INTEGRATED CIRCUITS

DATA SHEET

TDA1563Q 2 × 25 W high efficiency car radio power amplifier

Preliminary specification
File under Integrated Circuits, IC01

1998 Jul 14

TDA1563Q

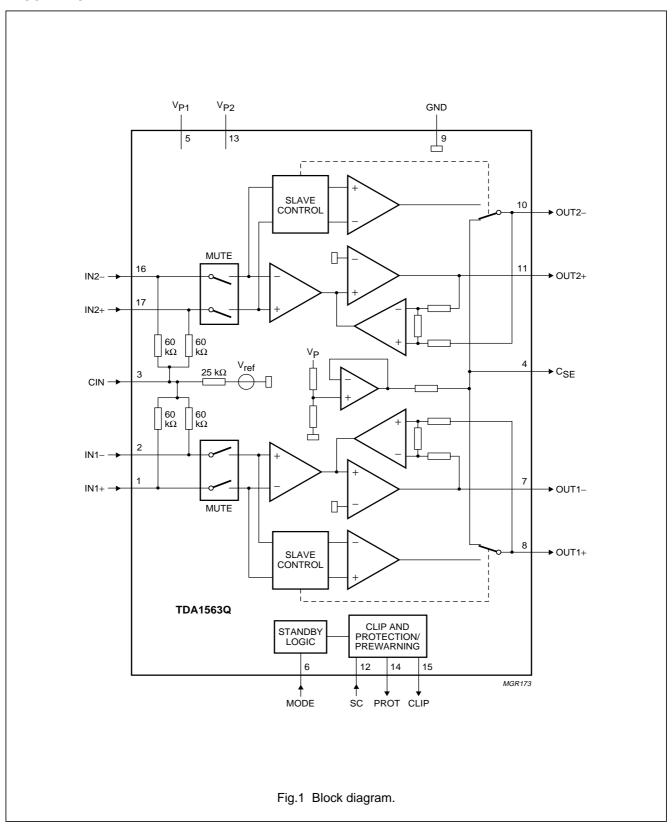
FEATURES

- Low dissipation due to switching from Single-Ended (SE) to Bridge-Tied Load (BTL) mode
- Differential inputs with high Common Mode Rejection Ratio (CMRR)
- Mute/standby/operating (mode select pin)
- · Zero crossing mute circuit
- · Load dump protection circuit
- Short-circuit safe to ground, to supply voltage and across load
- · Loudspeaker protection circuit
- Device switches to single-ended operation at excessive junction temperature
- Thermal protection at high junction temperature (170 °C)
- Diagnostic information (clip and protection/prewarning)
- Clipping information is selectable between THD = 2.5% or 10%.

GENERAL DESCRIPTION

The TDA1563Q is a monolithic power amplifier in a 17 lead Single In-Line (SIL) plastic power package. It contains two identical 25 W amplifiers. The dissipation is minimized by switching from SE to BTL mode, only when a higher output voltage swing is needed. The device is primarily developed for car radio applications.

QUICK REFERENCE DATA

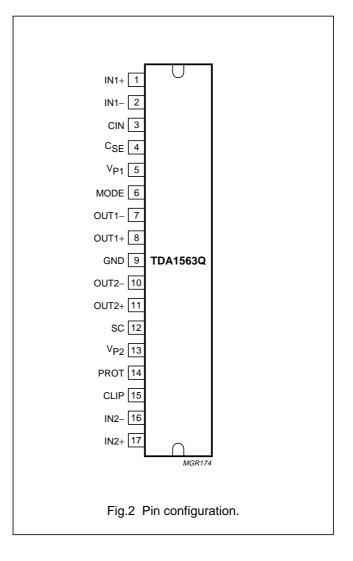

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _P	supply voltage	DC biased	6.0	14.4	18.0	٧
		non operating	_	_	30	V
		load dump	_	-	45	V
I _{ORM}	repetitive peak output current		_	_	4	А
Iq	quiescent supply current	R _L = ∞	_	95	150	mA
I _{stb}	standby current		_	1	50	μΑ
Z _i	input impedance		90	120	150	kΩ
Po	output power	$R_L = 4 \Omega$; EIAJ	_	38	_	W
		$R_L = 4 \Omega$; THD = 10%	23	25	_	W
		$R_L = 4 \Omega$; THD = 2.5%	18	20	_	W
G _v	closed loop voltage gain	P _o = 1 W	25	26	27	dB
CMRR	common mode rejection ratio	$f = 1 \text{ kHz}; R_s = 0 \Omega$	_	80	_	dB
SVRR	supply voltage ripple rejection	$f = 1 \text{ kHz}; R_s = 0 \Omega$	45	60	_	dB
$ \Delta V_{O} $	DC output offset voltage		_	_	100	mV
α_{cs}	channel separation	$R_s = 0 \Omega; P_o = 15 W$	40	60	_	dB
∆G _v	channel unbalance		_	_	1	dB

ORDERING INFORMATION

TYPE		PACKAGE	
NUMBER	NAME	DESCRIPTION	VERSION
TDA1563Q	DBS17P	plastic DIL-bent-SIL power package; 17 leads (lead length 12 mm)	SOT243-1

TDA1563Q

BLOCK DIAGRAM



$2\times25\ \text{W}$ high efficiency car radio power amplifier

TDA1563Q

PINNING

SYMBOL	PIN	DESCRIPTION
IN1+	1	non-inverting input 1
IN1-	2	inverting input 1
CIN	3	common input
C _{SE}	4	electrolytic capacitor for Single-Ended (SE) mode
V _{P1}	5	supply voltage 1
MODE	6	mute/standby/operating
OUT1-	7	inverting output 1
OUT1+	8	non-inverting output 1
GND	9	ground
OUT2-	10	inverting output 2
OUT2+	11	non-inverting output 2
SC	12	selectable clip
V _{P2}	13	supply voltage 2
PROT	14	diagnostic: protection/prewarning
CLIP	15	diagnostic: clip
IN2-	16	inverting input 2
IN2+	17	non-inverting input 2

2 × 25 W high efficiency car radio power amplifier

TDA1563Q

FUNCTIONAL DESCRIPTION

The TDA1563Q contains two identical amplifiers with differential inputs. At low output power (up to output amplitudes of 3 V (RMS) at $V_P = 14.4$ V), the device operates as a normal SE amplifier. When a larger output voltage swing is needed, the circuit switches internally to BTL operation.

With a sine wave input signal the dissipation of a conventional BTL amplifier up to 2 W output power is more than twice the dissipation of the TDA1563Q (see Fig.11).

In normal use, when the amplifier is driven with music-like signals, the high (BTL) output power is only needed for a small percentage of time. Under the assumption that a music signal has a normal (Gaussian) amplitude distribution, the dissipation of a conventional BTL amplifier with the same output power is approximately 70% higher (see Fig.12).

The heatsink has to be designed for use with music signals. With such a heatsink, the thermal protection will disable the BTL mode when the junction temperature exceeds 150 $^{\circ}$ C. In this case the output power is limited to 5 W per amplifier.

The gain of each amplifier is internally fixed at 26 dB. With the MODE pin, the device can be switched to the following modes:

- Standby with low standby current (<50 μA)
- · Mute condition, DC adjusted
- · On, operation.

The information on pin SC (selectable clip) determines at which distortion figures a clip signal will be generated at the clip output. A logic 0 applied to pin SC will select clip detection at THD = 10%, a logic 1 selects THD = 2.5%. A logic 0 can be realised by connecting this pin to ground. A logic 1 can be realised by connecting it to V_{logic} (see Fig.8) or the pin can also be left open. This pin may not be connected to V_p because it's maximum input voltage is 18 V ($V_p > 18$ V under load dump conditions).

The device is fully protected against short-circuiting of the output pins to ground and to the supply voltage. It is also protected against short-circuiting the loudspeaker and high junction temperatures. In the event of a permanent short-circuit condition to ground or the supply voltage, the output stage will be switched off resulting in a low dissipation. With permanent short-circuiting of the loudspeaker, the output stage will be repeatedly switched on and off. The duty cycle in the 'on' condition is low enough to prevent excessive dissipation.

To avoid plops during switching from 'mute' to 'on' or from 'on' to 'mute/standby' while an input signal is present, a built-in zero-crossing detector allows only switching at zero input voltage. However, when the supply voltage drops below 6 V (e.g. engine start), the circuit mutes immediately avoiding clicks coming from electronic circuitry preceding the power amplifier.

The voltage on the electrolytic capacitor C_{SE} (pin 4) is kept at $0.5 \times V_P$ by means of a voltage buffer (see Fig.1). The value of this capacitor has an important influence on the output power in SE mode, especially at low signal frequencies. A high value is recommended to minimize dissipation at low frequencies.

The two diagnostic outputs (clip and protection/prewarning) are open collector outputs and require a pull-up resistor.

The clip output will be LOW when the THD of the output signal is higher as the selected clip level (10% or 2.5%).

The protection/prewarning output gives information about:

- Short-circuit protection:
 - When a short-circuit occurs (for at least 50 ms) at the outputs to ground or the supply voltage, the output stages are switched off to prevent excessive dissipation. The outputs will be switched on again approx. 20 ms after removing the short. During this short-circuit condition the protection pin will be LOW.
 - When a short-circuit occurs across the load, the output stages are switched off during approx. 20 ms.
 After that time a check is performed whether the short is still present. The power dissipation in any short-circuit condition is very low.
- Temperature detection:
 - A prewarning indicates the temperature protection will become active. The prewarning can be used to reduce the input signal and so reducing the power dissipation.

TDA1563Q

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _P	supply voltage	operating	_	18	V
		non operating	_	30	V
		load dump; t _r > 2.5 ms	_	45	V
V _{P(sc)}	short-circuit safe voltage		_	18	V
V _{rp}	reverse polarity voltage		_	6	٧
I _{ORM}	repetitive peak output current		_	4	Α
P _{tot}	total power dissipation		_	60	W
T _{stg}	storage temperature		-55	+150	°C
T _{vj}	virtual junction temperature		_	150	°C
T _{amb}	operating ambient temperature		-40	_	°C

THERMAL CHARACTERISTICS

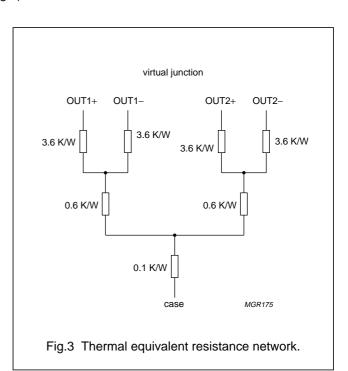
SYMBOL	PARAMETER	CONDITIONS	VALUE	UNIT
R _{th(j-c)}	thermal resistance from junction to case	see note 1	1.3	K/W
R _{th(j-a)}	thermal resistance from junction to ambient		40	K/W

Note

1. The value of $R_{th(c-h)}$ depends on the application (see Fig.3).

Heatsink design

There are two parameters that determine the size of the heatsink. The first is the rating for the virtual junction temperature and the second is the ambient temperature at which the amplifier must still deliver its full power in the BTL mode.


With a conventional BTL amplifier, the maximum power dissipation with a music-like signal (at each amplifier) will be approximately two times 6.5 W.

At a virtual junction temperature of 150 °C and a maximum ambient temperature of 65 °C, $R_{th(vj-c)} = 1.3$ K/W and $R_{th(c-h)} = 0.2$ K/W, the thermal resistance of the heatsink

should be:
$$\frac{150-65}{2\times6.5} - 1.3 - 0.2 = 5 \text{ K/W}$$

Compared to a conventional BTL amplifier, the TDA1563Q has a higher efficiency. The thermal resistance of the

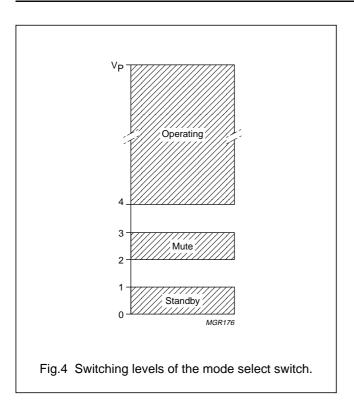
heatsink should be:
$$1.7 \left(\frac{150 - 65}{2 \times 6.5} \right) - 1.3 - 0.2 = 9.6 \text{ K/W}$$

$2\times25\ \text{W}$ high efficiency car radio power amplifier

TDA1563Q

DC CHARACTERISTICS

 V_P = 14.4 V; T_{amb} = 25 °C; measured in Fig.8; unless otherwise specified.


SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supplies					-	•
V _P	supply voltage	note 1	6.0	14.4	18.0	V
Iq	quiescent supply current	R _L = ∞	_	95	150	mA
I _{stb}	standby current		_	1	50	μΑ
V _C	average electrolytic capacitor voltage at pin 4		-	7.1	-	V
$ \Delta V_{O} $	DC output offset voltage	on state	_	-	100	mV
		mute state	_	_	100	mV
Mode selec	t switch (see Fig.4)		•		•	•
V _{ms}	voltage at mode select pin (pin 6)	standby condition	0	_	1	V
		mute condition	2	_	3	V
		on condition	4	5	V _p	V
I _{ms}	switch current through pin 6	V _{ms} = 5 V	_	_	40	μΑ
Diagnostic			•	•	•	•
V _{PROT/CLIP}	output voltage at diagnostic pins: protection/prewarning (pin 14) and clip (pin 15)	active at logic 0	-	_	0.5	V
I _{PROT/CLIP}	current through pin 14 or 15	active at logic 0	2	_	_	mA
V _{SC}	input voltage at selectable clip pin (pin 12)					
	logic 0, THD = 10%		_	_	0.5	V
	logic 1, THD = 2.5%		1.5	_	18	V
Protection	•	•	'	•	•	•
T _{pre}	prewarning temperature		_	145	_	°C
T _{dis}	BTL disable temperature	note 2		150	_	°C

Notes

- 1. The circuit is DC biased at V_P = 6 to 18 V and AC operating at V_P = 8 to 18 V.
- 2. If the junction temperature exceeds 150 °C, the output power is limited to 5 W per channel.

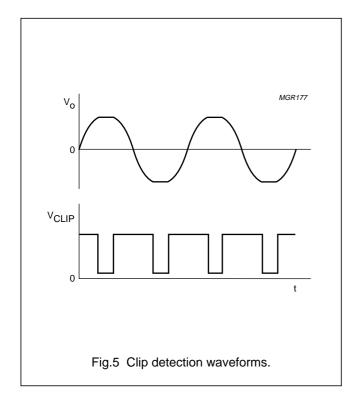
$2\times25\ \text{W}$ high efficiency car radio power amplifier

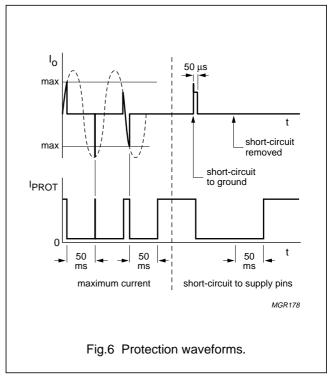
TDA1563Q

AC CHARACTERISTICS

 $V_{P}=14.4~V;~R_{L}=4~\Omega;~C_{SE}=1~000~\mu F;~f=1~kHz;~T_{amb}=25~^{\circ}C;~measured~in~Fig.8;~unless~otherwise~specified.$

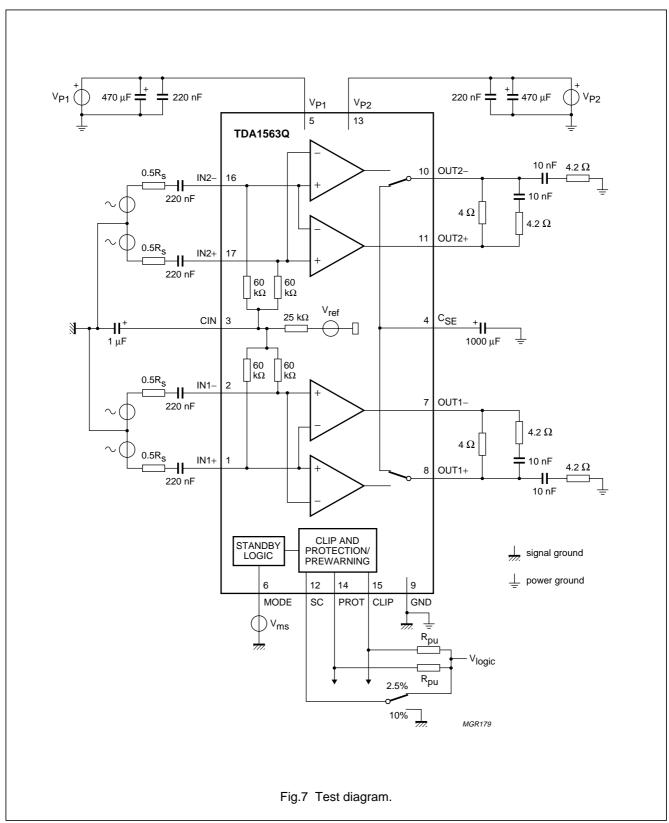
SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Po	output power	THD = 0.5%	15	19	_	W
		THD = 10%	23	25	_	W
		EIAJ	_	38	_	W
		V _P = 13.2 V; THD = 0.5%	_	16	_	W
		V _P = 13.2 V; THD = 10%	_	20	_	W
THD	total harmonic distortion	P _o = 1 W; note 1	_	0.1	_	%
P _d	dissipated power		see	Figs 11 an	d 12	W
B _p	power bandwidth	THD = 1%; $P_0 = -1 \text{ dB}$	_	20 to	_	Hz
		with respect to 15 W		15000		
$f_{ro(l)}$	low frequency roll-off	-1 dB; note 2	_	25	_	Hz
f _{ro(h)}	high frequency roll-off	-1 dB	130	_	_	kHz
G _v	closed loop voltage gain	P _o = 1 W	25	26	27	dB
SVRR	supply voltage ripple rejection	$R_s = 0 \Omega$; $V_{ripple} = 2 V (p-p)$				
		on	45	60	_	dB
		mute	_	90	_	dB
		standby; f = 100 Hz to 10 kHz	80	_	_	dB
CMRR	common mode rejection ratio	$R_s = 0 \Omega$	_	80	_	dB
Z _i	input impedance		90	120	150	kΩ
$ \Delta Z_i $	mismatch in input impedance		_	1	_	%

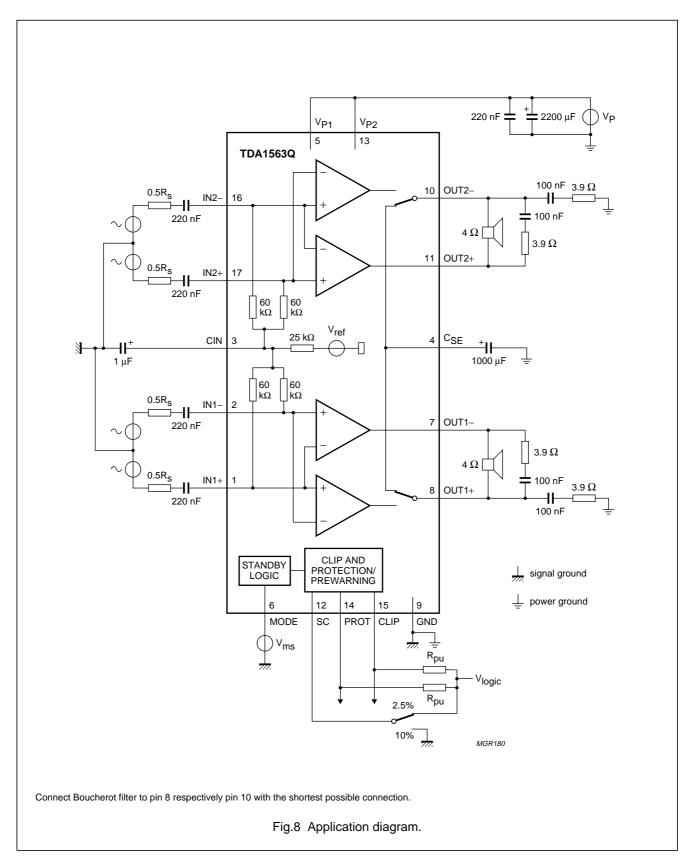

$2\times25\ \text{W}$ high efficiency car radio power amplifier


TDA1563Q

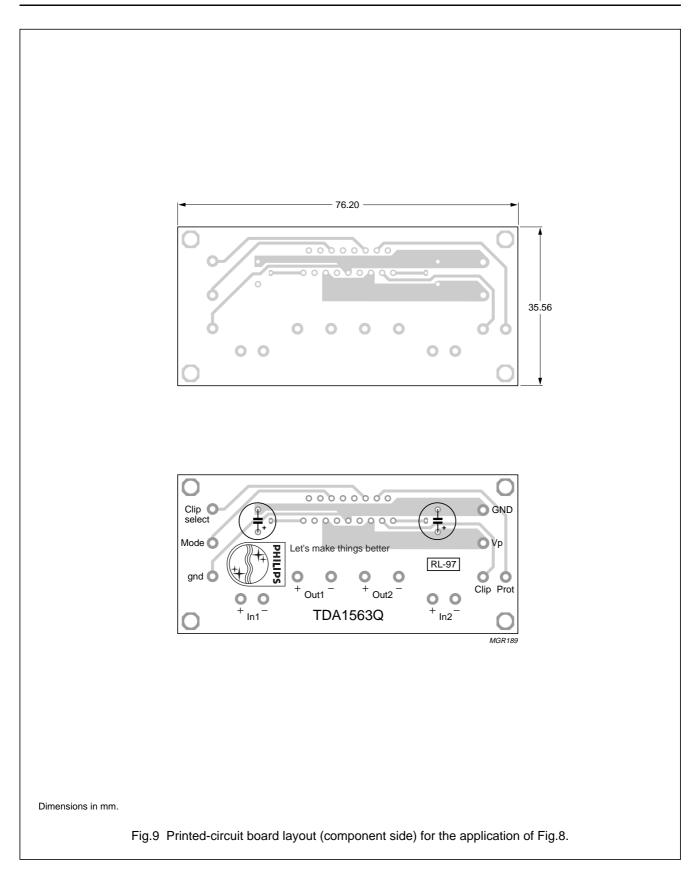
SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _{SE-BTL}	SE to BTL switch voltage level	note 3	_	3	_	V
V _{o(mute)}	mute mode output voltage (RMS value)	V _i = 1 V (RMS)	_	80	150	μV
V _{n(o)}	noise output voltage	on; $R_s = 0 \Omega$; note 4	_	80	150	μV
		on; $R_s = 10 \text{ k}\Omega$; note 4	_	85	_	μV
		mute; note 5	_	80	150	μV
α_{cs}	channel separation	$R_s = 0 \Omega; P_o = 15 W$	40	60	_	dB
$ \Delta G_v $	channel unbalance		_	_	1	dB

Notes

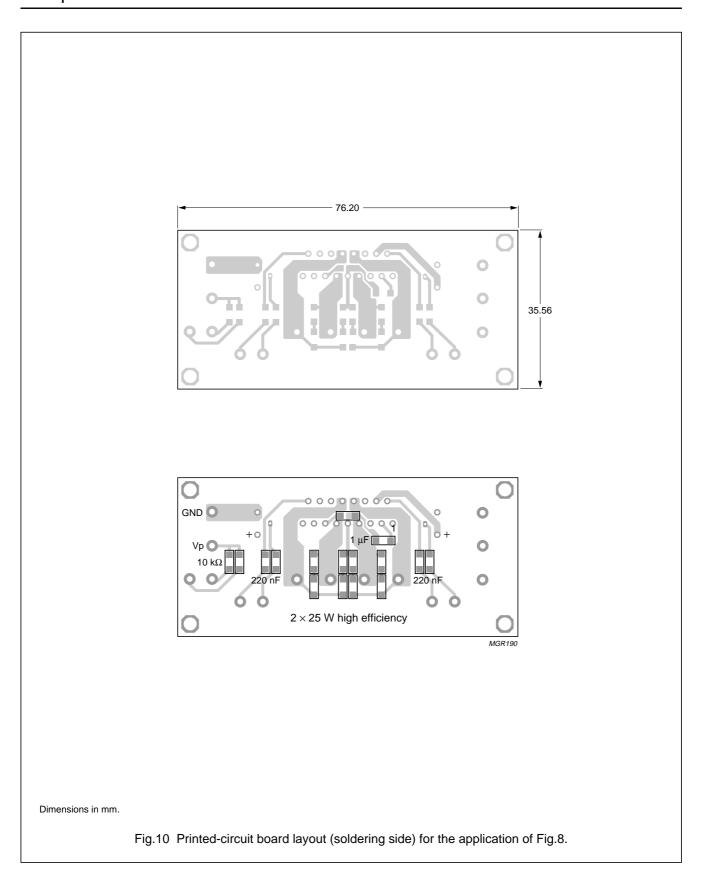

- 1. The distortion is measured with a bandwidth of 10 Hz to 30 kHz.
- 2. Frequency response externally fixed (input capacitors determine low frequency roll-off).
- 3. The SE to BTL switch voltage level depends on V_P.
- 4. Noise output voltage measured with a bandwidth of 20 Hz to 20 kHz.
- 5. Noise output voltage is independent of R_s.



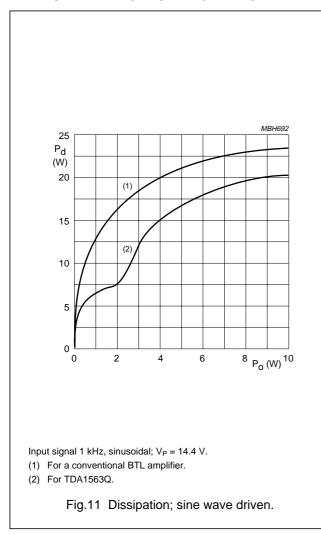
TDA1563Q

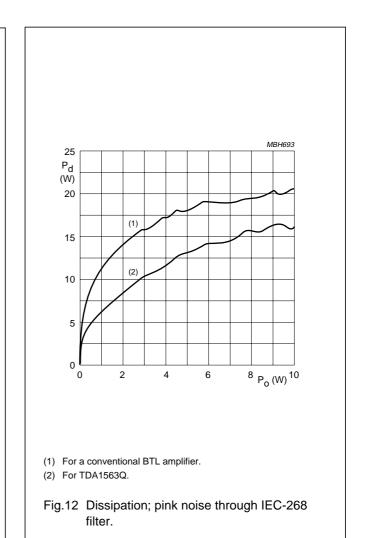

TEST AND APPLICATION INFORMATION

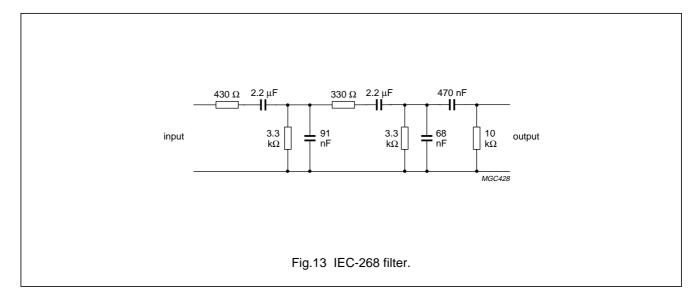
TDA1563Q



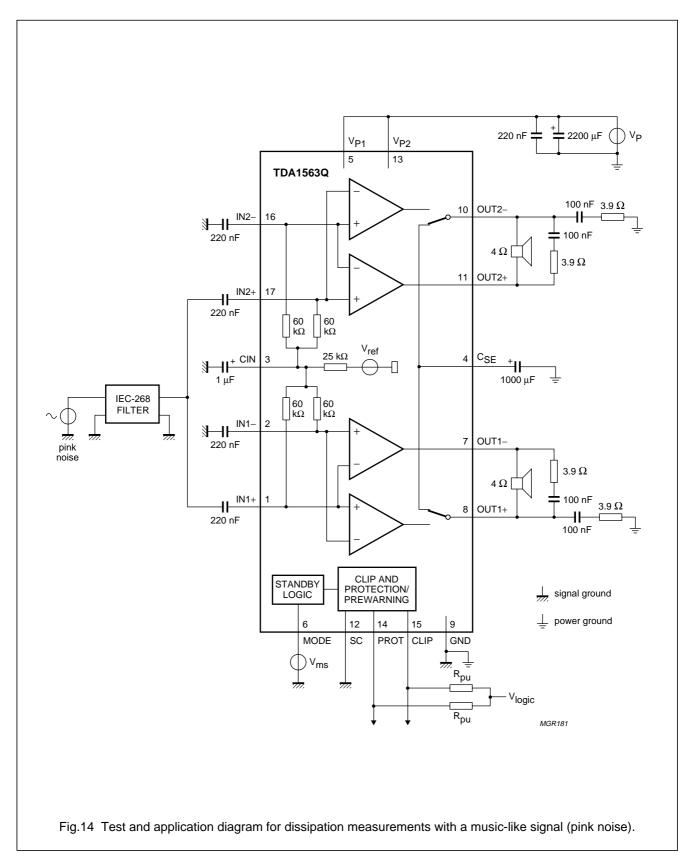
TDA1563Q

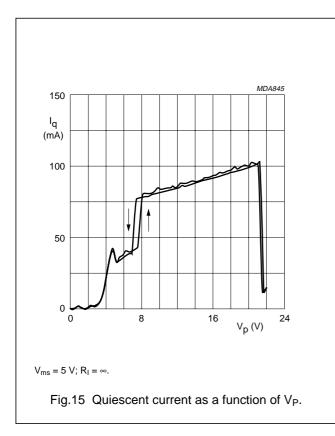

$2\times25\ \text{W}$ high efficiency car radio power amplifier

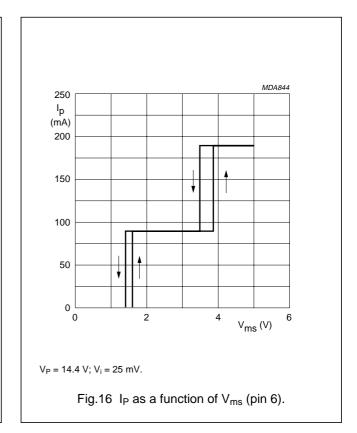

TDA1563Q

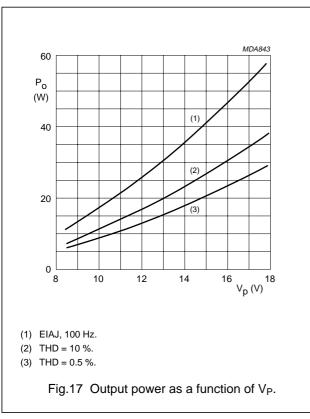


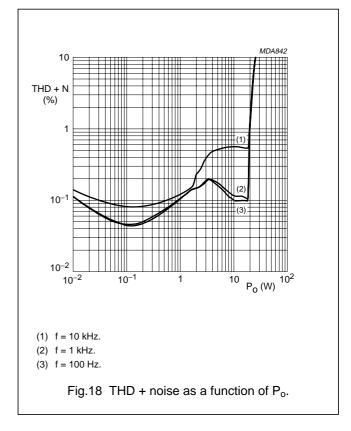
TDA1563Q


ADDITIONAL APPLICATION INFORMATION

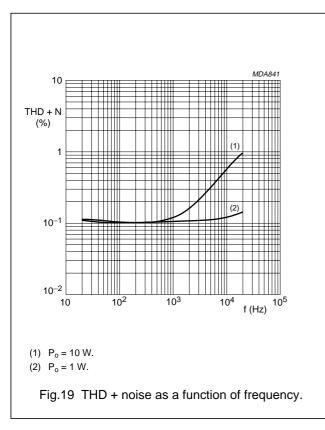


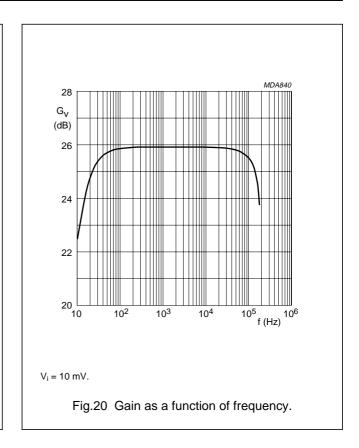



TDA1563Q

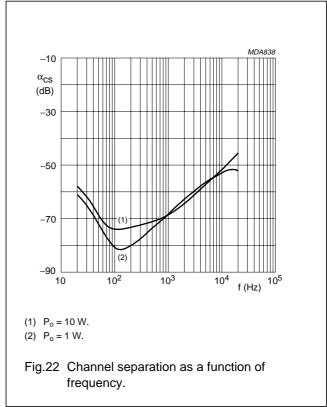


TDA1563Q



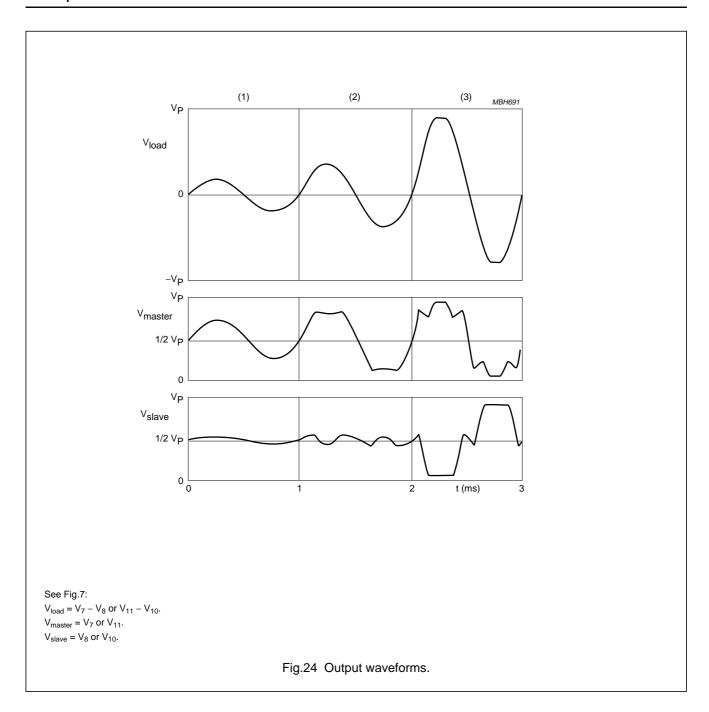





$2\times25\ W$ high efficiency car radio power amplifier

TDA1563Q





TDA1563Q

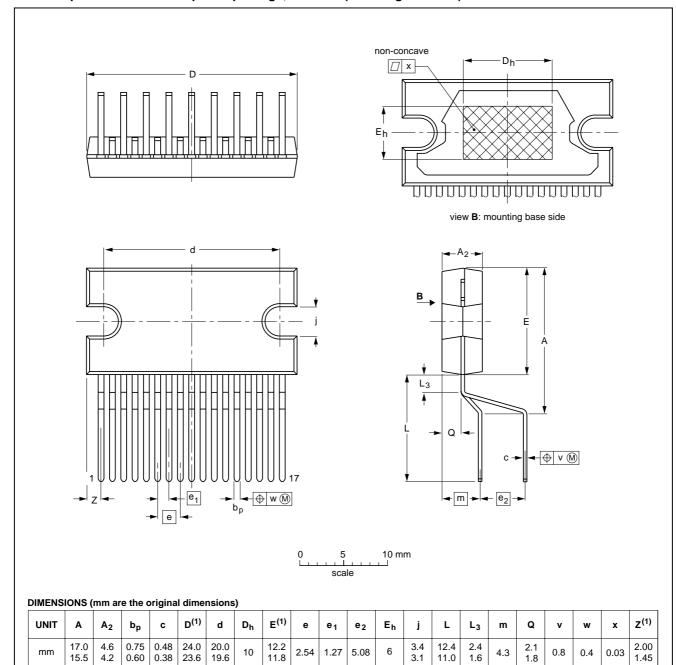
TDA1563Q

TDA1563Q

INTERNAL PIN CONFIGURATION

PIN	NAME	EQUIVALENT CIRCUIT
1, 2, 16, 17 and 3	IN1+, IN1-, IN2-, IN2+ and CIN	V _{P1} , V _{P2} V _{P1} , V _{P2} V _{P1} , V _{P2} MGR182
4	C _{SE}	V _{P1} V _{P2}
6	MODE	6 ————————————————————————————————————
7, 11	OUT1-, OUT2+	V _{P1} , V _{P2}

TDA1563Q


PIN	NAME	EQUIVALENT CIRCUIT
8, 10	OUT1+, OUT2-	V _{P1} , V _{P2} (8, 10) (MGR186)
12	SC	12 VP2 MGR187
14, 15	PROT, CLIP	V _{P2} 14, 15 MGR188

TDA1563Q

PACKAGE OUTLINE

DBS17P: plastic DIL-bent-SIL power package; 17 leads (lead length 12 mm)

SOT243-1

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

20.0

19.6

10

OUTLINE		REFER	ENCES	EUROPEAN ISSUE DATE	
VERSION	IEC	JEDEC	EIAJ	PROJECTION	ISSUE DATE
SOT243-1					95-03-11 97-12-16

2.54

1.27

5.08

3.4

3.1

2.4

1.6

4.3

0.03

1998 Jul 14 22

2 × 25 W high efficiency car radio power amplifier

TDA1563Q

SOLDERING

Introduction

There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mounted components are mixed on one printed-circuit board. However, wave soldering is not always suitable for surface mounted ICs, or for printed-circuits with high population densities. In these situations reflow soldering is often used.

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our "Data Handbook IC26; Integrated Circuit Packages" (order code 9398 652 90011).

Soldering by dipping or by wave

The maximum permissible temperature of the solder is 260 °C; solder at this temperature must not be in contact with the joint for more than 5 seconds. The total contact time of successive solder waves must not exceed 5 seconds.

The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified maximum storage temperature ($T_{stg\ max}$). If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit.

Repairing soldered joints

Apply a low voltage soldering iron (less than 24 V) to the lead(s) of the package, below the seating plane or not more than 2 mm above it. If the temperature of the soldering iron bit is less than 300 $^{\circ}$ C it may remain in contact for up to 10 seconds. If the bit temperature is between 300 and 400 $^{\circ}$ C, contact may be up to 5 seconds.

DEFINITIONS

Data sheet status	
Objective specification	This data sheet contains target or goal specifications for product development.
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.
Product specification	This data sheet contains final product specifications.
Limiting values	

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and does not form part of the specification.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

Philips Semiconductors – a worldwide company

Argentina: see South America

Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113,

Tel. +61 2 9805 4455, Fax. +61 2 9805 4466

Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213, Tel. +43 160 1010,

Fax. +43 160 101 1210

Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,

220050 MINSK, Tel. +375 172 200 733, Fax. +375 172 200 773

Belgium: see The Netherlands **Brazil:** see South America

Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,

51 James Bourchier Blvd., 1407 SOFIA, Tel. +359 2 689 211, Fax. +359 2 689 102

Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,

Tel. +1 800 234 7381

China/Hong Kong: 501 Hong Kong Industrial Technology Centre,

72 Tat Chee Avenue, Kowloon Tong, HONG KONG,

Tel. +852 2319 7888, Fax. +852 2319 7700

Colombia: see South America
Czech Republic: see Austria

Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S,

Tel. +45 32 88 2636, Fax. +45 31 57 0044 **Finland:** Sinikalliontie 3, FIN-02630 ESPOO, Tel. +358 9 615800, Fax. +358 9 61580920

France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex,

Tel. +33 1 40 99 6161, Fax. +33 1 40 99 6427

Germany: Hammerbrookstraße 69, D-20097 HAMBURG,

Tel. +49 40 23 53 60, Fax. +49 40 23 536 300

Greece: No. 15, 25th March Street, GR 17778 TAVROS/ATHENS,

Tel. +30 1 4894 339/239, Fax. +30 1 4814 240

Hungary: see Austria

India: Philips INDIA Ltd, Band Box Building, 2nd floor, 254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025.

Tel. +91 22 493 8541, Fax. +91 22 493 0966

Indonesia: PT Philips Development Corporation, Semiconductors Division,

Gedung Philips, Jl. Buncit Raya Kav.99-100, JAKARTA 12510, Tel. +62 21 794 0040 ext. 2501, Fax. +62 21 794 0080

Ireland: Newstead, Clonskeagh, DUBLIN 14,

Tel. +353 1 7640 000, Fax. +353 1 7640 200

Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053, TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007

Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3,

20124 MILANO, Tel. +39 2 6752 2531, Fax. +39 2 6752 2557

Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108-8507, Tel. +81 3 3740 5130, Fax. +81 3 3740 5077

Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,

Tel. +82 2 709 1412, Fax. +82 2 709 1415

Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR,

Tel. +60 3 750 5214, Fax. +60 3 757 4880

Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,

Tel. +9-5 800 234 7381

Middle East: see Italy

Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,

Tel. +31 40 27 82785, Fax. +31 40 27 88399

New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,

Tel. +64 9 849 4160, Fax. +64 9 849 7811

Norway: Box 1, Manglerud 0612, OSLO,
Tel. +47 22 74 8000, Fax. +47 22 74 8341

Pakistan: see Singapore

Philippines: Philips Semiconductors Philippines Inc., 106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI, Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474

Poland: UI. Lukiska 10, PL 04-123 WARSZAWA,

Tel. +48 22 612 2831, Fax. +48 22 612 2327 **Portugal:** see Spain

Romania: see Italy

Russia: Philips Russia, UI. Usatcheva 35A, 119048 MOSCOW,

Tel. +7 095 755 6918, Fax. +7 095 755 6919

Singapore: Lorong 1, Toa Payoh, SINGAPORE 319762,

Tel. +65 350 2538, Fax. +65 251 6500

Slovakia: see Austria Slovenia: see Italy

South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,

2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000,

Tel. +27 11 470 5911, Fax. +27 11 470 5494

South America: Al. Vicente Pinzon, 173, 6th floor, 04547-130 SÃO PAULO, SP, Brazil,

Tel. +55 11 821 2333, Fax. +55 11 821 2382

Spain: Balmes 22, 08007 BARCELONA, Tel. +34 93 301 6312, Fax. +34 93 301 4107

Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,

Tel. +46 8 5985 2000, Fax. +46 8 5985 2745

Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,

Tel. +41 1 488 2741 Fax. +41 1 488 3263

Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1,

TAIPEI, Taiwan Tel. +886 2 2134 2865, Fax. +886 2 2134 2874

Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,

209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,

Tel. +66 2 745 4090, Fax. +66 2 398 0793

Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL,

Tel. +90 212 279 2770, Fax. +90 212 282 6707

Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7,

252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461

United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes, MIDDLESEX UB3 5BX, Tel. +44 181 730 5000, Fax. +44 181 754 8421

United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409,

Tel. +1 800 234 7381

Uruguay: see South America **Vietnam:** see Singapore

Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,

Tel. +381 11 625 344, Fax.+381 11 635 777

For all other countries apply to: Philips Semiconductors, International Marketing & Sales Communications, Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825

© Philips Electronics N.V. 1998

SCA60

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Printed in The Netherlands

545102/1200/01/pp24

Date of release: 1998 Jul 14

Document order number: 9397 750 03774

Let's make things better.

Internet: http://www.semiconductors.philips.com

