1.1GHz Dual Modulus Prescaler With Stand-By Mode Consider MC12053 for New Designs The MC12036 is a 1.1GHz \pm 64/65, \pm 128/129 dual modulus prescaler used in phase–locked loop (PLL) applications. Stand–By mode is featured to reduce current drain to 0.5mA typical when the standby pin (SB) is switched LOW, disabling the prescaler. On–chip output termination provides sufficient output current to drive a 12pF (typical) high impedance load. The MC12036A can be used with CMOS synthesizers requiring positive edges to trigger internal counters such as Motorola's MC145xxx series in a PLL to provide tuning signals up to 1.1GHz in programmable frequency steps. The MC12036B can be used with CMOS synthesizers requiring negative edges to trigger internal counters. A Divide Ratio Control (SW) permits selection of a 64/65 or 128/129 divide ratio as desired. The Modulus Control (MC) selects the proper divide number after SW has been biased to select the desired divide ratio. - 1.1GHz Toggle Frequency - Low Power 4.0mA Typical - Stand–By Mode - On-Chip Output Termination - Supply Voltage 4.5V to 5.5V - Operating Temperature Range of -40°C to +85°C - Short Setup Time (t_{set}) 16ns Maximum @ 1.1GHz - Modulus Control Input Level is Compatible With Standard CMOS and TTL ## Pinout: 8-Lead Plastic (Top View) | Design Criteria | Value | Unit | |---------------------------------|-------|------| | Internal Gate Count * | 67 | ea | | Internal Gate Propagation Delay | 200 | ps | | Internal Gate Power Dissipation | 0.75 | mW | | Speed Power Product | 0.15 | рЈ | ^{*}Equivalent to a two-input NAND gate. # MC12036A MC12036B # **MECL PLL COMPONENTS** ÷64/65, ÷128/129 DUAL MODULUS PRESCALER WITH STAND-BY MODE P SUFFIX 8-LEAD PLASTIC PACKAGE CASE 626-05 **D SUFFIX** 8-LEAD PLASTIC SOIC PACKAGE CASE 751-05 ## **FUNCTION TABLE** | SW | МС | Divide Ratio | |----|----|--------------| | Н | Н | 64 | | Н | L | 65 | | L | Н | 128 | | L | L | 129 | Note: SW: $H = V_{CC}$, L = OPENMC: H = 2.0V to V_{CC} , L = GND to 0.8V 1/97 REV 2 # **MAXIMUM RATINGS** | Symbol | Characteristic | Range | Unit | |------------------|------------------------------|--------------|------| | VCC | Power Supply Voltage, Pin 2 | -0.5 to +7.0 | Vdc | | T _A | Operating Temperature Range | -40 to +85 | °C | | T _{stg} | Storage Temperature Range | -65 to +150 | °C | | MC | Modulus Control Input, Pin 6 | -0.5 to +6.5 | Vdc | # **ELECTRICAL CHARACTERISTICS** ($V_{CC} = 4.5 \text{ to } 5.5 \text{ Vdc}$, $T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$) | Symbol | Characteristic | Min | Тур | Max | Unit | |------------------|---|------------|------|--------------|------------------| | ft | Toggle Frequency (Sine Wave Input) | 0.1 | 1.4 | 1.1 | GHz | | ICC | Supply Current (Pin 2) | _ | 4.0 | 6.5 | mA | | V _{IH1} | Modulus Control & Standby Input High (MC & SB) | 2.0 | _ | VCC | V | | V _{IL1} | Modulus Control & Standby Input Low (MC & SB) | _ | _ | 0.8 | V | | V _{IH2} | Divide Ratio Control Input High (SW) | Vcc | VCC | VCC | Vdc | | V _{IL2} | Divide Ratio Control Input Low (SW) | OPEN | OPEN | OPEN | _ | | V _{out} | Output Voltage Swing, C _L = 8pF | 1.0 | 1.4 | _ | V _{p-p} | | tSET | Modulus Setup Time MC to Out | _ | 11 | 16 | ns | | V _{in} | Input Voltage Sensitivity 250–1100 MHz
100–250 MHz | 100
400 | | 1000
1000 | mVpp | | ISB | Standby Current | _ | 0.5 | _ | mA | Prop. Delay In Out MC Setup MC Release $\begin{array}{ll} \mbox{Modulus setup time MC to out is the MC} \\ \mbox{setup or MC release plus the prop. delay.} \end{array}$ Figure 1. Logic Diagram (MC12036A) Figure 2. Modulus Setup Time (÷64, 500MHz Input Frequency, $V_{CC} = 5.0V$, $T_A = 25$ °C, Output Loaded) (\pm 128, 1.1GHz Input Frequency, V_{CC} = 5.0V, T_A = 25°C, Output Loaded) Figure 3. Typical Output Waveform Figure 4. AC Test Circuit Figure 5. Typical Input Impedance versus Input Frequency # **OUTLINE DIMENSIONS** #### NOTES: - DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL. - PACKAGE CONTOUR OPTIONAL (ROUND OR SQUARE CORNERS). - DIMENSIONING AND TOLERANCING PER ANSI Y14.5M. 1982. | | MILLIMETERS | | INCHES | | |-----|-------------|-------|-----------|-------| | DIM | MIN | MAX | MIN | MAX | | Α | 9.40 | 10.16 | 0.370 | 0.400 | | В | 6.10 | 6.60 | 0.240 | 0.260 | | С | 3.94 | 4.45 | 0.155 | 0.175 | | D | 0.38 | 0.51 | 0.015 | 0.020 | | F | 1.02 | 1.78 | 0.040 | 0.070 | | G | 2.54 BSC | | 0.100 BSC | | | Н | 0.76 | 1.27 | 0.030 | 0.050 | | J | 0.20 | 0.30 | 0.008 | 0.012 | | K | 2.92 | 3.43 | 0.115 | 0.135 | | L | 7.62 BSC | | 0.300 BSC | | | М | | 10° | | 10° | | N | 0.76 | 1.01 | 0.030 | 0.040 | #### NOTES: - DIMENSIONING AND TOLERANCING PER ASME Y14.5M. 1994. - 2. DIMENSIONS ARE IN MILLIMETERS. - 3. DIMENSION D AND E DO NOT INCLUDE MOLD - PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE. - 5. DIMENSION B DOES NOT INCLUDE MOLD PROTRUSION, ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 TOTAL IN EXCESS OF THE B DIMENSION AT MAXIMUM MATERIAL CONDITION. | | MILLIMETERS | | | |-----|-------------|------|--| | DIM | MIN | MAX | | | Α | 1.35 | 1.75 | | | A1 | 0.10 | 0.25 | | | В | 0.35 | 0.49 | | | С | 0.18 | 0.25 | | | D | 4.80 | 5.00 | | | Е | 3.80 | 4.00 | | | е | 1.27 BSC | | | | Н | 5.80 | 6.20 | | | h | 0.25 | 0.50 | | | L | 0.40 | 1.25 | | | Δ | 0.0 | 7.0 | | Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer. #### How to reach us: **USA/EUROPE/Locations Not Listed**: Motorola Literature Distribution; P.O. Box 5405; Denver, Colorado 80217. 303–675–2140 or 1–800–441–2447 Mfax™: RMFAX0@email.sps.mot.com – TOUCHTONE 602–244–6609 INTERNET: http://Design=NET.com **JAPAN**: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 81–3–3521–8315 ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298 MC12036A/D