Hex Unbuffered Inverter # **High-Performance Silicon-Gate CMOS** The MC74HCU04A is identical in pinout to the LS04 and the MC14069UB. The device inputs are compatible with standard CMOS outputs; with pullup resistors, they are compatible with LSTTL outputs. This device consists of six single–stage inverters. These inverters are well suited for use as oscillators, pulse shapers, and in many other applications requiring a high–input impedance amplifier. For digital applications, the HC04A is recommended. - Output Drive Capability: 10 LSTTL Loads - Outputs Directly Interface to CMOS, NMOS, and TTL - Operating Voltage Range: 2 to 6 V; 2.5 to 6 V in Oscillator Configurations - Low Input Current: 1 μA - High Noise Immunity Characteristic of CMOS Devices - In Compliance with the Requirements Defined by JEDEC Standard No. 7A - Chip Complexity: 12 FETs or 3 Equivalent Gates #### LOGIC DIAGRAM #### **FUNCTION TABLE** | Inputs
A | Outputs
Y | |-------------|--------------| | L
H | Н | | l '' | _ | ### **ON Semiconductor** http://onsemi.com PDIP-14 N SUFFIX CASE 646 **MARKING** SOIC-14 D SUFFIX CASE 751A TSSOP-14 DT SUFFIX CASE 948G A = Assembly Location WL or L = Wafer Lot YY or Y = Year WW or W = Work Week #### **PIN ASSIGNMENT** | A1 [| 1• | | v _{CC} | |-------|----|----|-----------------| | Y1 [| 2 | 13 |] A6 | | A2 [| 3 | 12 |] Y6 | | Y2 [| 4 | 11 |] A5 | | A3 [| 5 | 10 |] Y5 | | Y3 [| 6 | 9 |] A4 | | GND [| 7 | 8 |] Y4 | | | | | | #### **ORDERING INFORMATION** | Device | Package | Shipping | |----------------|----------|-------------| | MC74HCU04AN | PDIP-14 | 2000 / Box | | MC74HCU04AD | SOIC-14 | 55 / Rail | | MC74HCU04ADR2 | SOIC-14 | 2500 / Reel | | MC74HCU04ADT | TSSOP-14 | 96 / Rail | | MC74HCU04ADTR2 | TSSOP-14 | 2500 / Reel | #### **MAXIMUM RATINGS*** | Symbol | Parameter | Value | Unit | |------------------|---|--------------------------------|------| | VCC | DC Supply Voltage (Referenced to GND) | - 0.5 to + 7.0 | V | | V _{in} | DC Input Voltage (Referenced to GND) | - 0.5 to V _{CC} + 0.5 | V | | V _{out} | DC Output Voltage (Referenced to GND) | - 0.5 to V _{CC} + 0.5 | V | | l _{in} | DC Input Current, per Pin | ± 20 | mA | | l _{out} | DC Output Current, per Pin | ± 25 | mA | | ICC | DC Supply Current, V _{CC} and GND Pins | ± 50 | mA | | PD | Power Dissipation in Still Air Plastic DIP† SOIC Package† TSSOP Package† | 750
500
450 | mW | | T _{stg} | Storage Temperature | - 65 to + 150 | °C | | TL | Lead Temperature, 1 mm from case for 10 Seconds
Plastic DIP, SOIC or TSSOP Package | 260 | °C | This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range GND \leq (V_{in} or V_{out}) \leq V_{CC} . Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open. $\label{problem} \mbox{Functional operation should be restricted to the Recommended Operating Conditions}.$ SOIC Package: -7mW/°C from 65° to 125°C TSSOP Package: - 6.1 mW/°C from 65° to 125°C For high frequency or heavy load considerations, see Chapter 2 of the ON Semiconductor High-Speed CMOS Data Book (DL129/D). #### **RECOMMENDED OPERATING CONDITIONS** | Symbol | Parameter | Min | Max | Unit | |------------------------------------|--|------|-------------|------| | VCC | DC Supply Voltage (Referenced to GND) | 2.0 | 6.0 | V | | V _{in} , V _{out} | DC Input Voltage, Output Voltage (Referenced to GND) | 0 | Vcc | V | | TA | Operating Temperature, All Package Types | - 55 | + 125 | °C | | t _r , t _f | Input Rise and Fall Time (Figure 1) | _ | No
Limit | ns | #### **DC ELECTRICAL CHARACTERISTICS** (Voltages Referenced to GND) | | | | | | Gu | aranteed Li | mit | | |--------|--------------------------------------|---|--|--------------------------|--------------------------|--------------------------|--------------------------|------| | Symbol | Parameter | Test Co | nditions | V _{CC} | – 55 to
25°C | ≤ 85°C | ≤ 125°C | Unit | | VIH | Minimum High-Level Input
Voltage | $V_{\text{out}} = 0.5 \text{ V}^*$ $ I_{\text{out}} \le 20 \mu\text{A}$ | | 2.0
3.0
4.5
6.0 | 1.7
2.5
3.6
4.8 | 1.7
2.5
3.6
4.8 | 1.7
2.5
3.6
4.8 | V | | VIL | Maximum Low–Level Input
Voltage | $V_{\text{out}} = V_{\text{CC}} - 0.$ $ I_{\text{out}} \le 20 \mu\text{A}$ | 5 V* | 2.0
3.0
4.5
6.0 | 0.3
0.5
0.8
1.1 | 0.3
0.5
0.8
1.1 | 0.3
0.5
0.8
1.1 | V | | Voн | Minimum High–Level Output
Voltage | $V_{in} = GND$
$ I_{Out} \le 20 \mu A$ | | 2.0
4.5
6.0 | 1.8
4.0
5.5 | 1.8
4.0
5.5 | 1.8
4.0
5.5 | V | | | | V _{in} = GND | $\begin{aligned} I_{Out} &\leq 2.4 \text{ mA} \\ I_{Out} &\leq 4.0 \text{ mA} \\ I_{Out} &\leq 5.2 \text{ mA} \end{aligned}$ | 3.0
4.5
6.0 | 2.36
3.86
5.36 | 2.26
3.76
5.26 | 2.20
3.70
5.20 | | | VOL | Maximum Low–Level Output
Voltage | $V_{\text{in}} = V_{\text{CC}}$
$ I_{\text{Out}} \le 20 \mu\text{A}$ | | 2.0
4.5
6.0 | 0.2
0.5
0.5 | 0.2
0.5
0.5 | 0.2
0.5
0.5 | V | | | | Vin = VCC | $\begin{aligned} I_{Out} &\leq 2.4 \text{ mA} \\ I_{Out} &\leq 4.0 \text{ mA} \\ I_{Out} &\leq 5.2 \text{ mA} \end{aligned}$ | 3.0
4.5
6.0 | 0.32
0.32
0.32 | 0.32
0.37
0.37 | 0.32
0.40
0.40 | | ^{*}Maximum Ratings are those values beyond which damage to the device may occur. [†]Derating — Plastic DIP: -10mW/°C from 65° to 125°C #### DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND) | | | | | Guaranteed Limit | | | | |-----------------|---|---|-----------------|------------------|--------|---------|------| | Symbol | Parameter | Test Conditions | V _{CC} | – 55 to
25°C | ≤ 85°C | ≤ 125°C | Unit | | l _{in} | Maximum Input Leakage
Current | $V_{in} = V_{CC}$ or GND | 6.0 | ± 0.1 | ± 1.0 | ± 1.0 | μΑ | | lcc | Maximum Quiescent Supply
Current (per Package) | V _{in} = V _{CC} or GND
I _{out} = 0 µA | 6.0 | 1 | 10 | 40 | μА | NOTE: Information on typical parametric values can be found in Chapter 2 of the ON Semiconductor High–Speed CMOS Data Book (DL129/D). *For $V_{CC} = 2.0 \text{ V}$, $V_{out} = 0.2 \text{ V}$ or $V_{CC} - 0.2 \text{ V}$. ### AC ELECTRICAL CHARACTERISTICS ($C_L = 50$ pF, Input $t_f = t_f = 6$ ns) | | | | Guaranteed Limit | | | | |--|--|--------------------------|----------------------|----------------------|-----------------------|------| | Symbol | Parameter | v _{CC} | – 55 to
25°C | ≤ 85°C | ≤ 125°C | Unit | | t _{PLH} ,
t _{PHL} | Maximum Propagation Delay, Input A to Output Y (Figures 1 and 2) | 2.0
3.0
4.5
6.0 | 70
40
14
12 | 90
45
18
15 | 105
50
21
18 | ns | | t _{TLH} ,
t _{THL} | Maximum Output Transition Time, Any Output (Figures 1 and 2) | 2.0
3.0
4.5
6.0 | 75
27
15
13 | 95
32
19
16 | 110
36
22
19 | ns | | C _{in} | Maximum Input Capacitance | | 10 | 10 | 10 | pF | #### NOTES: ^{2.} Information on typical parametric values can be found in Chapter 2 of the ON Semiconductor High-Speed CMOS Data Book (DL129/D). | | | Typical @ 25°C, V _{CC} = 5.0 V | | |-----------------|---|---|----| | C _{PD} | Power Dissipation Capacitance (Per Inverter)* | 15 | pF | ^{*} Used to determine the no–load dynamic power consumption: $P_D = C_{PD} \ V_{CC}^2 f + I_{CC} \ V_{CC}$. For load considerations, see Chapter 2 of the ON Semiconductor High–Speed CMOS Data Book (DL129/D). ^{1.} For propagation delays with loads other than 50 pF, see Chapter 2 of the ON Semiconductor High–Speed CMOS Data Book (DL129/D). Figure 1. Switching Waveforms *Includes all probe and jig capacitance Figure 2. Test Circuit # LOGIC DETAIL (1/6 of Device Shown) ### **TYPICAL APPLICATIONS** ### **Crystal Oscillator** #### **Stable RC Oscillator** ### **Schmitt Trigger** # High Input Impedance Single-Stage Amplifier with a 2 to 6 V Supply Range #### Multi-Stage Amplifier #### **LED Driver** For reduced power supply current, use high–efficiency LEDs such as the Hewlett–Packard HLMP series or equivalent. #### **PACKAGE DIMENSIONS** #### PDIP-14 **N SUFFIX** CASE 646-06 ISSUE L - NOTES: 1. LEADS WITHIN 0.13 (0.005) RADIUS OF TRUE POSITION AT SEATING PLANE AT MAXIMUM MATERIAL CONDITION. 2. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL. 3. DIMENSION B DOES NOT INCLUDE MOLD - FLASH. 4. ROUNDED CORNERS OPTIONAL | | INC | HES | MILLIN | IETERS | |-----|-------|-------|----------|--------| | DIM | MIN | MAX | MIN | MAX | | Α | 0.715 | 0.770 | 18.16 | 19.56 | | В | 0.240 | 0.260 | 6.10 | 6.60 | | С | 0.145 | 0.185 | 3.69 | 4.69 | | D | 0.015 | 0.021 | 0.38 | 0.53 | | F | 0.040 | 0.070 | 1.02 | 1.78 | | G | 0.100 | BSC | 2.54 | BSC | | Н | 0.052 | 0.095 | 1.32 | 2.41 | | J | 0.008 | 0.015 | 0.20 | 0.38 | | K | 0.115 | 0.135 | 2.92 | 3.43 | | L | 0.300 | BSC | 7.62 BSC | | | M | 0° | 10° | 0° | 10° | | N | 0.015 | 0.039 | 0.39 | 1.01 | #### SOIC-14 **D SUFFIX** CASE 751A-03 ISSUE F - NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI - 1. DIMENSIONING AND TOLERANCING PER ANS Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION ALLOWARD F. DAMBAR. - PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. | | MILLIMETERS | | INC | HES | |-----|-------------|------|-----------|-------| | DIM | MIN | MAX | MIN | MAX | | Α | 8.55 | 8.75 | 0.337 | 0.344 | | В | 3.80 | 4.00 | 0.150 | 0.157 | | С | 1.35 | 1.75 | 0.054 | 0.068 | | D | 0.35 | 0.49 | 0.014 | 0.019 | | F | 0.40 | 1.25 | 0.016 | 0.049 | | G | 1.27 | BSC | 0.050 BSC | | | J | 0.19 | 0.25 | 0.008 | 0.009 | | K | 0.10 | 0.25 | 0.004 | 0.009 | | M | 0 ° | 7° | 0 ° | 7° | | Р | 5.80 | 6.20 | 0.228 | 0.244 | | R | 0.25 | 0.50 | 0.010 | 0.019 | #### **PACKAGE DIMENSIONS** TSSOP-14 **DT SUFFIX** CASE 948G-01 **ISSUE O** - NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 - OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION. MATERIAL CONDITION. TERMINAL NUMBERS ARE SHOWN FOR - REFERENCE ONLY. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-. | | MILLIN | IETERS | INC | HES | |-----|--------|----------|-------|-------| | DIM | MIN | MAX | MIN | MAX | | Α | 4.90 | 5.10 | 0.193 | 0.200 | | В | 4.30 | 4.50 | 0.169 | 0.177 | | С | | 1.20 | | 0.047 | | D | 0.05 | 0.15 | 0.002 | 0.006 | | F | 0.50 | 0.75 | 0.020 | 0.030 | | G | 0.65 | BSC | 0.026 | BSC | | Н | 0.50 | 0.60 | 0.020 | 0.024 | | J | 0.09 | 0.20 | 0.004 | 0.008 | | J1 | 0.09 | 0.16 | 0.004 | 0.006 | | K | 0.19 | 0.30 | 0.007 | 0.012 | | K1 | 0.19 | 0.25 | 0.007 | 0.010 | | L | 6.40 | 6.40 BSC | | BSC | | M | 0° | 8° | 0° | 8° | ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affliliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. #### **PUBLICATION ORDERING INFORMATION** #### NORTH AMERICA Literature Fulfillment: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA **Phone**: 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax**: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: ONlit@hibbertco.com Fax Response Line: 303-675-2167 or 800-344-3810 Toll Free USA/Canada N. American Technical Support: 800-282-9855 Toll Free USA/Canada EUROPE: LDC for ON Semiconductor - European Support German Phone: (+1) 303-308-7140 (M-F 1:00pm to 5:00pm Munich Time) Email: ONlit-german@hibbertco.com French Phone: (+1) 303–308–7141 (M–F 1:00pm to 5:00pm Toulouse Time) Email: ONlit-french@hibbertco.com $\textbf{English \ Phone} \hbox{:}\ (+1)\ 303-308-7142\ (M-F\ 12:00pm\ to\ 5:00pm\ UK\ Time)$ Email: ONlit@hibbertco.com EUROPEAN TOLL-FREE ACCESS*: 00-800-4422-3781 *Available from Germany, France, Italy, England, Ireland CENTRAL/SOUTH AMERICA: Spanish Phone: 303-308-7143 (Mon-Fri 8:00am to 5:00pm MST) Email: ONlit-spanish@hibbertco.com ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support Phone: 303-675-2121 (Tue-Fri 9:00am to 1:00pm, Hong Kong Time) Toll Free from Hong Kong & Singapore: 001–800–4422–3781 Email: ONlit-asia@hibbertco.com JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–8549 **Phone**: 81–3–5740–2745 **Email**: r14525@onsemi.com ON Semiconductor Website: http://onsemi.com For additional information, please contact your local Sales Representative.