The TOA1011A is a monolithic integrated audio amplifier circuit in a 9-lead single in-line (SIL) plastic package. The device is especially designed for portable radio and recorder applications and delivers up to 4 W in a 4 Ω load impedance. The device can deliver up to 6 W into 4 Ω at 16 V loaded supply in mains fed applications. The maximum permissible supply voltage of 24 V makes this circuit very suitable for d.c. and e.c. apparatus, while the low applicable supply voltage of 5,4 V permits 9 V applications. The power amplifier has an inverted input/output which makes the circuit optimal for applications with active tone control and spatial stereo. Special features are:

- single in line (SIL) construction for easy mounting.
- separated preamplifier and power amplifier
- high output power.
- thermal protection
- high input impedance.
- low current drain
- limited noise behaviour at radio frequencies

QUICK REFERENCE DATA

Supply voltage range	Vp	5,4 to 20 V		
Peak output current	юм	max.	3	Α
Output power at d _{LDT} = 10%				
$V_{\rm P} = 16 V; R_{\rm L} = 4 \Omega$	Po	typ.	6,5	w
$V_{\rm P} = 12 V; R_{\rm L} = 4 \Omega$	Po	typ.	4,2	w
$V_P = 9 V; R_L = 4 \Omega$	Po	typ.	2,3	w
$V_P = 6V; H_L = 4\Omega$	Po	typ.	1,0	W
Total harmonic distortion at $P_0 \ge 1$ W; $R_{\perp} = 4 \Omega$	d _{tot}	typ.	0,2	%
input impedance				
preamplifier (pin B)	z _i	>	100	kΩ
Total quiescent current	tot	typ.	14	mΑ
Operating ambient temperature	T _{amb}	-25 to	+ 150	\mathbf{o}_{C}
Storage temperature	T _{stg}	–55 to	+ 150	ФÇ

TDA1011A

Fig. 1 Circuit dlagram.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage	Vp max. 24 V
Peak output current	IOM max. 3 A
Total power dissipation	see darating curve Fig. 2
Storage temperature	T _{stg} —55 to + 150 °C
Operating ambient temperature	T _{amb} -25 to + 150 °C
A.C. short-circuit duration of load during sine-wave drive; Vp = 12 V	t _{se} max. 100 hours

Fig. 2 Power derating curve.

HEATSINK DESIGN

Assume $V_P = 12 V$; $R_L = 4 \Omega$; $T_{amb} = 60 \text{ °C maximum}; P_0 = 3.8 W$.

The maximum sine-wave dissipation is 1,8 W.

The derating of 10 K/W of the package requires the following external heatsink (for sine-wave drive):

 $R_{th j-a} = R_{th j-tab} + R_{th tab-h} + R_{th h-a} = \frac{150 - 60}{1.8} = 50 \text{ K/W}.$ Since $R_{th j-tab} = 10 \text{ K/W}$ and $R_{th tab-h} = 1 \text{ K/W}$, $R_{th h-a} = 50 - (10 + 1) = 39 \text{ K/W}.$

Preliminary specification

······································			,, j e		
2 to 6W audio power amplifier with preamplifier		TDA1011A			
D.C. CHARACTERISTICS					
Supply voltage range	Vp	5,4 to 20 V			
Repetitive peak output current	юям	< 1		A	
Total quiescent current at Vp = 12 V	Itou	typ. <		mA mA	
A.C. CHARACTERISTICS					
T_{amb} = 25 °C; V_P = 12 V; R_L = 4 Ω ; f = 1 kHz unless otherwise sp	ecified; see als	oFig. 3.			
A.F. output power at d _{Lot} = 10% (note 1) with bootstrap:					
$V_P = 16 V; R_L = 4 \Omega$	Po	typ.	6,5	W	
V _P = 12 V: 6 _L ~ 4 Ω	Po	> typ.	3,6 4,2		
$V_{P} = 9 V_{c} R_{L} = 4 \Omega$	Po	typ.	2,3	w	
Vp = 6 V; R _L = 4 Ω	P _o	typ.	1,0	W	
without bootstrap: $V_P = 12 V; B_L = 4 \Omega$	Po	typ.	3,5	w	
Voltage gain: preamplifier (note 2)	G _{v1}	typ. 21	23 to 25	dB dB	
power amplifier (note 3)	G _{v2}	Lyp.		dB	
total amplifier (note 3)	G _{v tot}	typ.		dB	
Total harmonic distortion at P _o = 1,5 W	dtot	typ. <		%	
Frequency response;3 dB (note 4)	в		to 15		
Input impedance:		>	100		
preamplifier (note 5)	Zit	typ.	200		
Output impedance preamplifier	Zot	typ.		kΩ	
Output voltage preamplifier (r.m.s. value) d _{tot} < 1% (note 2)	Vo(rms)	>	1,2	v	
Noise output voltage (r.m.s. value; note 6) R5 = 0 Ω	V _{n(rms)}	typ.	0,5		
$R_{S} = 10 k\Omega$	V _{n(rms)}	typ.	0,8		
Noise output voltage at f = 500 kHz {r.m.s. value} B = 5 kHz; $R_S = 0 \Omega$				μV	
Ripple rejection (note 6)	V _{n(rms)}	typ.	0	μΨ	
f = 1 to 10 kHz $f = 100 \text{ Hz}; \text{ C2 - 1 } \mu\text{F}$	RR RR	τγр. >	42 35	_	
Bootstrap current at onset of clipping; pin 4 (r.m.s. value)	4(rms}	typ.		mА	
Stand hu surveys at moderney M. do no. Of	- ((()))				

- - Bootstrap current at onset of clipping; pin 4 (r.m.s. value) Stand-by current at maximum Vp (note 6)

<

100 µA

l_{sb}

Notes

- 1. Measured with an ideal coupling capacitor to the speaker load.
- 2. Measured with a load resistor of 20 k $\Omega_{\rm c}$
- 3. Measured with R2 = 20 k Ω .
- Measured at P₀ = 1 W; the frequency response is mainly determined by C1 and C3 for the low frequencies and by C4 for the high frequencies.
- 5. Independent of load impedance of preamplifier.
- 6. Unweighted r.m.s. noise voltage measured at a bandwidth of 60 Hz to 15 kHz (12 dB/octave).
- Ripple rejection measured with a source impedance between 0 and 2 kΩ (maximum ripple amplitude: 2 V).
- 8. The total current when disconnecting pin 5 or short-circuited to ground (pin 9).
- 9. The tab must be electrically floating or connected to the substrate (pin 9).

Fig. 3 Test circuit.

TDA1011A

APPLICATION INFORMATION

Fig. 5 Total quiescent current as a function of supply voltage.

Fig. 6 Total harmonic distortion as a function of output power across R_L ; —— with bootstrap; – – without bootstrap; f = 1 kHz; typical values. The available output power is 5% higher when measured at pin 2 (due to series resistance of C10).

Fig. 7. Output power across RL as a function of supply voltage with bootstrap; d_{tot} = 10%; typical values. The available output power is 5% higher when measured at pin 2 (due to series resistance of C1)

Fig. 8 Noise output voltage as a function of frequency; curve a: total amplifier; curve b: power amplifier; B = 5 kHz; $R_S = 0$; typical values.