

Product Preview

Picture-in-Picture (PIP) Controller

The MC44463 Picture–In–Picture (PIP) controller is a low cost member of a family of high performance PIP controllers and video processors for television. It is a follow–up to the MC44461 PIP, in which two additional modes of operation have been added. A replay mode is provided, which captures several seconds of the main picture for replay in four different speeds. The capture time is programmable in four resolutions (ratio of captured fields to total fields), which trade the number of fields captured to the length of replay time. The second additional mode provides for multiple small picture overlays from a second non–synchronized source. The number of PIP images is 3 for the 1/9 screen area and 4 for the 1/16 screen area. Like the MC44461 this is NTSC compatible, I²C bus controlled and available in the 56–pin shrink dip (SDIP) package.

The main features of the MC44463 are:

- Three PIP Functional Modes: Standard Single Active PIP Mode, Up to 8 Seconds of Capture and Replay Mode, and a 3 or 4 Multiple PIP Mode – Vertical Stacked with 1 Active at Any One Time
- 4 Capture Resolutions 1 out of 10, 1:8, 1:6, 1:4. 4 Playback Speeds = 1 Times Acquire Speed; 1/2; 1/4; 1/8
- Full 2 Frame Store for the Single PIP Removes the Rolling Store/Playback Memory Interference – "Joint Line"
- External Memory for Replay and Multiple Modes: 4 Meg and 16 Meg
- Two NTSC CVBS Inputs Switchable Main and PIP Video Signals
- Single NTSC CVBS Output Allows Simple TV Chassis Integration
- Two PIP Sizes; 1/16 and 1/9 Screen Area Freeze Field Feature
- Variable PIP Position in 64–X by 64–Y Steps
- PIP Border with Programmable Color
- Programmable PIP Tint and Saturation Control
- Automatic Main to PIP Contrast Balance
- Vertical Filter
- I²C Bus Control No External Variable Adjustments Needed
- Operates from a Single 5.0 V Supply
- Economical 56–Pin Shrink DIP Package

This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

© Motorola, Inc. 1996

REPLAY AND MULTIPLE PICTURE-IN-PICTURE (PIP) CONTROLLER

MC44463

SEMICONDUCTOR TECHNICAL DATA

ORDERING INFORMATION

Device	Operating Temperature Range	Package
MC44463B	$T_J = -65^\circ$ to +150°C	SDIP

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Power Supply Voltage	V _{DD}	-0.5 to +6.0	V
Power Supply Voltage	Vcc	-0.5 to +6.0	V
Input Voltage Range	VIR	–0.5, V _{DD} + 0.5	V
Output Current	IO	160	mA
Power Dissipation Maximum Power Dissipation @ 70°C Thermal Resistance, Junction-to-Air	PD R _θ JA	1.3 59	W °C/W
Junction Temperature (Storage and Operating)	Тj	-65 to +150	°C

NOTE: ESD data available upon request.

ELECTRICAL CHARACTERISTICS ($V_{CC} = V_{DD} = 5.0 \text{ V}, T_A = 25^{\circ}C$, unless otherwise noted.)

	Symbol	Min	Тур	Max	Unit
POWER SUPPLY	1				
Total Supply (Pins 8, 15, 43 and 50)	Total ISupply	-	110	160	mA
VIDEO	•				•
Composite Video Input (Pin 34 or 36)	CVi	-	1.0	-	Vpp
Composite Video Output (Pin 49, Unterminated)	-	-	2.0	-	Vpp
Video Output DC Level (Sync Tip)	-	-	1.0	-	Vdc
Video Gain	-	-	6.0	-	dB
Video Frequency Response (Main Video to –1.0 dB)	-	-	10	-	MHz
Color Bar Accuracy	-	-	±4.0	-	deg
Video Crosstalk (@ 75% Color Bars) Main to PIP PIP to Main	_	-	55 55	-	dB
Output Impedance	-	-	5.0	-	Ω
HORIZONTAL TIMEBASE	•				
Free Run HPLL Frequency (Pin 16)	-	-	15734	-	Hz
HPLL Pull–In Range	-	-	±400	-	Hz
HPLL Jitter	-	-	±4.0	-	ns
Burst Gate Timing (from Trailing Edge Hsync, Pin 24)	-	-	1.0	-	μs
Burst Gate Width	-	_	4.0	-	μs
VERTICAL TIMEBASE	•				
Vertical Countdown Window	-	-	232/296	-	H lines
Vertical Sync Integration Time	-	-	31	-	μs
ANALOG TO DIGITAL CONVERTER	•				•
Resolution	-	-	-	6	Bits
Integral Non–Linearity	-	-	±1	-	LSB
Differential Non–Linearity	-	-	+2/-1	-	LSB
ADC – Y Frequency Response @ –5.0 dB	-	-	1.0	-	MHz
ADC – U, V Frequency Response @ –5.0 dB	-	_	200	_	kHz
Sample Clock Frequency (4/3 F _{SC})	-	_	4.773	-	MHz

Characteristic	Symbol	Min	Тур	Max	Unit
DIGITAL TO ANALOG CONVERTER	•				
Resolution	-	-	-	6	Bits
Integral Non–Linearity	_	-	±1	-	LSB
Differential Non–Linearity	_	-	+2/-1	-	LSB
Tint DAC Control Range (in 64 Steps)	_	-	±10	_	Deg
Saturation DAC Control Range (in 64 steps)	-	-	±6.0	-	dB
NTSC DECODER	ł		-		
Color Kill Threshold	_	-	-24/-16	-	dB
Threshold Hysteresis	_	-	±1.0	-	dB
ACC (Chroma Amplitude Change, +3.0 dB to -12 dB)	-	-	±5.0	-	dB
PIP CHARACTERISTICS	ł	•	1		
PIP Size	-				
1/9 Screen Horizontal		-	114	-	pels
1/9 Screen Vertical		-	71	-	lines
1/16 Screen Horizontal		-	84	_	pels
1/16 Screen Vertical		-	53	-	lines
Border Size Horizontal	-	-	3	-	pels
Border Size Vertical	_	-	2	-	lines
Output PEL Clock (4 F _{SC})	-	-	14.318	-	MHz
Position Control Range Horizontal (% of Main Picture), 64 Steps	_	-	100	-	%
Position Control Range Vertical (% of Main Picture), 64 Steps	_	_	100	_	%

Figure 1. Representative Block Diagram

This device contains approximately 300,000 active transistors.

Figure 2. Application Circuit

X1 – 503 kHz – Murata Erie CSB503F2 or equivalent X2 – 14.31818 MHz – Fox 143–20 or equivalent X3 – 14.31818 MHz – Fox 143–20 or equivalent

I²C REGISTER DESCRIPTIONS

Base write address = 26h

Base read address = 27h

Read Register

There are two active bits in the single read byte available from the MC44463 as follows:

Write Vertical Indicator (WVI0) - D7

When 0 indicates that the write operation specified by the last I^2C command has been completed.

PIP Sync Detect Bit (PSD0) - D1

When 0 indicates that the PIP video H pulses are present and the horizontal timebase oscillator is within acceptable limits.

Write Registers

Read Start Position/Write Start Position Registers Sub-address = 00h

Write Raster Position Start Bits (WPS0-2) - D0-D2

Establishes the horizontal beginning of the PIP and its black level measurement gate. This beginning may be varied by approximately $3.0 \ \mu$ s. The position of this pulse may be observed through the Multi Test Pin 30 (See Test Mode Register Sub–address 03h).

Read Raster Position Bits (RPS0-3) - D4-D7

Establishes the clamp gate position for the black level reference for the main picture. This position may be varied by approximately 5.0 μ s. The position of this pulse may be observed through the Multi Test Pin 30 (See Test Mode Register Sub–address 03h).

Pip Switch Delay/Vertical Filter Register

Sub-address = 01h

PIP Switch Delay Bits (PSD0-3) - D0-D3

Delays the start of PIP on time relative to the PIP picture. These bits are used to center the PIP border and PIP picture in the horizontal direction.

Vertical Filter Bit (VFON) - D4

When the filter is activated (VFON = 1) a three line weighted average is taken to provide the data stored in the field memory.

Border Color Register

Sub-address = 02h

Border Color Bits (BC0-2) - D0-D2

These Bits control the color of the border. Note that when using one of the saturated border colors it is possible to get objectionable dot crawl at the edge of the border in some TVs unless appropriate comb filtering is used in the TV circuitry.

BC (2:0)	Border Color
000	Black
001	White 70%
010	No Border (clear)
011	No Border (clear)
100	Blue
101	Green
110	Red
111	White

Test Mode/Main Vertical and Horizontal Polarity Register Sub–address = 03h

Internal Test Mode Register (ITM0–2) – D0–D2

Sets the Multi Test Pin output to provide one of several internal signals for test and production alignment. Also controls the test memory address counter.

ITM (2:0)	Multi-Test I/O and Function	
000	Input – Analog Test mode	
001	001 Input – Digital Test mode	
010	Output – Sync Detect	
011	Output – PIP Switch	
100	Output – PIP H Detect	
101	Output – PIP V Detect	
110 Output – PIP Clamp		
111	Output – Main Clamp	

Main vertical polarity select bit (MVP0) - D6

Selects polarity of active level of vertical reference input. 0 = positive going, 1 = negative going.

Main horizontal polarity select bit (MHP0) – D7

Selects polarity of active level of horizontal reference input. 0 = positive going, 1 = negative going.

PIP Freeze/PIP Size/Main and PIP Video Source Register Sub-address = 04h

LIVE PIP Select Bits (LIVE_P0-1) - D0-D1

Selects which of the mutliple PIP pictures is the active "live" one.

LIVE_P (1:0)	1/16 Size	1/9 Size
00	Top = LIVE	Top = LIVE
01	2nd from Top = LIVE	2nd from Top = LIVE
10	3rd from Top = LIVE	3rd from Top = LIVE
11	4th from Top = LIVE	3rd from Top = LIVE

PIP Freeze Bit (STIL0) – D4

When set to one, the most recently received field is continuously displayed until the freeze bit is cleared.

PIP Size Bit (PSI90) - D5

Switches the PIP size between 1/16 main size (when 0) and 1/9 main size (when 1).

Main Video Source Select Bit (MSEL0) - D6

Selects which video input will be applied to the PIP switch as the main video out.

PIP Video Source Select Bit (PSEL0) - D7

Selects which video input will be applied to the video decoder to provide the PIP video.

MSEL/PSEL	Function
0	Video 1 Input to Main/ Video 1 Input to PIP
1	Video 2 Input to Main/ Video 2 Input to PIP

PIP On/PIP Blank Register

Sub-address = 05h

PIP On Bits (PON0-3) – D4–D3 When on (1) turns the corresponding PIP display on.

PON (3:0)	1/16 Size	1/9 Size
0000	No PIP	No PIP
0001	Top = On	Top = On
0010	2nd from Top = On	2nd from Top = On
0100 3rd from Top = On		3rd from Top = On
1000	4th from Top = On	3rd from Top = On

PIP Blanking Bits (PBL0–3) – D4–D7

When on (1) sets the corresponding PIP to black. If the individual PIP is off, then it will be black when it is turned on.

PBL (7:4)	Function
0000	PIP Picture Normal
0001 Top = Blanked (Set to Black)	
0010 2nd from Top = Blanked (Set to B	
0100 3rd from Top = Blanked (Set to Bla	
1000	4th from Top = Blanked (Set to Black)

PIP X Position Register

Sub-address = 06h

X Position Bits (XPS0–5) – D0–D5

Moves the PIP start position from the left to the right edge of the display in 64 steps. There is protection circuitry to prevent the PIP from interfering with the main picture sync pulses.

PIP Y Position Register

Sub-address = 07h

Y Position Bits (YPS0–5) – D0–D5

Moves the PIP start position from the top to the bottom edge of the display in 64 steps. There is protection circuitry to prevent the PIP from interfering with the main picture sync pulses.

PIP Chroma Level Register

Sub-address = 08h

Chroma (C0–5) – D0–D5

The color of the PIP can be adjusted to suit viewer preference by setting the value stored in these bits. A total of 64 steps varies the color from no color to maximum. This control acts in conjunction with the auto phase control.

PIP Tint Level Register

Sub-address = 09h

Tint (T0-5) - D0-D5

An auto phase control compares the main color burst to the internally generated pseudo color burst so that the tints are matched. In addition to this, the tint of the PIP can be varied $\pm 10^{\circ}$ in a total of 64 steps by changing the value of these bits to suit viewer preference.

PIP Luma Delay Register

Sub-address = 0Ah

Y Delay (YDL0–2) – D0–D2

Since the Chroma passes through a bandpass filter and the color decoder, it is delayed with respect to the Luma signal. Therefore, to time match the Luma and Chroma these bits are set to a single value determined to be correct in the application.

PIP Acquire/Playback Register

Sub-address = 0Bh

PIP Acquire Speed Bits (ACQ_SP0-1) - D0-D1

These select the speed of the video acquisition. This is only active when $RE_AQ = 1$.

ACQ_SP (1:0)	Function
00	Acquire 1 Out of Every 4 Fields
01	Acquire 1 Out of Every 6 Fields
10	Acquire 1 Out of Every 8 Fields
11	Acquire 1 Out of Every 10 Fields

PIP Save/Clear Bit (RE_AQ) -D2

This bit controls the save and clear function for the instant replay. The bit value 1 is only effective when PONO-3 = 0000. (No PIP display.)

RE_AQ (2:2)	Function
0	Save Memory
1	Clear Reacquire

PIP Playback Speed Bits (PB_SP0-1) - D4-D5

These bits control the relative playback speed, to the acquired speed.

PB_SP (5:4)	Function				
00	Playback at 1 x ACQ_SP Speed				
01	Playback at 1/2 x ACQ_SP Speed				
10	Playback at 1/4 x ACQ_SP Speed				
11	Playback at 1/8 x ACQ_SP Speed				

PIP Playback Control Bit (PB) – D6

This bit controls the start/stop of the instant replay function.

PB (6:6)	Function		
0	No Action		
1	Instant Replay Activated		

PIP Fill/Background/Free Run/Test Register Sub–address = 0Ch

PIP Fill Bits (PIPFILL0–1) – D0–D1

May be used to fill the PIP with one of three selectable solid colors

PIPFILL (1:0)	Function
00	Normal
01	Red
10	Green
11	Blue

Test Register Bits (INTC0 and MACR0) – D6–D7

When the FRUN is set to 1 the circuitry provides a generated sync and displays a flat field that can be either dark blue or gray determined by the BGND bit.

BGND (2:2)	Function			
0	Blue			
1	50% White			

Sub-	Data Bit							
address	D7	D6	D5	D4	D3	D2	D1	D0
00	RPS3	RPS2	RPS1	RPS0	-	WPS2	WPS1	WPS0
01	-	-	-	VFON	PSD3	PSD2	PSD1	PSD0
02	-	-	-	-	-	BC2	BC1	BC0
03	MHP0	MVP0	-	-	-	ITM2	ITM1	ITM0
04	PSEL0	MSEL0	PSI90	STIL0	-	-	LIVE_P1	LIVE_P0
05	PBL3	PBL2	PBL1	PBL0	PON3	PON2	PON1	PON0
06	-	-	XPS5	XPS4	XPS3	XPS2	XPS1	XPS0
07	-	-	YPS5	YPS4	YPS3	YPS2	YPS1	YPS0
08	-	-	C5	C4	C3	C2	C1	C0
09	-	-	T5	T4	Т3	T2	T1	Т0
0A	-	-	-	-	-	YDL2	YDL1	YDL0
0B	-	PB	PB_SP1	PB_SP0	-	RE_AQ	ACQ_SP1	ACQ_SP0
0C	INTC	MACR	FRUN	-	-	BGND	PIPFILL1	PIPFILL0

I²C REGISTER TABLE

Function Control of the MC44463

There are three modes of operation; Single PIP, Multiple PIP and Replay. These are enabled by setting specific register bits in the l^2C register set.

Single PIP (SPIP) Operation

Register 0Bh : D6 -> 0

Register 05h : D0–D7 -> 01h

Multiple PIP (MPIP) Operation

Register 05h : D0–D3 -> 07h or 0Fh

Register 04h : D0–D1 -> 0 to 3

Register 0Bh : D6 -> 0

Register 0Ch : D5 -> 1, D2 -> 0 or 1 (Optional)

Replay PIP (RPIP) Operation

In sequence, the Capture Ready mode must be first activated, allowing up to 8 seconds of fill memory with the desired video stream. Then the Capture mode must be set, disabling further write to memory. The Capture data may be re-displayed at any time afterword.

Capture Ready

Register 05h : D0–D3 -> 0

Register 0Bh : D6 -> 0, D2 -> 1, D0-D1 -> 0 to 3

Capture

Register 0Bh : D6 -> 1, D2 -> 0, D4-D5 -> 0 to 3 Register 05h: D0 -> 1

OUTLINE DIMENSIONS

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights or other applications intended or support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and *Q* are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 or 602–303–5454

 \Diamond

MFAX: RMFAX0@email.sps.mot.com - TOUCHTONE 602-244-6609 INTERNET: http://Design-NET.com JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–81–3521–8315

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298

