

TDA7237

QUAD DIFFERENTIAL LINE DRIVER

PRODUCT PREVIEW

DESCRIPTION

The quad differential line driver is a monolithic integrated circuit intended to provide low noise, low distortion voltage gain.

Additionally, the signal is converted from a single ended to a differential signal pair for applications reuiring signal isolation from DC grounded.

The four channel's gains are matched within 1dB.

BLOCK DIAGRAM

This is advanced information on a new product now in development or undergoing evaluation. Details are subject to change without notice.

TDA7237

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vs	Supply Voltage	20	V
Ptot	Total Power Dissipation	750	mW
T _{amb}	Operating Ambient Temperature	-40 to 85	°C
T _{stg}	Storage Temperature	-55 to 150	°C

PIN CONNECTION

THERMAL DATA

Symbol	Parameter	Value	Unit
Rth j-pins	Thermal Resistance junction - pins	90	°C/W

PIN FUNCTIONS

Ν.	Name	Function			
1	N.C.				
2	N.C.				
3	CH1I	Input to channel one			
4	CH2I	Input to channel two			
5	GND	Ground			
6	N.C.				
7	CH3I	Input to channel three			
8	CH4I	Input to channel four			
9	CH4NO	Channel four non inverting output			
10	CH4IO	Channel four inverting output			
11	CH3NO	Channel three non inverting output			
12	CH3IO	Channel three inverting output			
13	CH2NO	Channel two non inverting output			
14	CH2IO	Channel two inverting output			
15	CH1NO	Channel one non inverting output			
16	CH1IO	Channel one inverting output			
17	Vs	Supply Voltage			
18	CEXT	By-pass Capacitor			

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
Vs	Supply Voltage		9		11	V
Zı	Input Impedance		15	23	30	KΩ
SVR	Supply Voltage Rejection	f = 10KHz	35	45		dB
lsg	Output Short Circuit Current to	each pin		40		mA
	GND	all pins		300		mA
	Output Short Circuit Current to V_{CC}	each pin		20		mA
		all pins		150		mA
ls	Supply Current			35	50	mA
S _R	Slew Rate	RL = 10KW; CL = 1000pF		3		V/µs
S/N	Signal to Noise Ratio (1)		83	91		dB
THD	Total Harmonic Distortion	$Vo = 4V_{RMS}; RL = 10KW;$ CL = 1000pF		0.07	0.1	%
Cs	Channel Separation	(2)	70	80		dB
VIDC	DC Input Voltage		5.8	6.25	6.6	V
Vodc	DC Output Voltage		3.9	4.75	5.3	V
VCDC	DC C _{ext} Voltage	pin 18	5.8	6.25	6.6	V
Zo	Output Impedance			50	100	Ω
Gv	Voltage Gain		15.9	16.7	17.5	dB

ELECTRICAL CHARACTERISTICS (Vcc = 10V; T_{amb} = 25°C; f = 1KHz, unless otherwise specified.)

Notes:

1) Bw = 20Hz to 20KHz with 60dB/decade Rolloff (referred to 1.4V_{RMS})

2) All input AC grounded via $10\mu\text{F}$ capacitor

TDA7237

DIP18 PACKAGE MECHANICAL DATA

DIM.	mm			inch			
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
a1	0.254			0.010			
В	1.39		1.65	0.055		0.065	
b		0.45			0.018		
b1		0.25			0.010		
D			25.4			1.000	
E		8.5			0.335		
е		2.54			0.100		
e3		22.86			0.900		
F			7.1			0.280	
I			3.93			0.155	
L		3.3			0.130		
Z			1.34			0.053	

SGS-THOMSON MICROELECTRONICS

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics or systems without express written approval of SGS-THOMSON Microelectronics.

© 1995 SGS-THOMSON Microelectronics All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore -Spain - Sweden - Switzerland - Taiwan - Thaliand - United Kingdom - U.S.A.

