
at specified byte location
in Rd.

1 3 N/A

Table 10-10. Timing of load and store operations (Continued)
164
32001A–AVR32–06/06

AVR32

AVR32
ldins.h E
Rd<part>,
Rp[disp]

Load halfword with
displacement and insert
at specified halfword
location in Rd.

1 3 N/A

ldswp.sh E

Rd, Rp[disp]

Load halfword with
displacement, swap
bytes and sign-extend

1 3 N/A

ldswp.uh E
Load halfword with
displacement, swap
bytes and zero-extend

1 3 N/A

ldswp.w E
Load word with
displacement and swap
bytes.

1 3 N/A

lddpc C Rd, PC[disp]
Load with displacement
from PC.

1 2 N/A

lddsp C Rd, SP[disp]
Load with displacement
from SP.

1 2 N/A

st.b

C Rp++, Rs
Store with post-
increment.

1 1 N/A

C --Rp, Rs
Store with pre-
decrement.

1 1 N/A

C Rp[disp], Rs Store byte with
displacement.

1 1 N/A

E Rp[disp], Rs 1 1 N/A

E Rb[Ri<<sa], Rs Indexed Store byte. 1 1 N/A

st.d

C Rp++, Rs
Store with post-
increment.

1 1 N/A

C --Rp, Rs
Store with pre-
decrement.

1 1 N/A

C Rp, Rs Store doubleword 1 1 N/A

E Rp[disp], Rs
Store double with
displacement

1 1 N/A

E Rb[Ri<<sa], Rs Indexed Store double. 1 1 N/A

st.h

C Rp++, Rs
Store with post-
increment.

1 1 N/A

C --Rp, Rs
Store with pre-
decrement.

1 1 N/A

C Rp[disp], Rs Store halfword with
displacement.

1 1 N/A

E Rp[disp], Rs 1 1 N/A

E Rb[Ri<<sa], Rs Indexed Store halfword. 1 1 N/A

Table 10-10. Timing of load and store operations (Continued)
165
32001A–AVR32–06/06

10.12 Load and store multiple operations
These instructions perform multiple data accesses. The writeback pointer is calculated by the A1
adder if needed, and the incremental pointer addresses are generated by the DA adder under
control by the LS pipeline control FSM. This FSM enables the LS pipe to operate decoupled
from the rest of the pipeline.

As the table shows, the updated pointer is available after the instruction has left the A1 stage. If
PC is specified for a load, and the return stack is empty, a 6 cycle penalty is taken, as the pipe-
line must be flushed. If enough registers are specified in the register list, this PC load penalty will
be masked by the regular register loads.

Store multiple instructions have the same write-after-write hazard detection as regular store
instructions. Subsequent instructions writing to a register that is to be stored are stalled until the
store has left the D stage.

st.w

C Rp++, Rs
Store with post-
increment.

1 1 N/A

C --Rp, Rs
Store with pre-
decrement.

1 1 N/A

C Rp[disp], Rs Store word with
displacement.

1 1 N/A

E Rp[disp], Rs 1 1 N/A

E Rb[Ri<<sa], Rs Indexed Store word. 1 1 N/A

stcond E Rp[disp], Rs
Conditional store with
displacement.

1 1 N/A

stdsp C SP[disp], Rs
Store with displacement
from SP.

1 1 N/A

sthh.w

E
Rp[disp<<2], Rx,
Ry

Combine halfwords to
word and store with
displacement

1 1 N/A

E
Rb[Ri<<sa], Rx,
Ry

Combine halfwords to
word and store indexed

1 1 N/A

stswp.h E

Rp[disp], Rs

Swap bytes and store
halfword with
displacement.

1 1 N/A

stswp.w E
Swap bytes and store
word with displacement.

1 1 N/A

Table 10-10. Timing of load and store operations (Continued)
166
32001A–AVR32–06/06

AVR32

AVR32
LDM and POPM have a flag latency of 2 cycles.

10.13 Branch operations
The branch instructions are subject to branch prediction. This implies that the latencies related
to branches depends on whether the prefetch unit correctly predicted the outcome of the branch,
and if it had time to prefetch the branch target. The rjmp instruction is unconditional, and always
taken. It can never be predicted incorrectly.

The ret instruction has dedicated return stack hardware. The return address of call instructions is
pushed on a 4-entry loop stack. When a ret instruction is encountered and predicted taken, the
top stack element is popped and the instruction fetches are redirected to this address. In a way,
ret behaves very similarly to branches, except that their target address is fetched from a loop
stack when predicted taken.

Table 10-11. Timing of load and store multiple operations

Mnemonics Operands Description

Pointer
update
ready

First
loaded
data
ready

Penalt
y for
PC
load

ldm E Rp{++}, Reglist16
Load multiple registers.
R12 is tested if PC is
loaded.

1 2 +6

ldmts E Rp{++}, Reglist16
Load multiple registers in
application context for
task switch.

1 2 +6

popjc C
Pop Java context from
frame

1 2 -

popm C Reglist8
Pop multiple registers
from stack. R12 is tested
if PC is popped.

1 2 +6

pushjc C
Push Java context to
frame

1 - -

pushm C Reglist8
Push multiple registers to
stack.

1 - -

stm E {--}Rp, Reglist16 Store multiple registers. 1 - -

stmts E {--}Rp, Reglist16
Store multiple registers in
application context for
task switch.

1 - -
167
32001A–AVR32–06/06

10.14 Call operations
Call instructions behave similarly to branches, except that the link register must be updated.
Branches can therefore never be reduced to zero cycles. The relative branches and acall are
always predicted, and can never be predicted incorrectly. The other call instructions are never
predicted, and will therefore have to flow through the pipeline. Mcall and acall will flow through
the pipeline, and the loaded target address is not ready until the WB pipestage. All correctly pre-
dicted instructions take 1 or 2 cycles, depending on their size and alignment.

10.15 Return from exception operations
These instructions are never predicted, but flow through the pipe as regular instructions. The tar-
get address is calculated when the instruction is in the A1 stage. In the following cycle, the target
instruction is fetched, and the execution stream continues from there.

Table 10-12. Timing of branch operations

Mnemonics Operands Description

Predict
ed
correct
ly

Predict
ed
incorre
ctly

Predict
able

br{cond3} C disp Branch if condition
satisfied.

See chapter 10.3.2 and
chapter 10.3.3

br{cond4} E disp

rjmp C disp Relative jump.

ret{cond4} C Rs
Conditional return from
subroutine with move and
test of return value.

Table 10-13. Timing of call operations

Mnemonics
Operands /
Syntax Description

Predict
ed
correct
ly

Predict
ed
incorre
ctly

Predict
able

acall C disp Application call. - 6 No

icall C Rd Register indirect call. - 4 No

mcall E Rp[disp] Memory call. - 6 No

rcall
C disp

Relative call.
1/2 4 Yes

E disp 1/2 4 Yes

scall C Supervisor call. - 4 No

breakpoint C Breakpoint. - 4 No

Table 10-14. Timing of return from exception operations

Mnemonics
Operands /
Syntax Description

Issue
latency

Result
latency

Flag
latency

retd C Return from debug mode 4 N/A N/A

rete C Return from exception 4 N/A N/A

rets C
Return from supervisor
call

4 N/A N/A
168
32001A–AVR32–06/06

AVR32

AVR32
10.16 Swap operation
The swap instruction perform two atomical memory accesses, first one read and then one write.
Write-after-write hazards may arise for the store part of xchg. This will stall subsequent instruc-
tions writing to the register to store until the store part of xchg has left D.

10.17 System register operations
This group moves data to and from the system registers. Forwarding and hazard detection is
implemented for the system registers. Latencies vary depending on where the system register
being is placed in the system, refer to Table 2-2 on page 10 for details. Accesses to system reg-
isters in A1 take one cycle. Accesses to registers on the TCB bus have a read latency of four
cycles, and writes have an issue latency of one cycle. Special care must be taken to avoid haz-
ards when using the some of these instructions, refer to Section 3.9 on page 27 for details.

Table 10-15. Timing of swap operation

Mnemonics
Operands /
Syntax Description.

Issue
latency

Result
latency

Flag
latency

xchg E Rd, Rx, Ry
Exchange register and
memory

2 3 N/A

Table 10-16. Timing of system register operations

Mnemonics
Operands /
Syntax Description.

Issue
latency

Result
latency

Flag
latency

mfdr E Rd, SysRegNo
Move debug register to
Rd.

2 4 N/A

mfsr E Rd, SysRegNo
Move system register to
Rd.

1/2 1/4 N/A

mtdr E SysRegNo, Rs
Move Rs to debug
register.

1 4 N/A

mtsr E SysRegNo, Rs
Move Rs to system
register.

1 4 N/A

musfr C Rs
Move Rs to status
register.

1 2 N/A

mustr C Rd
Move status register to
Rd.

1 2 N/A

tlbr C Read TLB entry. 1 3 N/A

tlbs C Search TLB for entry. 1 3 N/A

tlbw C Write TLB entry. 1 3 N/A
169
32001A–AVR32–06/06

10.18 System control operations
This group contains simple single-cycle instructions that control the behaviour of different parts
of the system. Special care must be taken to avoid hazards when using the cache instruction,
refer to Section 3.9.5 on page 29 for details.

10.19 Coprocessor operations

Table 10-17. Timing of system control operations

Mnemonics
Operands /
Syntax Description.

Issue
latency

Result
latency

Flag
latency

cache E Rp[disp], Op5 Perform cache operation 1 1 N/A

frs C
Invalidate the return
address stack

1 1 N/A

pref E Rp[disp] Prefetch cache line 1 1 N/A

sleep E Op8 Enter SLEEP mode. 1 1 N/A

sync E Op8 Flush write buffer 1 1 N/A

Figure 10-1. Timing of coprocessor operations

Mnemonics
Operands /
Syntax Description.

Issue
latency

Result
latency

Flag
latency

cop E
CP#, CRd, CRx,
CRy, Op

Coprocessor operation. 1 - N/A

ldc.d

E
CP#, CRd,
Rp[disp]

Load coprocessor
register.

1 5 N/A
E CP#, CRd, --Rp

Load coprocessor
register with pre-
decrement.

E
CP#, CRd,
Rb[Ri<<sa]

Load coprocessor
register with indexed
addressing.

ldc0.d E CRd, Rp[disp]
Load coprocessor 0
register.

1 5 N/A

ldc.w

E
CP#, CRd,
Rp[disp]

Load coprocessor
register.

1 5 N/A
E CP#, CRd, --Rp

Load coprocessor
register with pre-
decrement.

E
CP#, CRd,
Rb[Ri<<sa]

Load coprocessor
register with indexed
addressing.

ldc0.w E CRd, Rp[disp]
Load coprocessor 0
register.

1 5 N/A

ldcm.d E
CP#, Rp{++},
ReglistCPD8

Load multiple
coprocessor registers.

As LDM As LDM N/A

ldcm.w E
CP#, Rp{++},
ReglistCPH8

Load multiple
coprocessor registers.

As LDM As LDM N/A
170
32001A–AVR32–06/06

AVR32

AVR32
10.20 Java return operation

ldcm.w E
CP#, Rp{++},
ReglistCPL8

Load multiple
coprocessor registers.

As LDM As LDM N/A

mvcr.d E CP#, Rd, CRs
Move from coprocessor
to register.

2 4 N/A

mvcr.w E CP#, Rd, CRs
Move from coprocessor
to register.

2 4 N/A

mvrc.d E CP#, CRd, Rs
Move from register to
coprocessor.

1 5 N/A

mvrc.w E CP#, CRd, Rs
Move from register to
coprocessor.

1 5 N/A

stc.d

E
CP#, Rp[disp],
CRs

Store coprocessor
register.

1 5 N/A
E CP#, Rp++, CRs

Store coprocessor
register with post-
increment.

E
CP#, Rb[Ri<<sa],
CRs

Store coprocessor
register with indexed
addressing.

stc0.d E Rp[disp], CRs
Store coprocessor 0
register.

1 5 N/A

stc.w

E
CP#, Rp[disp],
CRs

Store coprocessor
register.

1 5 N/A
E CP#, Rp++, CRs

Store coprocessor
register with post-
increment.

E
CP#, Rb[Ri<<sa],
CRs

Store coprocessor
register with indexed
addressing.

stc0.w E Rp[disp], CRs
Store coprocessor 0
register.

1 5 N/A

stcm.d E
CP#, {--}Rp,
ReglistCPD8

Store multiple
coprocessor registers.

As STM
+1

As STM
+1

N/A

stcm.w E
CP#, {--}Rp,
ReglistCPH8

Store multiple
coprocessor registers.

As STM
+1

As STM
+1

N/A

stcm.w E
CP#, {--}Rp,
ReglistCPL8

Store multiple
coprocessor registers.

As STM
+1

As STM
+1

N/A

Figure 10-1. Timing of coprocessor operations (Continued)

Table 10-18. Timing of Java return operation

Mnemonics
Operands /
Syntax Description.

Issue
latency

Result
latency

Flag
latency

retj C Return from Java trap. 4 N/A N/A
171
32001A–AVR32–06/06

10.21 SIMD operations
This group comprises instructions operating on multiple data in parallel. Some instructions in this
group take one cycle to execute, and the result is available for use by the following instruction.
Other instructions perform saturation in A2, and need two cycles before the result is ready.

Table 10-19. Timing of SIMD Operations

Mnemonics
Operands /
Syntax Description.

Issue
latency

Result
latency

Flag
latency

pabs.{sb/sh} E Rd, Rs Packed Absolute Value. 1 1 1

packsh.{ub/sb} E Rd, Rx, Ry Pack Halfwords to Bytes. 1 1 1

packw.sh E Rd, Rx, Ry
Pack Words to
Halfwords.

1 1 1

padd.{b/h} E Rd, Rx, Ry Packed Addition. 1 1 1

paddh.{ub/sh} E Rd, Rx, Ry
Packed Addition with
halving.

1 1 1

padds.{ub/sb/u
h/sh}

E Rd, Rx, Ry
Packed Addition with
Saturation.

1 2 1

paddsub.h E
Rd, Rx<part>,
Ry<part>

Packed Halfword
Addition and Subtraction.

1 1 1

paddsubh.sh E
Rd, Rx<part>,
Ry<part>

Packed Halfword
Addition and Subtraction
with halving.

1 1 1

paddsubs.{uh/
sh}

E
Rd, Rx<part>,
Ry<part>

Packed Halfword
Addition and Subtraction
with Saturation.

1 2 1

paddx.h E Rd, Rx, Ry
Packed Halfword
Addition with Crossed
Operand.

1 1 1

paddxh.sh E Rd, Rx, Ry
Packed Halfword
Addition with Crossed
Operand and Halving.

1 1 1

paddxs.{uh/sh} E Rd, Rx, Ry
Packed Halfword
Addition with Crossed
Operand and Saturation.

1 2 1

pasr.{b/h} E Rd, Rs, {sa}
Packed Arithmetic Shift
Left.

1 1 1

pavg.{ub/sh} E Rd, Rx, Ry Packed Average. 1 1 1

plsl.{b/h} E Rd, Rs, {sa} Packed Logic Shift Left. 1 1 1

plsr.{b/h} E Rd, Rs, {sa} Packed Logic Shift Right. 1 1 1

pmax.{ub/sh} E Rd, Rx, Ry Packed Maximum Value. 1 1 1

pmin.{ub/sh} E Rd, Rx, Ry Packed Minimum Value. 1 1 1

psad E Rd, Rx, Ry
Sum of Absolute
Differences.

1 2 2

psub.{b/h} E Rd, Rx, Ry Packed Subtraction. 1 1 1

psubadd.h E
Rd, Rx<part>,
Ry<part>

Packed Halfword
Subtraction and Addition.

1 1 1
172
32001A–AVR32–06/06

AVR32

AVR32
psubaddh.sh E
Rd, Rx<part>,
Ry<part>

Packed Halfword
Subtraction and Addition
with halving.

1 1 1

psubadds.{uh/
sh}

E
Rd, Rx<part>,
Ry<part>

Packed Halfword
Subtraction and Addition
with Saturation.

1 2 1

psubh.{ub/sh} E Rd, Rx, Ry
Packed Subtraction with
halving.

1 1 1

psubs.{ub/sb/u
h/sh}

E Rd, Rx, Ry
Packed Subtraction with
Saturation.

1 2 1

psubx.h E Rd, Rx, Ry
Packed Halfword
Subtraction with Crossed
Operand.

1 1 1

psubxh.sh E Rd, Rx, Ry
Packed Halfword
Subtraction with Crossed
Operand and Halving.

1 1 1

psubxs.{uh/sh} E Rd, Rx, Ry
Packed Halfword
Subtraction with Crossed
Operand and Saturation.

1 2 1

punpck{ub/sb}.
h

E Rd, Rs<part>
Unpack Bytes to
Halfwords.

1 1 1

Table 10-19. Timing of SIMD Operations
173
32001A–AVR32–06/06

174
32001A–AVR32–06/06

AVR32

11. Glossary
The following abbreviations and terms are used in this document.

Recoverable Exception An exception that saves enough state so that normal program execution can resume
after the exception routine has finished.

Processor Consistency A strict processor consistency is maintained if only recoverable exceptions can occur.
Otherwise, the processor has a weak consistency.

Instruction Commit An instruction is said to be committed when it has updated the processor state.
Processor State The processor state is comprised of the following modules:

• The register file

• The status register

• The system registers

• The coprocessors

• The MMU

• The debug hardware
Contaminated instruction An instruction flowing through the pipeline that has somehow caused an exception. If

such an instruction is about to commit, the exception routine will be entered. An example
of a contaminated instruction is an instruction that caused a protection violation when it
was fetched. Contaminated instructions will not always generate exceptions, they may
for example be flushed from the pipe by branches further down the pipe.

BHT Branch History Table
BTB Branch Target Buffer
HUM See Hit under miss
Icache Instruction cache
Dcache Data cache
Frozen instruction Instruction halted in a pipeline stage du to some kind of data hazard
Nexus The IEEE-ISTO 5001™-2003 debug standard for embedded processors.
OCD On-Chip Debug
AUX The Nexus-defined Auxiliary port for trace debug information.
API Application Program Interface
JTAG Joint Test Action Group, i.e. IEEE1149.1 standard
FCU Flow Control Unit
MIU Memory Interface Unit
JVM Java Virtual Machine
Debug Mode A CPU mode dedicated to executing instructions for debug purposes.
Monitor Mode Debug Mode running from instructions fetched from memory.
OCD Mode Debug Mode running from instructions entered by an external debugger.

AVR32
12. Revision History

12.1 Rev. 32001A-06/06

1. Initial version.
175
32001A–AVR32–06/06

176
32001A–AVR32–06/06

AVR32

AVR32
Table of contents

1 Introduction .. 2

1.1 The AVR family ..2

1.2 The AVR32 Microprocessor Architecture ..2

1.3 Event handling ...3

1.4 Java Support ..3

1.5 Microarchitectures ..4

1.6 The AVR32 AP implementation ...5

2 Programming Model .. 6

2.1 Architectural compatibility ..6

2.2 Implementation options ..6

2.3 Register file configuration ..6

2.4 Status register configuration ..7

2.5 System registers ..10

2.6 Configuration Registers ...16

3 Pipeline ... 21

3.1 Overview ..21

3.2 Prefetch unit ...21

3.3 Decode unit ..22

3.4 ALU pipeline ...22

3.5 Multiply pipeline ...23

3.6 Load-store pipeline ..24

3.7 Writeback ...25

3.8 Forwarding hardware and hazard detection ..25

3.9 Hazards not handled by the hardware ...27

3.10 Event handling ...30

3.11 Entry points for events ...32

3.12 Interrupt latencies ..46

3.13 Processor consistency ...47

4 Virtual memory ... 48

4.1 Memory map ..48

4.2 Understanding the MMU ..50

4.3 Operation of the MMU and MMU exceptions ...60

5 Prefetch Unit ... 63
i
32001A–AVR32–06/06

5.1 Instruction buffer ..63

5.2 Branch prediction ...64

6 Instruction Cache ... 69

6.1 Behaviour ...69

6.2 Cache operations ...70

6.3 Memory coherency ..71

6.4 Debug access to ICache memories ...72

7 Data Cache and Write Buffer .. 74

7.1 Data cache behaviour ..74

7.2 Write buffer behaviour ..75

7.3 Cache and write buffer operations ...75

7.4 Prefetch instruction ..77

7.5 Sync instructions ..77

7.6 Memory mapped cache memories ...77

8 Coprocessor interface ... 79

8.1 Coprocessor pipeline ...79

8.2 TCB specification ...79

8.3 Connecting coprocessors to the TCB bus ...82

8.4 Execution of coprocessor instructions ...82

8.5 Timing diagrams ..84

9 OCD system .. 86

9.1 Overview ..86

9.2 CPU Development Support ..90

9.3 Debug Port ...111

9.4 Breakpoints ..119

9.5 Program trace ..130

9.6 Data Trace ...136

9.7 Ownership Trace ..140

9.8 Memory Interface ...141

9.9 OCD Message Summary ...150

9.10 OCD Register Summary ..152

10 Instruction cycle summary ... 154

10.1 Validity of timing information ..154

10.2 Definitions ..154
ii
32001A–AVR32–06/06

AVR32

AVR32
10.3 Special considerations ...155

10.4 ALU Operations ...156

10.5 Multiply16 operations ...159

10.6 Mac16 operations ..160

10.7 MulMac32 operations ...161

10.8 MulMac64 operations ...161

10.9 Divide operations ...162

10.10 Saturate operations ..162

10.11 Load and store operations ...163

10.12 Load and store multiple operations ..166

10.13 Branch operations ..167

10.14 Call operations ...168

10.15 Return from exception operations ..168

10.16 Swap operation ..169

10.17 System register operations ..169

10.18 System control operations ...170

10.19 Coprocessor operations ...170

10.20 Java return operation ...171

10.21 SIMD operations ..172

11 Glossary .. 174

12 Revision History ... 175

12.1 Rev. 32001A-06/06 ..175
iii
32001A–AVR32–06/06

iv
32001A–AVR32–06/06

AVR32

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDI-
TIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-
TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT
OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Atmel’s products are not
intended, authorized, or warranted for use as components in applications intended to support or sustain life.

Atmel Corporation Atmel Operations

2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

Regional Headquarters

Europe
Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
Tel: (41) 26-426-5555
Fax: (41) 26-426-5500

Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369

Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

Memory
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
Tel: (33) 2-40-18-18-18
Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
Tel: (33) 4-42-53-60-00
Fax: (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
Tel: (44) 1355-803-000
Fax: (44) 1355-242-743

RF/Automotive
Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
Tel: (49) 71-31-67-0
Fax: (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom

Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
Tel: (33) 4-76-58-30-00
Fax: (33) 4-76-58-34-80

Literature Requests
www.atmel.com/literature

© 2006 Atmel Corporation. All rights reserved. ATMEL®, logo and combinations thereof, Everywhere You Are®, AVR®, and others, are regis-
tered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.
32001A–AVR32–06/06

	Feature Summary
	1. Introduction
	1.1 The AVR family
	1.2 The AVR32 Microprocessor Architecture
	1.3 Event handling
	1.4 Java Support
	1.5 Microarchitectures
	1.5.1 AVR32A
	1.5.2 AVR32B

	1.6 The AVR32 AP implementation

	2. Programming Model
	2.1 Architectural compatibility
	2.2 Implementation options
	2.2.1 Memory management
	2.2.2 Java support

	2.3 Register file configuration
	2.4 Status register configuration
	2.5 System registers
	2.6 Configuration Registers

	3. Pipeline
	3.1 Overview
	3.2 Prefetch unit
	3.3 Decode unit
	3.4 ALU pipeline
	3.5 Multiply pipeline
	3.6 Load-store pipeline
	3.6.1 Support for unaligned addresses

	3.7 Writeback
	3.8 Forwarding hardware and hazard detection
	3.8.1 IS stage forwarding
	3.8.2 Forwarding sources
	3.8.3 Forwarding destinations

	3.9 Hazards not handled by the hardware
	3.9.1 Accessing system registers with mtsr and mfsr
	3.9.2 Writing to the status register with ssrf and csrf
	3.9.3 Writing to and using the JOSP register
	3.9.4 Execution of TLB instructions
	3.9.5 Execution of cache instructions
	3.9.6 Hazards on the Q flag

	3.10 Event handling
	3.10.1 Event priority
	3.10.2 Exceptions and interrupt requests
	3.10.3 Supervisor calls
	3.10.4 Debug requests

	3.11 Entry points for events
	3.11.1 Description of events in AVR32 AP
	3.11.1.1 Reset Exception
	3.11.1.2 OCD Stop CPU Exception
	3.11.1.3 Unrecoverable Exception
	3.11.1.4 TLB Multiple Hit Exception
	3.11.1.5 Bus Error Exception on Data Access
	3.11.1.6 Bus Error Exception on Instruction Fetch
	3.11.1.7 NMI Exception
	3.11.1.8 INT3 Exception
	3.11.1.9 INT2 Exception
	3.11.1.10 INT1 Exception
	3.11.1.11 INT0 Exception
	3.11.1.12 Instruction Address Exception
	3.11.1.13 ITLB Miss Exception
	3.11.1.14 ITLB Protection Exception
	3.11.1.15 Breakpoint Exception
	3.11.1.16 Illegal Opcode
	3.11.1.17 Unimplemented Instruction
	3.11.1.18 Data Read Address Exception
	3.11.1.19 Data Write Address Exception
	3.11.1.20 DTLB Read Miss Exception
	3.11.1.21 DTLB Write Miss Exception
	3.11.1.22 DTLB Read Protection Exception
	3.11.1.23 DTLB Write Protection Exception
	3.11.1.24 Privilege Violation Exception
	3.11.1.25 DTLB Modified Exception
	3.11.1.26 Floating-point Exception
	3.11.1.27 Coprocessor Exception
	3.11.1.28 Supervisor call

	3.12 Interrupt latencies
	3.12.1 Maximum interrupt latency
	3.12.2 Minimum interrupt latency

	3.13 Processor consistency
	3.13.1 Address boundary checking
	3.13.2 Handling contaminated instructions
	3.13.3 Handling instructions with PC as destination

	4. Virtual memory
	4.1 Memory map
	4.2 Understanding the MMU
	4.2.1 Virtual Memory Models
	4.2.2 MMU interface registers
	4.2.2.1 TLB Entry Register High Part - TLBEHI
	4.2.2.2 TLB Entry Register Low Part - TLBELO
	4.2.2.3 Page Table Base Register - PTBR
	4.2.2.4 TLB Exception Address Register - TLBEAR
	4.2.2.5 MMU Control Register - MMUCR
	4.2.2.6 TLB Accessed Register HI - TLBARHI
	4.2.2.7 TLB Accessed Register LO - TLBARLO

	4.2.3 Page Table Organization
	4.2.4 TLB organization
	4.2.5 Translation process

	4.3 Operation of the MMU and MMU exceptions
	4.3.1 The tlbw instruction
	4.3.2 TLB synonyms
	4.3.3 MMU exception handling
	4.3.3.1 ITLB / DTLB Multiple Hit
	4.3.3.2 ITLB / DTLB Miss
	4.3.3.3 ITLB / DTLB Protection Violation
	4.3.3.4 DTLB Modified

	5. Prefetch Unit
	5.1 Instruction buffer
	5.1.1 Instruction buffer fill
	5.1.2 Flushing of the instruction buffer
	5.1.3 Instruction forwarding

	5.2 Branch prediction
	5.2.1 Functionality
	5.2.2 Predictable instructions
	5.2.3 Foldable instructions
	5.2.4 Branch target buffer
	5.2.5 BTB update policy
	5.2.6 Reset
	5.2.7 Invalidation
	5.2.8 Disabling
	5.2.9 Return stack
	5.2.10 Reset
	5.2.11 Disabling

	6. Instruction Cache
	6.1 Behaviour
	6.2 Cache operations
	6.2.1 The Flush operation
	6.2.2 The Invalidate operation
	6.2.3 The Lock operation
	6.2.4 The Unlock operation
	6.2.5 The Prefetch operation

	6.3 Memory coherency
	6.3.1 DMA of program code
	6.3.2 Self-modifying code

	6.4 Debug access to ICache memories
	6.4.1 Format of tag memory

	7. Data Cache and Write Buffer
	7.1 Data cache behaviour
	7.2 Write buffer behaviour
	7.3 Cache and write buffer operations
	7.3.1 The Cache instruction
	7.3.2 Flush
	7.3.3 Lock
	7.3.4 Unlock
	7.3.5 Invalidate
	7.3.6 Clean
	7.3.7 Clean & Invalidate

	7.4 Prefetch instruction
	7.5 Sync instructions
	7.6 Memory mapped cache memories
	7.6.1 Format of tag memory

	8. Coprocessor interface
	8.1 Coprocessor pipeline
	8.2 TCB specification
	8.3 Connecting coprocessors to the TCB bus
	8.4 Execution of coprocessor instructions
	8.4.1 Stalling of the TCB bus and the LS pipeline
	8.4.2 Coprocessor operation
	8.4.3 Writing data to coprocessor
	8.4.4 Reading data from coprocessor

	8.5 Timing diagrams
	8.5.1 Coprocessor operation
	8.5.2 Writes to coprocessor register file
	8.5.2.1 Reads from coprocessor register file

	9. OCD system
	9.1 Overview
	9.1.1 Features
	9.1.2 OCD controller overview
	9.1.2.1 Host, debugger, and emulator
	9.1.2.2 Accessing the debug features
	9.1.2.3 Transmit Queue
	9.1.2.4 Flow Control Unit
	9.1.2.5 Breakpoint modules
	9.1.2.6 Program and Data Trace
	9.1.2.7 RTOS debug support
	9.1.2.8 Timestamps
	9.1.2.9 Real-time memory access
	9.1.2.10 Java debug features

	9.2 CPU Development Support
	9.2.1 Debug Mode
	9.2.1.1 Operations in Debug Mode
	9.2.1.2 A typical debug session flow

	9.2.2 Monitor Mode
	9.2.2.1 Debugging a monitor code

	9.2.3 OCD Mode
	9.2.4 Entry into Debug Mode
	9.2.4.1 Debug request
	9.2.4.2 Program counter breakpoint
	9.2.4.3 Data address or value breakpoint
	9.2.4.4 breakpoint instruction
	9.2.4.5 Trapping opcode 0x0000
	9.2.4.6 Single stepping
	9.2.4.7 Hardware Error
	9.2.4.8 Event on EVTI pin
	9.2.4.9 NanoTrace buffer full
	9.2.4.10 Abort command

	9.2.5 Exceptions and Debug Mode
	9.2.6 Instruction replacement
	9.2.6.1 Instruction replacement example

	9.2.7 Sleep Mode
	9.2.8 OCD Register Access
	9.2.9 OCD features in Debug Mode
	9.2.10 OCD Registers Accessed by CPU
	9.2.11 Runtime write access to OCD registers
	9.2.12 Debugging Java programs
	9.2.12.1 Java mode operation
	9.2.12.2 Java and debug functionality

	9.2.13 CPU optimization control
	9.2.13.1 Branch prediction
	9.2.13.2 Branch folding
	9.2.13.3 Return stack
	9.2.13.4 Imprecise breakpoints
	9.2.13.5 Imprecise execution

	9.2.14 Messages
	9.2.14.1 Debug Status (DEBS)

	9.2.15 Registers
	9.2.15.1 Device ID Register (DID)
	9.2.15.2 Nexus Configuration Register (NXCFG)
	9.2.15.3 Debug Communication CPU Register (DCCPU)
	9.2.15.4 Debug Communication Emulator Register (DCEMU)
	9.2.15.5 Debug Communication Status Register (DCSR)
	9.2.15.6 Development Control Register (DC)
	9.2.15.7 Development Status (DS) register
	9.2.15.8 Debug Instruction Register (DINST)
	9.2.15.9 Debug Program Counter (DPC)
	9.2.15.10 CPU Control Mask Register (CPUCM)

	9.3 Debug Port
	9.3.1 Overview
	9.3.2 JTAG
	9.3.3 AUX port
	9.3.3.1 Reset configuration
	9.3.3.2 Message protocol
	9.3.3.3 Message rules
	9.3.3.4 Clock and frame rate
	9.3.3.5 Example
	9.3.3.6 Transmit queue and overruns
	9.3.3.7 Trace and reset

	9.3.4 Messages
	9.3.4.1 Error

	9.3.5 Registers
	9.3.5.1 Auxiliary Port Control Register (AXC)

	9.4 Breakpoints
	9.4.1 Overview
	9.4.2 Breakpoint Unit description
	9.4.2.1 Program Breakpoints
	9.4.2.2 Watchpoints
	9.4.2.3 Data Breakpoints
	9.4.2.4 Data alignment
	9.4.2.5 Unaligned accesses

	9.4.3 Advanced features
	9.4.3.1 Ranges

	9.4.4 Triggering trace
	9.4.5 Messages
	9.4.5.1 Watchpoint Hit (WH)
	9.4.5.2 Trace Watchpoint Hit (TWH)

	9.4.6 Registers
	9.4.6.1 PC Breakpoint/Watchpoint Address registers (BWA0A, BWA0, BWA1A, BWA1B, BWA2A, BWA2B)
	9.4.6.2 PC Breakpoint/Watchpoint Control registers - (BWC0A, BWC0B, BWC1A, BWC1B, BWC2A, BWC2B)
	9.4.6.3 Event Pair Control 3 (EPC3)
	9.4.6.4 Data Breakpoint / Watchpoint Address (BWA3A, BWA3B)
	9.4.6.5 Data Breakpoint / Watchpoint Data (BWD3A, BWD3B)
	9.4.6.6 Data Breakpoint / Watchpoint Control (BWC3A, BWC3B)
	9.4.6.7 Watchpoint Trigger

	9.5 Program trace
	9.5.1 Program trace overview
	9.5.1.1 Branch message summary

	9.5.2 Branch message packets
	9.5.2.1 Instruction count packet
	9.5.2.2 Compressed program counter packets

	9.5.3 Special cases
	9.5.3.1 Debug Mode

	9.5.4 Messages
	9.5.4.1 Program Trace, Direct Branch
	9.5.4.2 Program Trace, Direct Branch with Target Address
	9.5.4.3 Program Trace, Indirect Branch
	9.5.4.4 Program Trace Synchronization
	9.5.4.5 Program Trace, Direct Branch with Sync
	9.5.4.6 Program Trace, Indirect Branch with Sync
	9.5.4.7 Program Trace, Resource Full
	9.5.4.8 Program Trace Correlation

	9.5.5 Registers

	9.6 Data Trace
	9.6.1 Overview
	9.6.2 Using data trace channels as watchpoints
	9.6.3 Messages
	9.6.3.1 Data Trace, Data Write (DTDW)
	9.6.3.2 Data Trace, Data Write with Sync (DTDWS)
	9.6.3.3 Data Trace, Data Read (DTDR)
	9.6.3.4 Data Trace, Data Read with Sync (DTDRS)

	9.6.4 Registers
	9.6.4.1 Data Trace Control register (DTC)
	9.6.4.2 Data Trace Start/End Address register (DTSA/DTEA)

	9.7 Ownership Trace
	9.7.1 Functional description
	9.7.2 Messages
	9.7.2.1 Ownership Trace (OT)

	9.7.3 Registers
	9.7.3.1 Ownership Trace Process ID (PID)

	9.8 Memory Interface
	9.8.1 Overview
	9.8.2 Memory (Block) Access
	9.8.2.1 Memory Read Operations
	9.8.2.2 Special cases:
	9.8.2.3 Memory Write Operations
	9.8.2.4 Special cases:

	9.8.3 Address Space
	9.8.4 Error Conditions
	9.8.5 Data Cache operation
	9.8.6 NanoTrace
	9.8.6.1 NanoTrace operation
	9.8.6.2 Extracting NanoTrace messages
	9.8.6.3 NanoTrace access protection
	9.8.6.4 Overrun control
	9.8.6.5 NanoTrace Buffer Control
	9.8.6.6 CRC-32 check of a memory block

	9.8.7 Messages
	9.8.8 Registers
	9.8.8.1 Read/Write Access Control/Status (RWCS) Register
	9.8.8.2 Read/Write Access Address (RWA) Register
	9.8.8.3 Read/Write Access Data (RWD) Register

	9.9 OCD Message Summary
	9.10 OCD Register Summary

	10. Instruction cycle summary
	10.1 Validity of timing information
	10.2 Definitions
	10.2.1 Issue
	10.2.2 Issue latency
	10.2.3 Result latency
	10.2.4 Flag latency

	10.3 Special considerations
	10.3.1 PC as destination register
	10.3.2 Branch prediction
	10.3.3 Return address stack

	10.4 ALU Operations
	10.5 Multiply16 operations
	10.6 Mac16 operations
	10.7 MulMac32 operations
	10.8 MulMac64 operations
	10.9 Divide operations
	10.10 Saturate operations
	10.11 Load and store operations
	10.12 Load and store multiple operations
	10.13 Branch operations
	10.14 Call operations
	10.15 Return from exception operations
	10.16 Swap operation
	10.17 System register operations
	10.18 System control operations
	10.19 Coprocessor operations
	10.20 Java return operation
	10.21 SIMD operations

	11. Glossary
	12. Revision History
	12.1 Rev. 32001A-06/06

	Table of contents

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

