Hybrid Power Module Integrated Power Stage

for 460 VAC Motor Drives

These modules integrate a 3-phase inverter in a single convenient package. They are designed for 2.0, 3.0, and 5.0 hp motor drive applications. The inverter incorporates advanced insulated gate bipolar transistors (IGBT) matched with fast soft free-wheeling diodes to give optimum performance. The top connector pins are designed for easy interfacing to the user's control board.

- Short Circuit Rated 10 $\mu s @$ 125°C, 720 V
- Pin-to-Baseplate Isolation Exceeds 2500 Vac (rms)
- Compact Package Outline
- Access to Positive and Negative DC Bus
- UL Recognized

ORDERING INFORMATION

Device	Current Rating	Package
MHPM6B10N120SL MHPM6B15N120SL MHPM6B25N120SL	10 15 25	464A–01 Style 1
MHPM6B10N120SS MHPM6B15N120SS MHPM6B25N120SS	10 15 25	464B–02 Style 1

MAXIMUM DEVICE RATINGS (T I = 25°C unless otherwise noted)

Rating		Symbol	Value	Unit
IGBT Reverse Voltage		VCES	1200	V
Gate-Emitter Voltage		VGES	± 20	V
Continuous IGBT Collector Current (T _C = 80°C)	10A120 15A120 25A120	^I Cmax	10 15 25	A
Repetitive Peak IGBT Collector Current (1)	10A120 15A120 25A120	^I C(pk)	20 30 50	A
Continuous Diode Current (T _C = 25° C)	10A120 15A120 25A120	^I Fmax	10 15 25	A
Continuous Diode Current (T _C = 80° C)	10A120 15A120 25A120	IF80	8.3 11 14	A
Repetitive Peak Diode Current (1)	10A120 15A120 25A120	^I F(pk)	20 30 50	A
IGBT Power Dissipation per die (T _C = 95° C)	10A120 15A120 25A120	PD	41 50 65	W
Diode Power Dissipation per die ($T_C = 95^{\circ}C$)	10A120 15A120 25A120	PD	16 22 27	W

(1) 1.0 ms = 1.0% duty cycle

Preferred devices are Motorola recommended choices for future use and best overall value.

MHPM6B10N120 MHPM6B15N120 MHPM6B25N120 SERIES

Motorola Preferred Devices

10, 15, 25 A, 1200 V HYBRID POWER MODULES

MAXIMUM DEVICE RATINGS (T_J = 25° C unless otherwise noted)

Rating	Symbol	Value	Unit
Junction Temperature Range	ТJ	- 40 to +150	°C
Short Circuit Duration (V _{CE} = 720 V, T _J = 125°C)	t _{sc}	10	μs
Isolation Voltage, Pin to Baseplate	VISO	2500	Vac
Operating Case Temperature Range	тс	– 40 to +95	°C
Storage Temperature Range	T _{stg}	– 40 to +150	°C
Mounting Torque — Heat Sink Mounting Holes	—	1.4	Nm

ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
DC AND SMALL SIGNAL CHARACTERISTICS					
Gate-Emitter Leakage Current (V _{CE} = 0 V, V _{GE} = \pm 20 V)	IGES	—	—	± 20	μA
Collector-Emitter Leakage Current (V_{CE} = 1200 V, V_{GE} = 0 V)	ICES	—	5.0	100	μA
Gate-Emitter Threshold Voltage ($V_{CE} = V_{GE}$, $I_{C} = 1.0$ mA)	V _{GE(th)}	5.0	6.0	7.0	V
Collector-Emitter Breakdown Voltage ($I_C = 10 \text{ mA}, V_{GE} = 0 \text{ V}$)	V _(BR) CES	1200	—	—	V
Collector-Emitter Saturation Voltage ($I_C = I_{Cmax}$, $V_{GE} = 15$ V) $T_J = 125^{\circ}C$	V _{CE(SAT)}	1.7	2.35 2.69	2.9	V
Forward Transconductance 10A120 15A120 25A120	9fe		8.3 14 19		mho
Diode Forward Voltage (IF = I _{Fmax} , V _{GE} = 0 V) T _J = 125°C	VF	1.7	2.35 1.9	3.1 —	V
Input Capacitance (V _{CE} = 10 V, V _{GE} = 0 V, f = 1.0 MHz) 10A120 15A120 25A120	C _{ies}		1880 2620 4770		pF
Input Gate Charge (V _{CE} = 600 V, I _C = I _{Cmax} , V _{GE} = 15 V)10A120 15A120 25A120	QT		65 87 150		nC
NDUCTIVE SWITCHING CHARACTERISTICS (T _J = 25° C)	•		•		
Recommended Gate Resistor (R _{G(on)} = R _{G(off)}) 10A120 15A120 25A120	R _G	 	82 82 68		Ω
Turn-On Delay Time (V _{CE} = 600 V, I _C = I _{Cmax} , V _{GE} = 15 V) 10A120 15A120 25A120	^t d(on)		174 240 330		ns
Rise Time (V _{CE} = 600 V, I _C = I _{Cmax} , V _{GE} = 15 V) 10A120 15A120 25A120	tr		84 105 150	 	ns
Turn–Off Delay Time (V _{CE} = 600 V, I _C = I _{Cmax} , V _{GE} = 15 V) 10A120 15A120 25A120	^t d(off)		640 780 1060		ns
Fall Time (V _{CE} = 600 V, I _C = I _{Cmax} , V _{GE} = 15 V) 10A120 15A120 25A120	tf	 	39 48 70	47 58 84	ns
Turn-On Energy (V _{CE} = 600 V, I _C = I _{Cmax} , V _{GE} = 15 V) 10A120 15A120 25A120	E _{on}	_ _ _	1.5 2.7 4.6	1.8 3.3 5.6	mJ

Characteristic		Symbol	Min	Тур	Max	Unit	
INDUCTIVE SWITCHING CHARACTERISTICS (T _J = 25°C) – continued							
Turn-Off Energy (V _{CE} = 600 V, I _C = I _{Cmax} , V _{GE} = 15 V)	10A120 15A120 25A120	E _{off}		1.1 1.7 3.0	1.4 2.1 3.5	mJ	
Diode Reverse Recovery Time ($I_F = I_{Fmax}$, V = 600 V)	10A120 15A120 25A120	trr		95 110 124		ns	
Peak Reverse Recovery Current (I _F = I _{Fmax} , V = 600 V)	10A120 15A120 25A120	Irrm	-	8.0 9.7 11.5		A	
Diode Stored Charge (I _F = I _{Fmax} , V = 600 V)	10A120 15A120 25A120	Q _{rr}		550 600 740		nC	

INDUCTIVE SWITCHING CHARACTERISTICS (T_J = 125°C)

Characteristic		Symbol	Min	Тур	Max	Unit
Turn–On Delay Time (V _{CE} = 600 V, I _C = I _{Cmax} , V _{GE} =	= 15 V) 10A120 15A120 25A120	^t d(on)		160 220 310		ns
Rise Time (V _{CE} = 600 V, I _C = I _{Cmax} , V _{GE} = 15 V)	10A120 15A120 25A120	tr		93 110 160		ns
Turn–Off Delay Time (V _{CE} = 600 V, I _C = I _{Cmax} , V _{GE} =	= 15 V) 10A120 15A120 25A120	^t d(off)		680 850 1140		ns
Fall Time (V _{CE} = 600 V, I _C = I _{Cmax} , V _{GE} = 15 V)	10A120 15A120 25A120	tf		51 60 76		ns
Turn–On Energy (V _{CE} = 600 V, I _C = I _{Cmax} , V _{GE} = 15	V) 10A120 15A120 25A120	E _{on}		2.0 3.6 6.1		mJ
Turn–Off Energy (V _{CE} = 600 V, I _C = I _{Cmax} , V _{GE} = 15	V) 10A120 15A120 25A120	E _{off}		1.5 2.4 4.2		mJ
Diode Reverse Recovery Time ($I_F = I_{Fmax}$, V = 600 V)	10A120 15A120 25A120	t _{rr}		160 210 250		ns
Peak Reverse Recovery Current ($I_F = I_{Fmax}$, $V = 600$)	V) 10A120 15A120 25A120	Irrm		11.0 14.1 17.4		A
Diode Stored Charge (I _F = I _{Fmax} , V = 600 V)	10A120 15A120 25A120	Q _{rr}		995 1770 2460		nC
THERMAL CHARACTERISTICS (Each Die)						
Thermal Resistance — IGBT	10A120 15A120 25A120	R _{θJC}		1.1 0.89 0.68	1.3 1.1 0.85	°C/W
Thermal Resistance — Diode	10A120 15A120 25A120	R _{θJC}		2.8 2.0 1.6	3.5 2.5 2.0	°C/W

TYPICAL CHARACTERISTICS

(see also application information)

Figure 3. Forward Characteristics, T_J = 125°C

Figure 4. Gate–Emitter Voltage versus Total Gate Charge

TYPICAL CHARACTERISTICS

(see also application information)

TYPICAL CHARACTERISTICS

(see also application information)

Figure 17. Recommended Gate Drive Circuit

APPLICATION INFORMATION

These modules are designed to be used as the power stage of a three–phase AC induction motor drive. They may be used for up to 460 VAC applications. Switching frequencies up to 15 kHz were considered in the design.

Gate resistance recommendations have been listed. These choices were based on the common gate drive circuit shown in Figure 16. However, significant improvements in E_{off} may be gained by either of two methods: use of a negative gate bias, or use of the gate drive shown in Figure 17. Separate turn–on and turn–off gate resistors give the best results; in this case, $R_{G(off)}$ should be chosen as small as possible while limiting current to prevent damage to the gate drive IC. Designers should also note that turn–on and turn–off delay times are measured from the rising and falling edges of the gate drive output, not the gate voltage waveform.

Since all three modules use similar technology, most of the graphs showing typical performance have been normalized. Actual values are listed for each size in the table, "Electrical Characteristics." Data on the graphs reflect performance using the common gate drive circuit shown in Figure 16.

The first three curves, showing DC characteristics, are normalized for I_{Cmax} . The devices all perform similarly at rated current. The curves extend to $I_{C(pk)}$, the maximum allowable instantaneous current.

The next two graphs, turn–off and turn–on times versus IC, are also normalized for ICmax. In addition, the time scales are normalized. Turn–off times are normalized to $t_{d(off)}$ at 25°C at rated current with recommended RG, while turn–on times are normalized to t_r at 25°C at rated current with recommended RG.

The graphs showing switching times as a function of R_G are similarly normalized. R_G has been normalized to the rec-

ommended value listed under "Electrical Characteristics." The time axes are normalized exactly as for the corresponding graphs showing variation with I_C.

Similar transformations have been made for the next two figures, showing E_{On} and E_{Off} . Energies have been normalized to E_{Off} at 25°C at I_{Cmax} with the recommended R_{G} . I_{C} has been normalized to I_{Cmax} , and R_{G} has been normalized to the recommended value.

Reverse recovery characteristics are also normalized. Ic has again been normalized to I_{Cmax} . Reverse recovery time t_{rr} has been normalized to t_{rr} at 25°C at I_{Cmax} . Peak reverse recovery current I_{rrm} has been normalized to I_{rrm} at 25°C at I_{Cmax} , then multiplied by 10.

Capacitance has been normalized to device rated I_{Cmax}. Since all modules are rated for the same voltage, the voltage scale on Figure 11 does not need to be normalized.

Typical transient thermal impedance is shown for a diode and for an IGBT. All diodes behave quite similarly, as do all IGBTs.

The last two graphs, V_{GE} versus Q_{G} and RBSOA, are not normalized.

Many issues beyond the ratings must be considered in a system design. Dynamic characteristics can all be affected by external circuit parameters. For example, excessive bus inductance can dramatically increase voltage overshoot during switching, increasing the switching energy. The choice of gate drive IC can have quite a large effect on rise and fall times, corresponding to differences in switching energies. In many cases, this can be compensated by simply changing the gate resistor accordingly — a gate driver with a lower drive capability requires a smaller gate resistor. Ultimately, the module must be tested in the final system to characterize its performance.

Figure 18. Schematic of Module, Showing Pin–Out

RECOMMENDED PCB LAYOUT MODULE SIDE VIEW OF BOARD

(Typical Dimensions in mm)

Figure 19. Package Footprint

NOTES:

- 1. Package is symmetrical.
- 2. Dimension of plated thru-holes indicates finished hole size after plating.
- 3. Non-plated thru-holes shown for optional access to heat sink mounting screws.

PACKAGE DIMENSIONS

PACKAGE DIMENSIONS

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights on the rights or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and **(A)** are registered trademarks of Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 1–303–675–2140 or 1–800–441–2447

Customer Focus Center: 1-800-521-6274

 Mfax™: RMFAX0@email.sps.mot.com
 - TOUCHTONE 1–602–244–6609

 Motorola Fax Back System
 - US & Canada ONLY 1–800–774–1848

 - http://sps.motorola.com/mfax/

HOME PAGE: http://motorola.com/sps/

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298

JAPAN: Nippon Motorola Ltd.: SPD, Strategic Planning Office, 141,

4-32-1 Nishi-Gotanda, Shagawa-ku, Tokyo, Japan. 03-5487-8488

Mfax is a trademark of Motorola. Inc.