
STR-S6401 AND STR-S6401F

OFF-LINE SWITCHING REGULATORS – WITH POWER MOSFET OUTPUT

Dwg. PK-0

ABSOLUTE MAXIMUM RATINGS

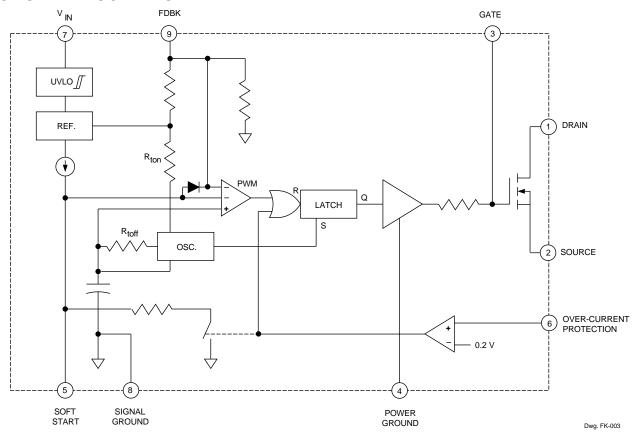
ADOOLOTE MAXIMOM NATINGO
Supply Voltage, V _{IN} 35 V
Drain-Source Voltage, V _{DS} 500 V
Drain Current, I _D
continuous ±10 A
single pulse, $t_w \le 1$ ms ± 40 A
Avalanche Energy, E _A
single pulse 500 mJ
Gate-Source Voltage, V _{GS} ±20 V
Gate-Drive Current Range,
l _G 0.7 A to +1.5 A
Over-Current Protection Voltage Range,
V _{OCP} 0.3 V to +4.0 V
Insulation RMS Voltage,
V _{WM(RMS)} 2000 V
Package Power Dissipation,
P _D See Graph
FET Channel Temperature, T _J +150°C
Internal Frame Temperature, T _F +125°C
Operating Temperature Range,
T _A 20°C to +125°C
Storage Temperature Range,
T _{stq} 30°C to +125°C

These devices are specifically designed to meet the requirements for increased integration and reliability in off-line flyback (STR-S6401) and forward (STR-S6401F) converters operating in a fixed-frequency PWM mode. Each device incorporates the primary control and drive circuits with an avalanche-rated power MOSFET. Crucial system parameters such as switching frequency and maximum duty cycle are fixed during manufacture. The STR-S6401 and STR-S6401F differ only in their maximum duty cycle. Control circuit decoupling and layout are optimized within each device.

Cycle-by-cycle and average-current limiting, soft start, undervoltage lockout with hysteresis, and thermal shutdown protect the device during all normal and overload conditions. The performance and reliability of these devices, and their variable-frequency counterparts, has been proven in substantial volume production.

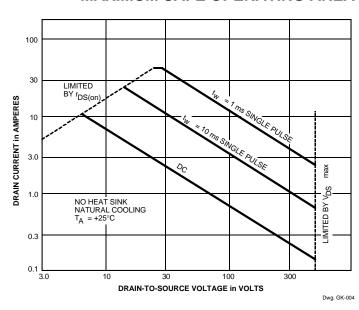
The requirements of high dielectric isolation and low transient thermal impedance and steady-state thermal resistance are satisfied in an over-molded, 9-pin single in-line power package. Similar off-line switching regulators, with output ratings to 800 V at 5 A, are also available.

FEATURES

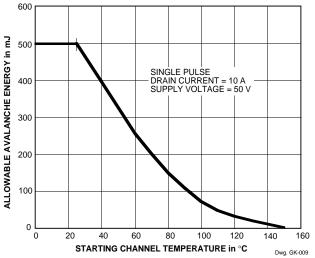

- PWM Flyback Conversion or Forward Conversion
- Output Power to 250 W
- Pulse-by-Pulse Current Limiting
- Fixed-Frequency 100 kHz PWM
- Avalanche-Rated Power MOSFET Switch
- Soft Start
- Internal Under-Voltage Lockout and Thermal Shutdown
- Low External Component Count
- Over-Molded SIP with Isolated Heat Spreader

Always order by complete part number:

STR-S6401 or STR-S6401F

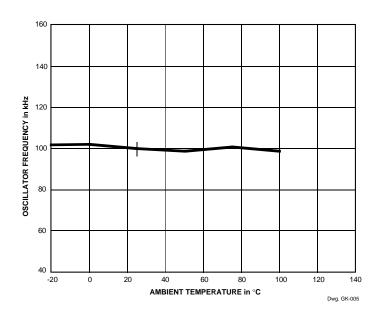

FUNCTIONAL BLOCK DIAGRAM

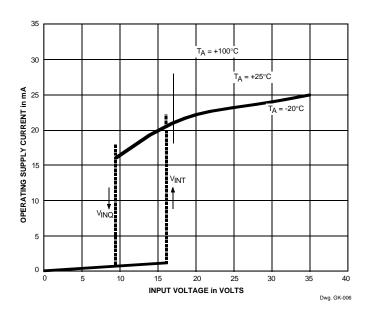
ALLOWABLE PACKAGE POWER DISSIPATION

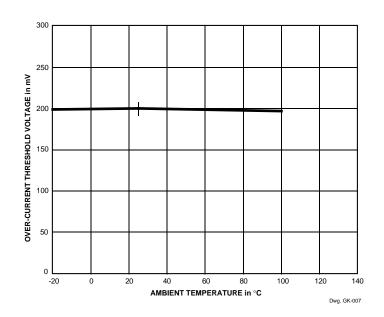

60 60 MOUNTING SURFACE TEMPERATURE RECOMMENDED MAX. FRAME TEMP. = +100°C FRAME TEMP. = +125°C MAX. LIMITED BY FRAME TEMP. = +125°C MAX. Dwg. GK-003

MAXIMUM SAFE OPERATING AREA

ALLOWABLE AVALANCHE ENERGY

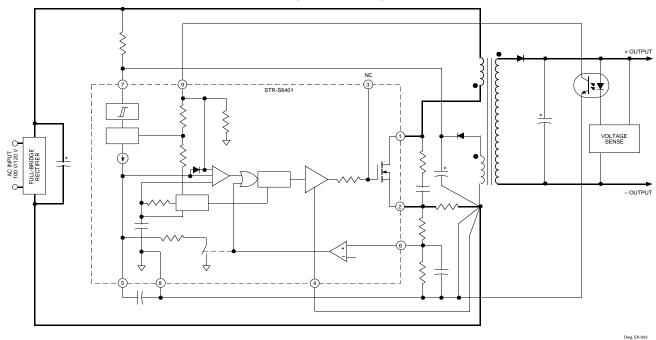


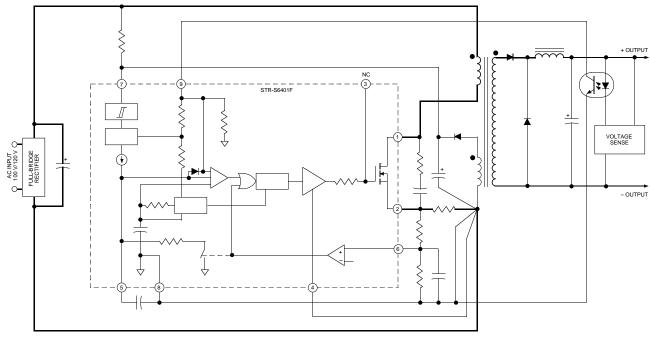

ELECTRICAL CHARACTERISTICS at $T_A = +25^{\circ}C$, $V_{IN} = 17$ V, voltage measurements are referenced to Signal Ground (pin 8) (unless otherwise noted).


			Limits			
Characteristic	Symbol	Test Conditions	Min.	Тур.	Max.	Units
On-State Voltage	V _{INT}	Turn-on, increasing V _{IN}	14.4	16	17.6	V
Under-Voltage Lockout	V _{INQ}	Turn-off, decreasing V _{IN}	8.4	9.4	10.4	V
FET Leakage Current	I _{DSS}	V _{DS} = 400 V	_	_	300	μΑ
FET ON Resistance	r _{DS(on)}	$V_{GS} = 10 \text{ V}, I_{D} = 5 \text{ A}$	_	0.5	0.6	Ω
Forward Transconductance	9 _{fs}	$V_{GS} = 10 \text{ V}, I_{D} = 5 \text{ A}$	_	9.2	_	S
FET Input Capacitance	C _{iss}	V _{DS} =10 V, V _{GS} =0 V, f=1 MHz	_	1800	_	pF
Propagation Delay Time	t _{phl}	Turn-on, 10% V _{GS} to 10% V _{DS}	_	60	_	ns
	t _{plh}	Turn-off, 90% V _{GS} to 90% V _{DS}	-	140	_	ns
Oscillator Frequency	f _{osc}		93	100	107	kHz
Maximum ON Time	t _{on}	STR-S6401	5.1	5.7	6.5	μs
		STR-S6401F	3.8	4.5	5.2	μs
Over-Current Threshold	V _{OCP(th)}		160	200	240	mV
OCP Current	I _{OCP}		-250	-400	-550	μΑ
Feedback Current	I _{FDBK}		_	-1.8	_	mA
Soft Start Threshold Voltage	V _{SS(th)}		_	_	0.4	V
Soft Start Current	I _{SS}	V _{SS} = 0 V	_	-100	_	μΑ
Power Ground Current	I _{PG}	t _w = 200 ns	_	-1.0	-1.5	Α
Supply Current	I _{IN(ON)}	Operating	_	23	_	mA
	I _{IN(OFF)}	Start up, V _{IN} = 12 V	_	_	500	μΑ
Insulation RMS Voltage	$V_{WM(RMS)}$	All terminals simultaneous reference metal plate against backside	2000	_		V
Thermal Resistance	$R_{ hetaJM}$	FET channel to mounting surface	_	2.0	_	°C/W

NOTES: Negative current is defined as coming out of (sourcing) the specified device terminal. Typical Data is for design information only.

TYPICAL CHARACTERISTICS




TYPICAL PWM FLYBACK CONVERSION USING STR-S6401

WARNING: lethal potentials are present. See text.

TYPICAL PWM FORWARD CONVERSION USING STR-S6401F

WARNING: lethal potentials are present. See text.

Dwg. EK-003-1

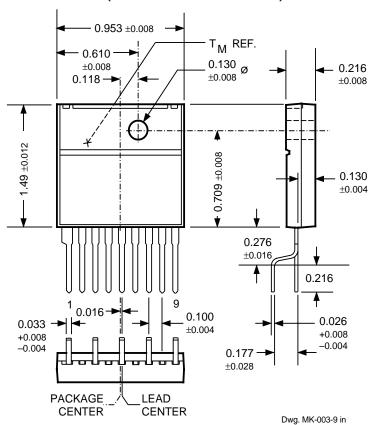
APPLICATIONS INFORMATION

A WA

WARNING — These devices are designed to be operated at lethal voltages and energy levels.

Circuit designs that embody these components must conform with applicable safety requirements. Precautions must be taken to prevent accidental contact with power-line potentials. Do not connect grounded test equipment.

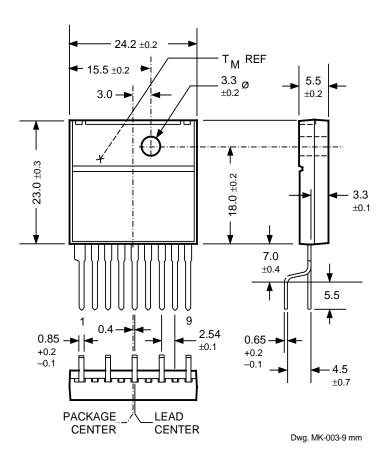
The use of an isolation transformer is recommended during circuit development and breadboarding.


The power MOSFET outputs of these devices are similar to the International Rectifier type IRFP448. These devices feature an excellent combination of fast switching, ruggedized device design, low on-resistance, and cost effectiveness.

Recommended mounting hardware torque:

4.34 - 5.79 lbf•ft (6 - 8 kg•cm or 0.588 - 0.784 Nm).

Recommended metal-oxide-filled, alkyl-degenerated oil base, silicone grease: Dow Corning 340, or equivalent


Dimensions in Inches (Based on 1 mm = 0.03937")

NOTE: Exact body and lead configuration at vendor's option within limits shown.

Dimensions in Millimeters

NOTE: Exact body and lead configuration at vendor's option within limits shown.

POWER CONVERSION/POWER MANAGEMENT SELECTION GUIDES

SWITCHING REGULATOR PMCMs

Part						
Number*	Application	AC In	Max Po	Power Switch		
5703	Quasi-Resonant Flyback Converter	110/120 V	140 W	500 V	6 A	Bipolar
5707	Quasi-Resonant Flyback Convertter	85-265 V 220/240V	90 W 140 W	850 V	6 A	Bipolar
5708	Quasi-Resonant Flyback Converter	85-265 V 220/240 V	120 W 180 W	850 V	7.5 A	Bipolar
6511	Quasi-Resonant Flyback Converter	110/120 V	180 W	450 V	11 A	MOSFET
6703	Quasi-Resonant Flyback Converter	110/120V	140 W	500 V	6 A	Bipolar
6704	Quasi-Resonant Flyback Converter	110/120 V	100 W	500 V	5 A	Bipolar
6707	Quasi-Resonant Flyback converter	85-265 V 220/240 V	90 W 140 W	850 V	6 A	Bipolar
6708	Quasi-Resonant Flyback Converter	85-265 V 220/240 V	120 W 180 W	850 V	7.5 A	Bipolar
6709	Quasi-Resonant Flyback Converter	85-265 V 220/240 V	160 W 220 W	850 W	10 A	Bipolar

^{*} Complete part number includes additional characters to indicate operating temperature range and package style.

LINEAR REGULATOR ICs

Part					
Number*	Vo	Max DC In	Max Dropout	Max I _O	Package
8184	3.0 V	10 V	300 mV @ 125 mA	250 mA	SOT-89
8187	3.3 V	10 V	300 mV @ 125 mA	250 mA	SOT-89
8188	2.5-3.3 V	10 V	300 mV @ 125 mA	250 mA	SOT-89
8188	2.5-3.3 V	10 V	300 mV @ 125 mA	250 mA	SOIC

^{*} Complete part number includes additional characters to indicate operating temperature range and package style.

Also — 83145 and 84145 Latched, Universal Input-Voltage Switches.

Allegro MicroSystems, Inc. reserves the right to make, from time to time, such departures from the detail specifications as may be required to permit improvements in the design of its products. Components made under military approvals will be in accordance with the approval requirements.

The information included herein is believed to be accurate and reliable. However, Allegro MicroSystems, Inc. assumes no responsibility for its use; nor for any infringements of patents or other rights of third parties which may result from its use.

