Hex Schmitt Trigger

The MC14106B hex Schmitt Trigger is constructed with MOS P-channel and N-channel enhancement mode devices in a single monolithic structure. These devices find primary use where low power dissipation and/or high noise immunity is desired. The MC14106B may be used in place of the MC14069UB hex inverter for enhanced noise immunity or to "square up" slowly changing waveforms.

- Increased Hysteresis Voltage Over the MC14584B
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Capable of Driving Two Low–power TTL Loads or One Low–power Schottky TTL Load Over the Rated Temperature Range
- Pin-for-Pin Replacement for CD40106B and MM74C14
- Can Be Used to Replace the MC14584B or MC14069UB

MAXIMUM RATINGS (Voltages Referenced to V_{SS}) (Note 1.)

Symbol	Parameter	Value	Unit
V_{DD}	DC Supply Voltage Range	-0.5 to +18.0	V
V _{in} , V _{out}	Input or Output Voltage Range (DC or Transient)	-0.5 to V _{DD} + 0.5	V
I _{in} , I _{out}	Input or Output Current (DC or Transient) per Pin	±10	mA
P _D	Power Dissipation, per Package (Note 2.)	500	mW
T _A	Ambient Temperature Range	-55 to +125	°C
T _{stg}	Storage Temperature Range	-65 to +150	°C
TL	Lead Temperature (8–Second Soldering)	260	°C

- Maximum Ratings are those values beyond which damage to the device may occur.
- Temperature Derating: Plastic "P and D/DW" Packages: – 7.0 mW/°C From 65°C To 125°C

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range $V_{SS} \leq (V_{in} \text{ or } V_{out}) \leq V_{DD}.$

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}). Unused outputs must be left open.

ON Semiconductor

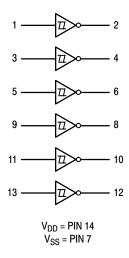
http://onsemi.com

MARKING DIAGRAMS

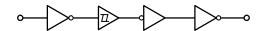
PDIP-14 P SUFFIX CASE 646

SOIC-14 D SUFFIX CASE 751A

TSSOP-14 DT SUFFIX CASE 948G


A = Assembly Location

WL, L = Wafer Lot YY, Y = Year WW, W = Work Week


ORDERING INFORMATION

Device	Package	Shipping
MC14106BCP	PDIP-14	2000/Box
MC14106BD	SOIC-14	55/Rail
MC14106BDR2	SOIC-14	2500/Tape & Reel
MC14106BDT	TSSOP-14	96/Rail
MC14106BDTR2	TSSOP-14	2500/Tape & Reel

LOGIC DIAGRAM

EQUIVALENT CIRCUIT SCHEMATIC (1/6 OF CIRCUIT SHOWN)

ELECTRICAL CHARACTERISTICS (Voltages Referenced to V_{SS})

			V _{DD}	- 55°C			25°C		125°C		
Characteristic		Symbol	Vdc	Min	Max	Min	Тур (3.)	Max	Min	Max	Unit
Output Voltage V _{in} = V _{DD}	"0" Level	V _{OL}	5.0 10 15	_ _ _	0.05 0.05 0.05	_ _ _	0 0 0	0.05 0.05 0.05	 _ _	0.05 0.05 0.05	Vdc
V _{in} = 0	"1" Level	V _{OH}	5.0 10 15	4.95 9.95 14.95	_ _ _	4.95 9.95 14.95	5.0 10 15	_ _ _	4.95 9.95 14.95	_ _ _	Vdc
Hysteresis Voltage		V _H ^(6.)	5.0 10 15	0.3 1.2 1.6	2.0 3.4 5.0	0.3 1.2 1.6	1.1 1.7 2.1	2.0 3.4 5.0	0.3 1.2 1.6	2.0 3.4 5.0	Vdc
Threshold Voltage Positive–Going		V _{T+}	5.0 10 15	2.2 4.6 6.8	3.6 7.1 10.8	2.2 4.6 6.8	2.9 5.9 8.8	3.6 7.1 10.8	2.2 4.6 6.8	3.6 7.1 10.8	Vdc
Negative–Going		V _T	5.0 10 15	0.9 2.5 4.0	2.8 5.2 7.4	0.9 2.5 4.0	1.9 3.9 5.8	2.8 5.2 7.4	0.9 2.5 4.0	2.8 5.2 7.4	Vdc
Output Drive Current $ (V_{OH} = 2.5 \text{ Vdc}) $ $ (V_{OH} = 4.6 \text{ Vdc}) $ $ (V_{OH} = 9.5 \text{ Vdc}) $ $ (V_{OH} = 13.5 \text{ Vdc}) $	Source	I _{OH}	5.0 5.0 10 15	- 3.0 - 0.64 - 1.6 - 4.2	_ _ _ _	- 2.4 - 0.51 - 1.3 - 3.4	- 4.2 - 0.88 - 2.25 - 8.8	_ _ _ _	- 1.7 - 0.36 - 0.9 - 2.4	_ _ _ _	mAdc
$(V_{OL} = 0.4 \text{ Vdc})$ $(V_{OL} = 0.5 \text{ Vdc})$ $(V_{OL} = 1.5 \text{ Vdc})$	Sink	I _{OL}	5.0 10 15	0.64 1.6 4.2	_ _ _	0.51 1.3 3.4	0.88 2.25 8.8	_ _ _	0.36 0.9 2.4	_ _ _	mAdc
Input Current		l _{in}	15	_	± 0.1	_	±0.00001	± 0.1	_	± 1.0	μAdc
Input Capacitance (V _{in} = 0)		C _{in}	_	_	_	_	5.0	7.5	_	_	pF
Quiescent Current (Per Package)		I _{DD}	5.0 10 15		0.25 0.5 1.0	_ _ _	0.0005 0.0010 0.0015	0.25 0.5 1.0	_ _ _	7.5 15 30	μAdc
Total Supply Current (4.) (5.) (Dynamic plus Quiesce Per Package) (C _L = 50 pF on all output buffers switching)	nt,	Ι _Τ	5.0 10 15			$I_T = (3)$	1.8 μΑ/kHz) f 3.6 μΑ/kHz) f 5.4 μΑ/kHz) f	+ I _{DD}			μAdc

Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.
 The formulas given are for the typical characteristics only at 25°C.
 To calculate total supply current at loads other than 50 pF:

$$I_T(C_L) = I_T(50 \text{ pF}) + (C_L - 50) \text{ Vfk}$$

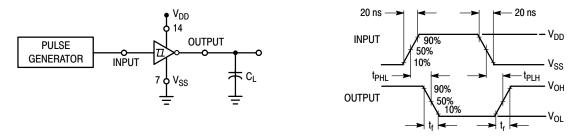
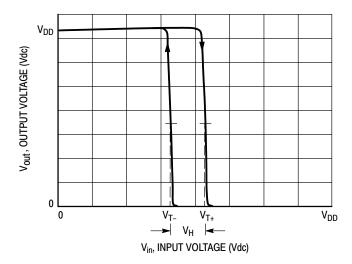
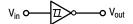
where I_T is in μA (per package), C_L in pF, $V = (V_{DD} - V_{SS})$ in volts, f in kHz is input frequency, and k = 0.001.

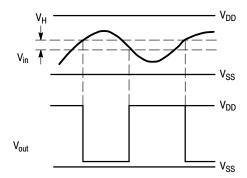
6. $V_H = V_{T+} - V_{T-}$ (But maximum variation of V_H is specified as less that $V_{T+max} - V_{T-min}$).

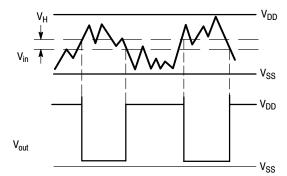
SWITCHING CHARACTERISTICS $(C_L$ = 50 pF, T_A = 25°C)

Characteristic	Symbol	V _{DD} Vdc	Min	Typ ^(7.)	Max	Unit
Output Rise Time	t _{TLH}	5.0	_	100	200	ns
		10	_	50	100	
		15	_	40	80	
Output Fall Time	t _{THL}	5.0	_	100	200	ns
		10	_	50	100	
		15	_	40	80	
Propagation Delay Time	t _{PLH} , t _{PHL}	5.0	_	125	250	ns
		10	_	50	100	
		15	_	40	80	

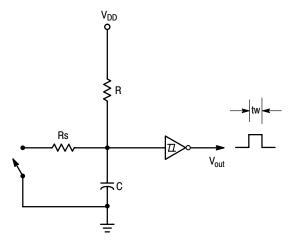
^{7.} Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

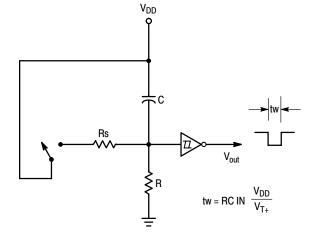





Figure 1. Switching Time Test Circuit and Waveforms


Figure 2. Typical Transfer Characteristics

APPLICATIONS




(a) Schmitt Triggers will square up inputs with slow rise and fall times.

(b) A Schmitt trigger offers maximum noise immunity in gate applications.

Figure 3.

Useful as Pushbutton/Keyboard Debounce Circuit.

Figure 4. Monostable Multivibrator

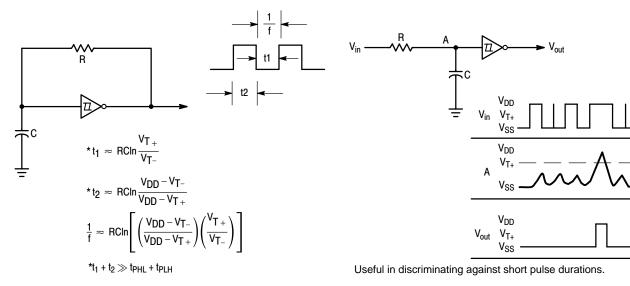
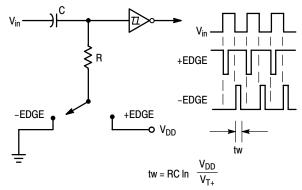
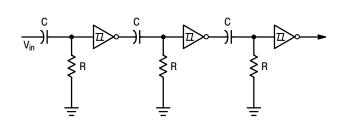
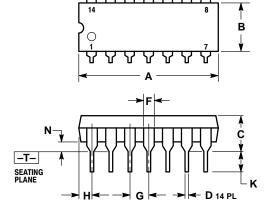



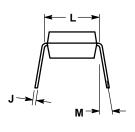
Figure 5. Astable Multivibrator

Figure 6. Integrator

Useful as an edge detector circuit.

Figure 7. Differentiator

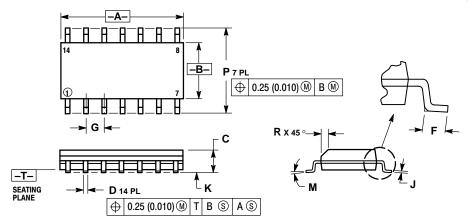




Figure 8. Positive Edge Time Delay Circuit

PACKAGE DIMENSIONS

P SUFFIX

PLASTIC DIP PACKAGE CASE 646-06 ISSUE M



- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.
 3. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.
 4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.
 5. POLIMED CONDESS ORTIONAL
- 5. ROUNDED CORNERS OPTIONAL.

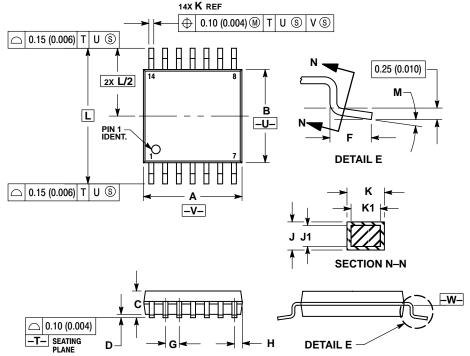
	INCHES		MILLIN	IETERS	
DIM	MIN	MAX	MIN	MAX	
Α	0.715	0.770	18.16	18.80	
В	0.240	0.260	6.10	6.60	
С	0.145	0.185	3.69	4.69	
D	0.015	0.021	0.38	0.53	
F	0.040	0.070	1.02	1.78	
G	0.100 BSC		2.54 BSC		
Н	0.052	0.095	1.32	2.41	
J	0.008	0.015	0.20	0.38	
K	0.115	0.135	2.92	3.43	
L	0.290	0.310	7.37	7.87	
M		10°		10°	
N	0.015	0.039	0.38	1.01	

D SUFFIX PLASTIC SOIC PACKAGE CASE 751A-03 ISSUE F

0.13 (0.005) M

NOTES:

- OTES.


 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

 2. CONTROLLING DIMENSION: MILLIMETER.
- DIMENSIONS A AND B DO NOT INCLUDE
 MOLD PROTRUSION.
 MAXIMUM MOLD PROTRUSION 0.15 (0.006)
- 4. MAXIMUM MOLD PHOTHUSION 0.15 (0.006) PER SIDE.
 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTHUSION. ALLOWABLE DAMBAR PROTHUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIMETERS		INC	HES
DIM	MIN	MAX	MIN	MAX
Α	8.55	8.75	0.337	0.344
В	3.80	4.00	0.150	0.157
c	1.35	1.75	0.054	0.068
D	0.35	0.49	0.014	0.019
F	0.40	1.25	0.016	0.049
G	1.27	1.27 BSC		BSC
7	0.19	0.25	0.008	0.009
K	0.10	0.25	0.004	0.009
M	0 °	7°	0 °	7°
Р	5.80	6.20	0.228	0.244
R	0.25	0.50	0.010	0.019

PACKAGE DIMENSIONS

DT SUFFIX PLASTIC TSSOP PACKAGE CASE 948G-01 **ISSUE O**

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982
- 114.3/M, 1902.

 CONTROLLING DIMENSION: MILLIMETER.

 DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
 4. DIMENSION B DOES NOT INCLUDE
- INTERLEAD FLASH OR PROTRUSION.
 INTERLEAD FLASH OR PROTRUSION SHALL NOT 0.25 (0.010) PER SIDE.
- DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION.
- . TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. . DIMENSION A AND B ARE TO BE

DETERMINED AT DATUM PLANE -W						
	MILLIMETERS		INCHES			
DIM	MIN	MAX	MIN	MAX		
Α	4.90	5.10	0.193	0.200		
В	4.30	4.50	0.169	0.177		
С		1.20		0.047		
D	0.05	0.15	0.002	0.006		
F	0.50	0.75	0.020	0.030		
G	0.65 BSC		0.026 BSC			
Н	0.50	0.60	0.020	0.024		
J	0.09	0.20	0.004	0.008		
J1	0.09	0.16	0.004	0.006		
K	0.19	0.30	0.007	0.012		
K1	0.19	0.25	0.007	0.010		
L	6.40 BSC		0.252			
M	0°	8°	0°	8°		

are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes ON Semiconductor and without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

NORTH AMERICA Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

Email: ONlit@hibbertco.com

Fax Response Line: 303-675-2167 or 800-344-3810 Toll Free USA/Canada

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor - European Support

German Phone: (+1) 303-308-7140 (Mon-Fri 2:30pm to 7:00pm CET) Email: ONlit-german@hibbertco.com

Phone: (+1) 303–308–7141 (Mon–Fri 2:00pm to 7:00pm CET) Email: ONlit-french@hibbertco.com

English Phone: (+1) 303-308-7142 (Mon-Fri 12:00pm to 5:00pm GMT)

Email: ONlit@hibbertco.com

EUROPEAN TOLL-FREE ACCESS*: 00-800-4422-3781

*Available from Germany, France, Italy, UK

CENTRAL/SOUTH AMERICA:

Spanish Phone: 303-308-7143 (Mon-Fri 8:00am to 5:00pm MST)

Email: ONlit-spanish@hibbertco.com

ASIA/PACIFIC: LDC for ON Semiconductor - Asia Support

Phone: 303-675-2121 (Tue-Fri 9:00am to 1:00pm, Hong Kong Time)

Toll Free from Hong Kong & Singapore: 001-800-4422-3781

Email: ONlit-asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center 4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan 141-0031

Phone: 81-3-5740-2745 Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.