TOSHIBA BIPOLAR LINEAR INTEGRATED CIRCUIT SILICON MONOLITHIC

TA8464K

DUAL POWER OPERATIONAL AMPLIFIER

The TA8464K is a dual power operational amplifier with the output current 1.2A (PEAK).

This amplifier is usable for CD player arm driver, brushed motor forward/reverse rotation control driver, and FDD/ HDD voice coil motor.

Furthermore, this amplifier is best suited for LDP focus tracking actuator driver because of its high through rate.

FEATURES

- Provided with a Current Limiter.
- High Output Current : $I_{O}(PEAK) = 1.2A$
- Internal Phase Compensation Type.
- Less Crosstalk : $C_T = 55dB$ (Typ.)
- High Slew Rate : SR = $1.0V / \mu s$ (Typ.)

BLOCK DIAGRAM

Weight : 2.47g (Typ.)

961001EBA2

TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.

The products described in this document are subject to foreign exchange and foreign trade control laws. The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others. The information contained herein is subject to change without notice.

PIN FUNCTION

PIN No.	SYMBOL	FUNCTIONAL DESCRIPTION
1	VSENSE1	AMP. 1 output current detective terminal
2	VOUT1	AMP. 1 output terminal
3	-VIN1	AMP. 1 input terminal (-)
4	+ VIN1	AMP. 1 input terminal (+)
5	VEE	Negative-side voltage supply terminal
6	+ V _{IN2}	AMP. 2 input terminal (+)
7	-VIN2	AMP. 2 input terminal (-)
8	VOUT2	AMP. 2 output terminal
9	VSENSE2	AMP. 2 output current detective terminal
10	Vcc	Positive-side voltage supply terminal

MAXIMUM RATINGS (Ta = 25°C)

CHARACTERISTIC	SYMBOL	RATING	UNIT
Supply Voltage	V _{CC} , V _{EE}	± 18	V
Output Current	IO (PEAK)	1.2	Α
Power Dissipation	PD	12.5 (Note)	W
Operating Temperature	T _{opr}	- 30~75	°C
Storage Temperature	T _{stg}	- 55~150	°C

(Note) $Tc = 25^{\circ}C$

ELECTRICAL CHARACTERISTICS (Unless otherwise specified, $V_{CC} = 15V$, $V_{EE} = -15V$, $Ta = 25^{\circ}C$)

CHARACTERISTIC		SYM- BOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Supply Current		lcc	—	—		17	25	mA
Input Offset Current		10	_	—		3	100	nA
Input Bias Current		4				98	300	nA
Input Offset Voltage		VIO	_	—		0	7	mV
	Upper	∨он		$V_{CC} = \pm 15V, I_{O} = 300mA$	12.2	13.3	_	v
Maximum Qutnut Valtaga	Lower	VOL			- 12.2	- 13.3	_	
Maximum Output Voltage	Upper	∨он		$V_{CC} = \pm 6V, I_O = 1A$	2.0	3.9		v
	Lower	V _{OL}			- 2.0	- 4.0	_	
Open Loop Gain		GVO	_	—	_	80	_	dB
Input Common Mode Voltage Range		CMR	—	—	± 13	±14	_	V
Common Mode Rejection Ratio		CMRR	_	$V_{IN} = -10 \sim 10V$	90	113	_	dB
Supply Voltage Rejection Ratio		SVRR	_	$V_{CC} = -V_{EE} = 6 \sim 15V \pm 1V$	_	65	100	V/V
Slew Rate		SR	_	—	_	1.0	_	V/μs
Output Limiting Current		Isc	_	$R_{SC} = 0.68\Omega$	0.8	1.0	_	A
Crosstalk	CT	—	$V_{IN} = -14 \sim 14V$		55	_	dB	
Slew Rate Symmetry		SR'	1	INPUT : Duty (49 : 51/51 : 49) Square wave	_	0.02	1.0	v

TOSHIBA

TEST CIRCUIT 1 Slew rate, symmetry SR'

(Note 1) $I_{SC} = \frac{0.7 (V)}{R_{SC} (\Omega)} (A)$

- (Note 2) If crosstalk is recognizable remarkably in applications above 80kHz, change a capacitor to one having a value of about 0.33μ F as a compensating circuit. Further, no resistor is needed in this case.
- (Note 3) Utmost care is necessary in the design of the output line, V_{CC} and GND line since IC may be destroyed due to short-circuit between outputs, air contamination fault, or fault by improper grounding.

APPLICATION CIRCUIT 2

APPLICATION CIRCUIT 3

Weight : 2.47g (Typ.)