Octal 3-State Inverting Bus Transceiver # **High-Performance Silicon-Gate CMOS** The MC54/74HC640A is identical in pinout to the LS640. The device inputs are compatible with standard CMOS outputs; with pullup resistors, they are compatible with LSTTL outputs. The HC640A is a 3–state transceiver that is used for 2–way asynchronous communication between data buses. The device has an active–low Output Enable pin, which is used to place the I/O ports into high–impedance states. The Direction control determines whether data flows from A to B or from B to A. - · Output Drive Capability: 15 LSTTL Loads - · Outputs Directly Interface to CMOS, NMOS, and TTL - Operating Voltage Range: 2 to 6 V - Low Input Current: 1 μA - · High Noise Immunity Characteristic of CMOS Devices - In Compliance with the Requirements Defined by JEDEC Standard No. 7A - Chip Complexity: 276 FETs or 69 Equivalent Gates ### **LOGIC DIAGRAM** PIN 10 = GND PIN 20 = V_{CC} # MC54/74HC640A # **FUNCTION TABLE** | Control Inputs | | | |------------------|-----------|---| | Output
Enable | Direction | Operation | | L | L | Data Transmitted from Bus B to Bus A (Inverted) | | L | Н | Data Transmitted from Bus A to Bus B (Inverted) | | Н | Х | Buses Isolated
(High–Impedance State) | X = don't care # **MAXIMUM RATINGS*** | Symbol | Parameter | Value | Unit | |------------------|---|-------------------------------|------| | VCC | DC Supply Voltage (Referenced to GND) | - 0.5 to + 7.0 | V | | Vin | DC Input Voltage (Referenced to GND), Pin 1 or 19 | -0.5 to V _{CC} + 0.5 | V | | V _{I/O} | DC I/O Voltage (Referenced to GND) | -0.5 to V _{CC} + 0.5 | V | | l _{in} | DC Input Current, per Pin | ± 20 | mA | | I _{I/O} | DC I/O Current, per Pin | ± 35 | mA | | Icc | DC Supply Current, V _{CC} and GND Pins | ± 75 | mA | | PD | Power Dissipation in Still Air, Plastic or Ceramic DIP†
SOIC Package† | 750
500 | mW | | T _{stg} | Storage Temperature | - 65 to + 150 | °C | | TL | Lead Temperature, 1 mm from Case for 10 Seconds
(Plastic DIP or SOIC Package)
(Ceramic DIP) | 260
300 | °C | This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range GND \leq (V_{in} or V_{out}) \leq VCC. Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or VCC). Unused outputs must be left open. I/O pins must be connected to a properly terminated line or bus. Ceramic DIP: - 10 mW/°C from 100° to 125°C SOIC Package: $-~7~mW/^{\circ}C$ from 65° to $125^{\circ}C$ For high frequency or heavy load considerations, see Chapter 2 of the Motorola High-Speed CMOS Data Book (DL129/D). # RECOMMENDED OPERATING CONDITIONS | Symbol | Parameter | | | Max | Unit | |------------------------------------|--|--|-------------|--------------------|------| | VCC | DC Supply Voltage (Referenced to GND) | | | 6.0 | V | | V _{in} , V _{out} | DC Input Voltage, Output Voltage (Referenced to GND) | | | VCC | V | | TA | Operating Temperature, All Package Types | | | + 125 | °C | | t _r , t _f | Input Rise and Fall Time $V_{CC} = 2.0 \text{ V}$ (Figure 1) $V_{CC} = 4.5 \text{ V}$ $V_{CC} = 6.0 \text{ V}$ | | 0
0
0 | 1000
500
400 | ns | # DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND) | | | | | Gu | aranteed Li | mit | | |--------|--------------------------------------|---|--------------------------|---------------------------|---------------------------|---------------------------|------| | Symbol | Parameter | Test Conditions | V _{CC} | – 55 to
25°C | ≤ 85°C | ≤ 125°C | Unit | | VIH | Minimum High–Level Input
Voltage | $V_{\text{Out}} = V_{\text{CC}} - 0.1 \text{ V}$
$ I_{\text{Out}} \le 20 \mu\text{A}$ | 2.0
3.0
4.5
6.0 | 1.5
2.1
3.15
4.2 | 1.5
2.1
3.15
4.2 | 1.5
2.1
3.15
4.2 | V | | VIL | Maximum Low–Level Input
Voltage | $V_{\text{Out}} = 0.1 \text{ V}$ $ I_{\text{Out}} \le 20 \mu\text{A}$ | 2.0
3.0
4.5
6.0 | 0.5
0.9
1.35
1.8 | 0.5
0.9
1.35
1.8 | 0.5
0.9
1.35
1.8 | V | | VOH | Minimum High–Level Output
Voltage | $V_{in} = V_{IH}$
$ I_{out} \le 20 \mu\text{A}$ | 2.0
4.5
6.0 | 1.9
4.4
5.9 | 1.9
4.4
5.9 | 1.9
4.4
5.9 | V | | | | $\begin{aligned} V_{in} = V_{IH} & I_{out} \leq 2.4 \text{ mA} \\ I_{out} \leq 6.0 \text{ mA} \\ I_{out} \leq 7.8 \text{ mA} \end{aligned}$ | 4.5 | 2.48
3.98
5.48 | 2.34
3.84
5.34 | 2.2
3.7
5.2 | | | VOL | Maximum Low–Level Output
Voltage | $ V_{in} = V_{IL} $
$ I_{out} \le 20 \mu\text{A}$ | 2.0
4.5
6.0 | 0.1
0.1
0.1 | 0.1
0.1
0.1 | 0.1
0.1
0.1 | V | | | | $\begin{aligned} V_{in} = V_{IL} & I_{out} \leq 2.4 \text{ mA} \\ I_{out} \leq 6.0 \text{ mA} \\ I_{out} \leq 7.8 \text{ mA} \end{aligned}$ | 4.5 | 0.26
0.26
0.26 | 0.33
0.33
0.33 | 0.4
0.4
0.4 | | ^{*} Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the Recommended Operating Conditions. [†]Derating — Plastic DIP: - 10 mW/°C from 65° to 125°C # DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND) | | | | | Guaranteed Limit | | | | |-----------------|---|--|-----------------|------------------|--------|---------|------| | Symbol | Parameter | Test Conditions | V _{CC} | – 55 to
25°C | ≤ 85°C | ≤ 125°C | Unit | | l _{in} | Maximum Input Leakage Current | $V_{in} = V_{CC}$ or GND | 6.0 | ± 0.1 | ± 1.0 | ± 1.0 | μΑ | | loz | Maximum Three–State Leakage
Current | Output in High–Impedance State $V_{in} = V_{IL}$ or V_{IH} $V_{out} = V_{CC}$ or GND | 6.0 | ± 0.5 | ± 5.0 | ± 10 | μА | | lcc | Maximum Quiescent Supply
Current (per Package) | $V_{in} = V_{CC}$ or GND
$I_{out} = 0 \mu A$ | 6.0 | 4.0 | 40 | 160 | μΑ | NOTE: Information on typical parametric values can be found in Chapter 2 of the Motorola High-Speed CMOS Data Book (DL129/D). # AC ELECTRICAL CHARACTERISTICS (C_L = 50 pF, Input t_f = t_f = 6 ns) | | | | Guaranteed Limit | | | | |---|---|--------------------------|-----------------------|------------------------|------------------------|------| | Symbol | Parameter | V _{CC} | – 55 to
25°C | ≤ 85°C | ≤ 125°C | Unit | | ^t PLH [,]
^t PHL | Maximum Propagation Delay, A to B, B to A (Figures 1 and 3) | 2.0
3.0
4.5
6.0 | 75
55
15
13 | 95
70
19
16 | 110
80
22
19 | ns | | ^t PLZ [,]
^t PHZ | Maximum Propagation Delay, Direction or Output Enable to A or B (Figures 2 and 4) | 2.0
3.0
4.5
6.0 | 110
90
22
19 | 140
110
28
24 | 165
130
33
28 | ns | | tPZL [,]
tPZH | Maximum Propagation Delay, Output Enable to A or B (Figures 2 and 4) | 2.0
3.0
4.5
6.0 | 110
90
22
19 | 140
110
28
24 | 165
130
33
25 | ns | | t _{TLH} ,
tTHL | Maximum Output Transition Time, Any Output (Figures 1 and 3) | 2.0
3.0
4.5
6.0 | 60
23
12
10 | 75
27
15
13 | 90
32
18
15 | ns | | C _{in} | Maximum Input Capacitance, Pin 1 or 19 | _ | 10 | 10 | 10 | pF | | C _{out} | Maximum Three–State I/O Capacitance
(Output in High–Impedance State) | _ | 15 | 15 | 15 | pF | NOTE: For propagation delays with loads other than 50 pF, and information on typical parametric values, see Chapter 2 of the Motorola High—Speed CMOS Data Book (DL129/D). | | | Typical @ 25° C, $V_{CC} = 5.0 \text{ V}$ | | |-----------------|--|--|----| | C _{PD} | Power Dissipation Capacitance (Per Transceiver Channel)* | 40 | pF | ^{*} Used to determine the no–load dynamic power consumption: P_D = C_{PD} V_{CC}²f + I_{CC} V_{CC}. For load considerations, see Chapter 2 of the Motorola High–Speed CMOS Data Book (DL129/D). # **SWITCHING WAVEFORMS** Figure 1. Figure 2. tTEST CIRCUITS * Includes all probe and jig capacitance Figure 3. Figure 4. ^{*} Includes all probe and jig capacitance # **EXPANDED LOGIC DIAGRAM** # **OUTLINE DIMENSIONS** - LEADS WITHIN 0.25 (0.010) DIAMETER, TRUE POSITION AT SEATING PLANE, AT MAXIMUM MATERIAL CONDITION. - DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL. - 3. DIMENSIONS A AND B INCLUDE MENISCUS. | | MILLIN | METERS | INC | HES | | |-----|--------|--------|-----------|-------|--| | DIM | MIN | MAX | MIN MAX | | | | Α | 23.88 | 25.15 | 0.940 | 0.990 | | | В | 6.60 | 7.49 | 0.260 | 0.295 | | | O | 3.81 | 5.08 | 0.150 | 0.200 | | | D | 0.38 | 0.56 | 0.015 | 0.022 | | | F | 1.40 | 1.65 | 0.055 | 0.065 | | | G | 2.54 | BSC | 0.100 | BSC | | | Н | 0.51 | 1.27 | 0.020 | 0.050 | | | ے | 0.20 | 0.30 | 0.008 | 0.012 | | | Κ | 3.18 | 4.06 | 0.125 | 0.160 | | | ٦ | 7.62 | BSC | 0.300 BSC | | | | М | 0 ° | 15° | 0° | 15° | | | N | 0.25 | 1.02 | 0.010 | 0.040 | | #### NOTES: - 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION L TO CENTER OF LEAD WHEN - FORMED PARALLEL. 4. DIMENSION B DOES NOT INCLUDE MOLD | | INC | HES | MILLIMETERS | | | |-----|-----------|-------|-------------|-------|--| | DIM | MIN | MAX | MIN | MAX | | | Α | 1.010 | 1.070 | 25.66 | 27.17 | | | В | 0.240 | 0.260 | 6.10 | 6.60 | | | С | 0.150 | 0.180 | 3.81 | 4.57 | | | D | 0.015 | 0.022 | 0.39 | 0.55 | | | Е | 0.050 BSC | | 1.27 | BSC | | | F | 0.050 | 0.070 | 1.27 | 1.77 | | | G | 0.100 | BSC | 2.54 | BSC | | | J | 0.008 | 0.015 | 0.21 | 0.38 | | | K | 0.110 | 0.140 | 2.80 | 3.55 | | | L | 0.300 | BSC | 7.62 BSC | | | | M | 0° | 15° | 0° | 15° | | | N | 0.020 | 0.040 | 0.51 | 1.01 | | - OTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.150 - (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.13 (0.005) TOTAL IN EXCESS OF D DIMENSION AT MAXIMUM MATERIAL CONDITION. | | MILLIN | IETERS | INC | HES | |-----|--------|--------|-------|-------| | DIM | MIN | MAX | MIN | MAX | | Α | 12.65 | 12.95 | 0.499 | 0.510 | | В | 7.40 | 7.60 | 0.292 | 0.299 | | С | 2.35 | 2.65 | 0.093 | 0.104 | | D | 0.35 | 0.49 | 0.014 | 0.019 | | F | 0.50 | 0.90 | 0.020 | 0.035 | | G | 1.27 | BSC | 0.050 | BSC | | J | 0.25 | 0.32 | 0.010 | 0.012 | | K | 0.10 | 0.25 | 0.004 | 0.009 | | M | 0 ° | 7 ° | 0 ° | 7° | | Р | 10.05 | 10.55 | 0.395 | 0.415 | | R | 0.25 | 0.75 | 0.010 | 0.029 | Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and was negligent regarding the design or manufacture of the part. Motorola and ergistered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer. Mfax is a trademark of Motorola, Inc. ### How to reach us: **USA/EUROPE/Locations Not Listed**: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 303–675–2140 or 1–800–441–2447 JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 81–3–3521–8315 Mfax™: RMFAX0@email.sps.mot.com - TOUCHTONE 602-244-6609 - US & Canada ONLY 1-800-774-184 TOUCHTONE 602–244–6609 ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, US & Canada ONLY 1–800–774–1848 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298 INTERNET: http://www.mot.com/SPS/ MC74HC640A/D