Octal 3-State Non-Inverting Buffer/Line Driver/ Line Receiver High–Performance Silicon–Gate CMOS

The MC74HC541A is identical in pinout to the LS541. The device inputs are compatible with Standard CMOS outputs. External pullup resistors make them compatible with LSTTL outputs.

The HC541A is an octal non-inverting buffer/line driver/line receiver designed to be used with 3-state memory address drivers, clock drivers, and other bus-oriented systems. This device features inputs and outputs on opposite sides of the package and two ANDed active-low output enables.

The HC541A is similar in function to the HC540A, which has inverting outputs.

- Output Drive Capability: 15 LSTTL Loads
- Outputs Directly Interface to CMOS, NMOS and TTL
- Operating Voltage Range: 2 to 6V
- Low Input Current: 1µA
- High Noise Immunity Characteristic of CMOS Devices
- In Compliance With the JEDEC Standard No. 7A Requirements
- Chip Complexity: 134 FETs or 33.5 Equivalent Gates

ON Semiconductor

http://onsemi.com

WL = Wafer Lot

YY = Year

WW = Work Week

FUNCTION TABLE

	Inputs	Output V	
OE1	OE2	А	Output Y
L	L	L	L
L	L	Н	н
н	Х	Х	Z
Х	н	Х	Z

Z = High Impedance X = Don't Care

ORDERING INFORMATION

Device	Package	Shipping
MC74HC541AN	PDIP-20	1440 / Box
MC74HC541ADW	SOIC-WIDE	38 / Rail
MC74HC541ADWR2	SOIC-WIDE	1000 / Reel

MAXIMUM RATINGS*

Symbol	Parameter	Value	Unit
VCC	DC Supply Voltage (Referenced to GND)	– 0.5 to + 7.0	V
Vin	DC Input Voltage (Referenced to GND)	-0.5 to V _{CC} + 0.5	V
Vout	DC Output Voltage (Referenced to GND)	-0.5 to V _{CC} + 0.5	V
l _{in}	DC Input Current, per Pin	± 20	mA
l _{out}	DC Output Current, per Pin	± 35	mA
ICC	DC Supply Current, V_{CC} and GND Pins	± 75	mA
PD	Power Dissipation in Still Air, Plastic DIP† SOIC Package†	750 500	mW
T _{stg}	Storage Temperature Range	– 65 to + 150	°C
ΤL	Lead Temperature, 1 mm from Case for 10 Seconds Plastic DIP or SOIC Package	260	°C

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range GND \leq (V_{in} or V_{out}) \leq V_{CC} .

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open.

*Maximum Ratings are those values beyond which damage to the device may occur.

Functional operation should be restricted to the Recommended Operating Conditions.

†Derating — Plastic DIP: - 10 mW/°C from 65° to 125°C

SOIC Package: – 7 mW/°C from 65° to 125°C

For high frequency or heavy load considerations, see Chapter 2 of the ON Semiconductor High-Speed CMOS Data Book (DL129/D).

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter			Max	Unit
V _{CC}	DC Supply Voltage (Referenced to GND)			6.0	V
V _{in} , V _{out}	DC Input Voltage, Output Voltage (Referenced to GND)			VCC	V
Т _А	Operating Temperature Range, All Package Types			+ 125	°C
t _r , t _f	(Figure 1) V _C (C = 2.0 V C = 4.5 V C = 6.0 V	0 0 0	1000 500 400	ns

DC CHARACTERISTICS (Voltages Referenced to GND)

				vcc	Guara	nteed Lin	nit	
Symbol	Parameter	Conditi	ion	Ň	–55 to 25°C	≤85°C	≤125°C	Unit
VIH	Minimum High–Level Input Voltage	$V_{out} = 0.1V$ $ I_{out} \le 20\mu A$		2.0 3.0 4.5 6.0	1.50 2.10 3.15 4.20	1.50 2.10 3.15 4.20	1.50 2.10 3.15 4.20	V
VIL	Maximum Low-Level Input Voltage	$V_{out} = V_{CC} - 0.1V$ $ I_{out} \le 20\mu A$		2.0 3.0 4.5 6.0	0.50 0.90 1.35 1.80	0.50 0.90 1.35 1.80	0.50 0.90 1.35 1.80	V
Voh	Minimum High–Level Output Voltage	$V_{in} = V_{IL}$ $ I_{out} \le 20\mu A$		2.0 4.5 6.0	1.9 4.4 5.9	1.9 4.4 5.9	1.9 4.4 5.9	V
		$V_{in} = V_{IL}$	$\begin{split} I_{OUt} &\leq 3.6 \text{mA} \\ I_{Out} &\leq 6.0 \text{mA} \\ I_{OUt} &\leq 7.8 \text{mA} \end{split}$	3.0 4.5 6.0	2.48 3.98 5.48	2.34 3.84 5.34	2.20 3.70 5.20	
VOL	Maximum Low–Level Output Voltage	V _{in} = V _{IH} I _{out} ≤ 20µA		2.0 4.5 6.0	0.1 0.1 0.1	0.1 0.1 0.1	0.1 0.1 0.1	V
		V _{in} = V _{IH}	$\begin{split} I_{out} &\leq 3.6 \text{mA} \\ I_{out} &\leq 6.0 \text{mA} \\ I_{out} &\leq 7.8 \text{mA} \end{split}$	3.0 4.5 6.0	0.26 0.26 0.26	0.33 0.33 0.33	0.40 0.40 0.40	
lin	Maximum Input Leakage Current	$V_{in} = V_{CC} \text{ or } GND$		6.0	±0.1	±1.0	±1.0	μA

DC CHARACTERISTICS (Voltages Referenced to GND)

			Vcc	Guara	nteed Lim	nit	
Symbol	Parameter	Condition	Ň	–55 to 25°C	≤85°C	≤125°C	Unit
I _{OZ}	Maximum Three–State Leakage Current	Output in High Impedance State V _{in} = V _{IL} or V _{IH} V _{out} = V _{CC} or GND	6.0	±0.5	±5.0	±10.0	μΑ
ICC	Maximum Quiescent Supply Current (per Package)	V _{in} = V _{CC} or GND I _{out} = 0μA	6.0	4	40	160	μΑ

NOTE: Information on typical parametric values can be found in Chapter 2 of the ON Semiconductor High–Speed CMOS Data Book (DL129/D).

		Vcc	Gu	aranteed Lim	nit	
Symbol	Parameter	V	–55 to 25°C	≤85°C	≤125°C	Unit
^t PLH [,] ^t PHL	Maximum Propagation Delay, Input A to Output Y (Figures 1 and 3)	2.0 3.0 4.5 6.0	80 30 18 15	100 40 23 20	120 55 28 25	ns
t _{PLZ} , ^t PHZ	Maximum Propagation Delay, Output Enable to Output Y (Figures 2 and 4)	2.0 3.0 4.5 6.0	110 45 25 21	140 60 31 26	165 75 38 31	ns
^t PZL, ^t PZH	Maximum Propagation Delay, Output Enable to Output Y (Figures 2 and 4)	2.0 3.0 4.5 6.0	110 45 25 21	140 60 31 26	165 75 38 31	ns
ttlh, tthl	Maximum Output Transition Time, Any Output (Figures 1 and 3)	2.0 3.0 4.5 6.0	60 22 12 10	75 28 15 13	90 34 18 15	ns
C _{in}	Maximum Input Capacitance		10	10	10	pF
Cout	Maximum Three–State Output Capacitance (Output in High Impedance State)		15	15	15	pF

AC CHARACTERISTICS ($C_L = 50 \text{ pF}$, Input $t_f = t_f = 6 \text{ ns}$)

NOTE: For propagation delays with loads other than 50 pF, and information on typical parametric values, see Chapter 2 of the ON Semiconductor High-Speed CMOS Data Book (DL129/D).

		Typical @ 25°C, V _{CC} = 5.0 V, V _{EE} = 0 V	
CPD	Power Dissipation Capacitance (Per Buffer)*	35	pF

* Used to determine the no–load dynamic power consumption: $P_D = C_{PD} V_{CC}^2 f + I_{CC} V_{CC}$. For load considerations, see Chapter 2 of the ON Semiconductor High–Speed CMOS Data Book (DL129/D).

SWITCHING WAVEFORMS

TEST CIRCUITS

PIN DESCRIPTIONS

INPUTS

A1, A2, A3, A4, A5, A6, A7, A8 (PINS 2, 3, 4, 5, 6, 7, 8, 9) — Data input pins. Data on these pins appear in non-inverted form on the corresponding Y outputs, when the outputs are enabled.

CONTROLS

OE1, OE2 (PINS 1, 19) — Output enables (active–low). When a low voltage is applied to both of these pins, the

outputs are enabled and the device functions as an non-inverting buffer. When a high voltage is applied to either input, the outputs assume the high impedance state.

OUTPUTS

Y1, Y2, Y3, Y4, Y5, Y6, Y7, Y8 (PINS 18, 17, 16, 15, 14, 13, 12, 11) — Device outputs. Depending upon the state of the output enable pins, these outputs are either non–inverting outputs or high–impedance outputs.

LOGIC DETAIL

PACKAGE DIMENSIONS

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

2. CONTROLLING DIMENSION: INCH. 3. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL. 4. DIMENSION B DOES NOT INCLUDE MOLD

	INCHES		MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	1.010	1.070	25.66	27.17
В	0.240	0.260	6.10	6.60
С	0.150	0.180	3.81	4.57
D	0.015	0.022	0.39	0.55
Е	0.050 BSC		1.27 BSC	
F	0.050	0.070	1.27	1.77
G	0.100	BSC	2.54	BSC
J	0.008	0.015	0.21	0.38
К	0.110	0.140	2.80	3.55
L	0.300 BSC		7.62	BSC
Μ	0 °	15 °	0°	15°
Ν	0.020	0.040	0.51	1.01

SO-20 **DW SUFFIX** CASE 751D-05 **ISSUE F**

θ

NOTES: 1. DIMENSIONS ARE IN MILLIMETERS. 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994.

PER ASME Y14.5M, 1994. DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSION. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE. DIMENSION B DOES NOT INCLUDE DAMBAR PROTRUSION, ALLOWABLE PROTRUSION SHALL 3.

4. 5

BE 0.13 TOTAL IN EXCESS OF B DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIMETERS			
DIM	MIN	MAX		
Α	2.35	2.65		
A1	0.10	0.25		
В	0.35	0.49		
С	0.23	0.32		
D	12.65	12.95		
Ε	7.40	7.60		
е	1.27	BSC		
Н	10.05	10.55		
h	0.25	0.75		
L	0.50	0.90		
θ	0 °	7 °		

<u>Notes</u>

<u>Notes</u>

ON Semiconductor and without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or special; consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or special; consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or special; consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or special; consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or special; consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or special; consequential or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special; consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or special; consequential or provident applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintende

PUBLICATION ORDERING INFORMATION

NORTH AMERICA Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: ONlit@hibbertco.com Fax Response Line: 303–675–2167 or 800–344–3810 Toll Free USA/Canada

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor – European Support German Phone: (+1) 303–308–7140 (M–F 1:00pm to 5:00pm Munich Time)

Email: ONlit-german@hibbertco.com

- French Phone: (+1) 303–308–7141 (M–F 1:00pm to 5:00pm Toulouse Time) Email: ONlit_french@hibbertco.com
- English Phone: (+1) 303–308–7142 (M–F 12:00pm to 5:00pm UK Time) Email: ONlit@hibbertco.com

EUROPEAN TOLL-FREE ACCESS*: 00-800-4422-3781 *Available from Germany, France, Italy, England, Ireland

CENTRAL/SOUTH AMERICA:

Spanish Phone: 303–308–7143 (Mon–Fri 8:00am to 5:00pm MST) Email: ONlit–spanish@hibbertco.com

ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time) Toll Free from Hong Kong & Singapore: 001–800–4422–3781 Email: ONlit–asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–8549 Phone: 81–3–5740–2745 Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.