

Dual Modulus Prescaler

These devices are two-modulus prescalers which will divide by 5 and 6, 8 and 9, respectively. A MECL-to-MTTL translator is provided to interface directly with the MC12014 Counter Control Logic. In addition, there is a buffered clock input and MECL bias voltage source.

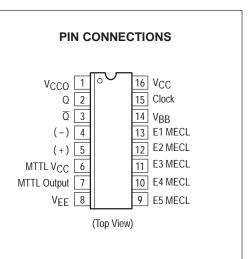
- MC12009 480 MHz (÷5/6), MC12011 550 MHz (÷8/9)
- MECL to MTTL Translator on Chip
- MECL and MTTL Enable Inputs
- 5.0 or -5.2 V Operation*
- Buffered Clock Input Series Input RC Typ, 20 Ω and 4.0 pF
- VBB Reference Voltage
- 310 mW (Typ)

 * When using a 5.0 V supply, apply 5.0 V to Pin 1 (V_{CCO}), Pin 6 (MTTL V_{CC}), Pin 16 (V_{CC}), and ground Pin 8 (V_{EE}). When using –5.2 V supply, ground Pin 1 (V_{CCO}), Pin 6 (MTTL V_{CC}), and Pin 16 (V_{CC}) and apply–5.2 V to Pin 8 (V_{EE}). If the translator is not required, Pin 6 may be left open to conserve dc power drain.

MC12009 MC12011

MECL PLL COMPONENTS DUAL MODULUS PRESCALER

SEMICONDUCTOR TECHNICAL DATA


MAXIMUM RATINGS

Characteristic	Symbol	Rating	Unit
(Ratings above which device life ma	ay be impaired	d)	
Power Supply Voltage (V _{CC} = 0)	VEE	-8.0	Vdc
Input Voltage (V _{CC} = 0)	V _{in}	0 to V _{EE}	Vdc
Output Source Current Continuous Surge	IO	<50 <100	mAdc
Storage Temperature Range	T _{stg}	-65 to 175	°C
(Recommended Maximum Ratings degraded)	above which	performance ma	ay be

Operating Temperature Range
MC12009, MC12011TA--30 to 85°CDC Fan-Out (Note 1)
(Gates and Flip-Flops)n70--

NOTES: 1. AC fan-out is limited by desired system performance.

2. ESD data available upon request.

ORDERING INFORMATION

Device	Operating Temperature Range	Package
MC12009D		SO-16
MC12011D	T _∆ = –35 to 85°C	30-10
MC12009P	1A = -55 to 65 C	Plastic DIP
MC12011P		

© Motorola, Inc. 1998

Figure 1. Logic Diagrams

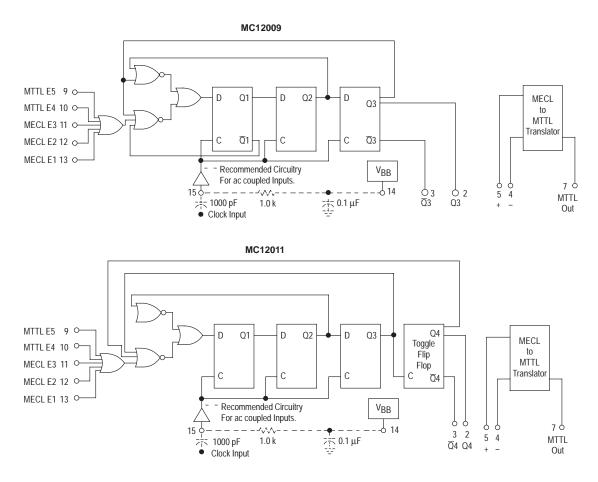
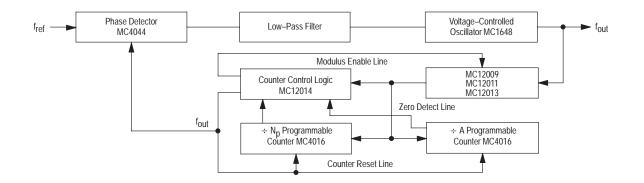



Figure 2. Typical Frequency Synthesizer Application

ELECTRICAL CHARACTERISTICS (Supply Voltage = -5.2 V, unless otherwise noted.)
--

					Test L	imits			
		Pin Under	-3	0°C	25	°C	85	°C	1
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit
Power Supply Drain Current	ICC1	8	-88		-80		-80		mAdd
	ICC2	6		5.2		5.2		5.2	mAdo
Input Current	linH1	15 11 12 13		375 375 375 375		250 250 250 250		250 250 250 250	μAdo
	linH2	4 5	1.7 1.7	6.0 6.0	2.0 2.0	6.0 6.0	2.0 2.0	6.4 6.4	mAdo
	l _{inH3}	5	0.7	3.0	1.0	3.0	1.0	3.6	
	linH4	9 10		100 100		100 100		100 100	μAdc
Leakage Current	linL1	15 11 12 13	-10 -10 -10 -10		-10 -10 -10 -10		-10 -10 -10 -10		μAdc
	l _{inL2}	9 10	-1.6 -1.6		-1.6 -1.6		-1.6 -1.6		mAdo
Reference Voltage	V _{BB}	14			-1.360	-1.160			Vdc
Logic '1' Output Voltage	VOH1 (Note 1)	2 3	-1.100 -1.100	-0.890 -0.890	-1.000 -1.000	-0.810 -0.810	-0.930 -0.930	-0.700 -0.700	Vdc
	VOH2	7	-2.8		-2.6		-2.4]
Logic '0' Output Voltage	VOL1 (Note 1)	2 3	-1.990 -1.990	-1.675 -1.675	-1.950 -1.950	-1.650 -1.650	-1.925 -1.925	-1.615 -1.615	Vdc
	V _{OL2}	7		-4.26		-4.40		-4.48]
Logic '1' Threshold Voltage	VOHA (Note 2)	2 3	-1.120 -1.120		-1.020 -1.020		-0.950 -0.950		Vdc
Logic '0' Threshold Voltage	V _{OLA} (Note 3)	2 3		-1.655 -1.655		-1.630 -1.630		-1.595 -1.595	Vdc
Short Circuit Current	IOS	7	-65	-20	-65	-20	-65	-20	mAdo

ground voltages must be maintained between tests. The clock input is the waveform shown.

2. In addition to meeting the output levels specified, the device must divide by 5 or 8 during this test. The clock input is the waveform shown.

In addition to meeting the output levels specified, the device must divide by 6 or 9 during this test. The clock input is the waveform shown.

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50 Ω resistor to -2.0 V. Test procedures are shown for only one gate. The other gates are tested in the same manner.

VIHmax

VILmin

ELECTRICAL CHARACTERISTICS (continued) (Supply Voltage = -5.2 V, unless otherwise noted.)

				TEST V	OLTAGE/CU	JRRENT VAI	UES				
			Volts								
	@ Test Temp	perature	V _{IHmax}	V _{ILmin}	V _{IHAmin}	VILAmax	VIH	VILH]		
		–30°C	-0.890	-1.990	-1.205	-1.500	-2.8	-4.7]		
		25°C	-0.810	-1.950	-1.105	-1.475	-2.8	-4.7]		
		85°C	-0.700	-1.925	-1.035	-1.440	-2.8	-4.7]		
		Pin	TE	ST VOLTAGE	APPLIED	TO PINS LIS	TED BELC	w]		
Characteristic	Symbol	Under Test	V _{IHmax}	V _{ILmin}	V _{IHAmin}	V _{ILAmax}	VIH	VIL	Gnd		
Power Supply Drain Current	ICC1	8							1,16		
	ICC2	6	4	5					6		
Input Current	linH1	15 11 12 13	15 11 12 13						1,16 1,16 1,16 1,16		
	linH2	4 5	5 5	4 4					6 6		
	linH3	5	4	5					6		
	linH4	9 10					9 10		1,16 1,16		
Leakage Current	linL1	15 11 12 13							1,16 1,16 1,16 1,16		
	linL2	9 10						9 10	1,16 1,16		
Reference Voltage	V _{BB}	14							1,16		
Logic '1' Output Voltage	VOH1 (Note 1)	2 3		11,12,13 11,12,13				9,10 9,10	1,16 1,16		
	V _{OH2}	7	5	4					6		
Logic '0' Output Voltage	VOL1 (Note 1)	2 3		11,12,13 11,12,13				9,10 9,10	1,16 1,16		
	V _{OL2}	7	4	5					6		
Logic '1' Threshold Voltage	V _{OHA} (Note 2)	2 3			11,12,13 11,12,13				1,16 1,16		
Logic '0' Threshold Voltage	V _{OLA} (Note 3)	2 3				11,12,13 11,12,13			1,16 1,16		
Short Circuit Current	IOS	7	5	4				7	6		

NOTES: 1. Test outputs of the device must be tested by sequencing through the truth table. All input, power supply and ground voltages must be maintained between tests. The clock input is the waveform shown.

In addition to meeting the output levels specified, the device must divide by 5 or 8 during this test. The clock input is the waveform shown.

3. In addition to meeting the output levels specified, the device must divide by 6 or 9 during this test. The clock input is the waveform shown.

Clock Input

VIHmax

VILmin

ELECTRICAL CHARACTERISTICS (continued) (Supply Voltage = -5.2 V, unless otherwise noted.)

			TEST VOLTAGE/CURRENT VALUES									
				Volts			1					
	@ Test Tem	VIHT	VILT	VEE	IL IOL IOH			1				
		–30°C	-3.2	-4.4	-5.2	-0.25	16	-0.40	1			
		25°C	-3.2	-4.4	-5.2	-0.25	16	-0.40	1			
		85°C	-3.2	-4.4	-5.2	-0.25	16	-0.40	1			
		Pin	TE	ST VOLTAGE	APPLIED	TO PINS LIS	STED BEL	SW]			
Characteristic	Symbol	Under Test	VIHT	V _{ILT}	VEE	١L	I _{OL}	ЮН	Gno			
Power Supply Drain Current	ICC1	8			8				1,16			
	ICC2	6			8				6			
Input Current	linH1	15 11 12 13	9,10 9,10 9,10		8 8 8 8				1,16 1,16 1,16 1,16			
	linH2	4 5			8 8				6 6			
	l _{inH3}	5			8				6			
	linH4	9 10			8 8				1,16 1,16			
Leakage Current	l _{inL1}	15 11 12 13			8,15 8,11 8,12 8,13				1,16 1,16 1,16 1,16			
	linL2	9 10			8 8				1,16			
Reference Voltage	V _{BB}	14			8	14			1,16			
Logic '1' Output Voltage	VOH1 (Note 1)	2 3			8 8				1,16 1,16			
	V _{OH2}	7			8			7	6			
Logic '0' Output Voltage	VOL1 (Note 1)	2 3			8 8				1,16 1,16			
	V _{OL2}	7			8		7		6			
Logic '1' Threshold Voltage	VOHA (Note 2)	2 3	9,10 9,10		8 8				1,16 1,16			
Logic '0' Threshold Voltage	V _{OLA} (Note 2)	2 3		9,10 9,10	8 8				1,16 1,16			
Short Circuit Current	IOS	7			8				6			

NOTES: 1. Test outputs of the device must be tested by sequencing through the truth table. All input, power supply and ground voltages must be maintained between tests. The clock input is the waveform shown. 2. In addition to meeting the output levels specified, the device must divide by 5 or 8 during this test. The clock

Clock Input

VILmin

input is the waveform shown. 3. In addition to meeting the output levels specified, the device must divide by 6 or 9 during this test. The clock input is the waveform shown.

ELECTRICAL CHARACTERISTICS (Supply Voltage = 5.0 V, unless otherwise noted.)

					Test L	imits				
		Pin Under	-3	0°C	25	°C	85	°C	1	
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	
Power Supply Drain Current	ICC1	8	-88		-80		-80		mAdd	
	ICC2	6		5.2		5.2		5.2	mAdo	
Input Current	linH1	15 11 12 13		375 375 375 375 375		250 250 250 250		250 250 250 250	μAdc	
	linH2	4 5	1.7 1.7	6.0 6.0	2.0 2.0	6.0 6.0	2.0 2.0	6.4 6.4	mAdo	
	l _{inH3}	5	0.7	3.0	1.0	3.0	1.0	3.6		
	linH4	9 10			100 100	100 100		100 100	μAdc	
Leakage Current	linL1	15 11 12 13	-10 -10 -10 -10		-10 -10 -10 -10		-10 -10 -10 -10		μAdc	
	linL2	9 10	-1.6 -1.6		-1.6 -1.6		-1.6 -1.6		mAdo	
Reference Voltage	V _{BB}	14			3.67	3.87			Vdc	
Logic '1' Output Voltage	V _{OH1} (Note 1)	2 3	3.900 3.900	4.110 4.110	4.000 4.000	4.190 4.190	4.070 4.070	4.300 4.300	Vdc	
	VOH2	7	2.4		2.6		2.8]	
Logic '0' Output Voltage	VOL1 (Note 1)	2 3	3.070 3.070	3.385 3.385	3.110 3.110	3.410 3.410	3.135 3.135	3.445 3.445	Vdc	
	V _{OL2}	7		0.94		0.80		0.72]	
Logic '1' Threshold Voltage	V _{OHA} (Note 2)	2 3	3.880 3.880		3.980 3.980		4.050 4.050		Vdc	
Logic '0' Threshold Voltage	V _{OLA} (Note 3)	2 3		3.405 3.405		3.430 3.430		3.465 3.465	Vdc	
Short Circuit Current	los	7	-65	-20	-65	-20	-65	-20	mAdo	

IES: 1. lest outputs of the device must be tested by sequencing through the truth table. All input, power supply a ground voltages must be maintained between tests. The clock input is the waveform shown.

In addition to meeting the output levels specified, the device must divide by 5 or 8 during this test. The clock input is the waveform shown.

Clock Input VIHmax VILmin

3. In addition to meeting the output levels specified, the device must divide by 6 or 9 during this test. The clock input is the waveform shown.

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50 Ω resistor to -2.0 V. Test procedures are shown for only one gate. The other gates are tested in the same manner.

ELECTRICAL CHARACTERISTICS (continued) (Supply Voltage = 5.0 V, unless otherwise noted.)

				TEST V	OLTAGE/CU	JRRENT VAL	UES				
			Volts								
	@ Test Temp	perature	V _{IHmax}	VILmin	VIHAmin	VILAmax	VIH	VILH	1		
		–30°C	4.110	3.070	3.795	3.500	2.4	0.5	1		
		25°C	4.190	3.110	3.895	3.525	2.4	0.5	1		
		85°C	4.300	3.135	3.965	3.560	2.4	0.5	1		
		Pin	TE	ST VOLTAGE	E APPLIED	TO PINS LIS	TED BELC) W	1		
Characteristic	Symbol	Under Test	V _{IHmax}	V _{ILmin}	V _{IHAmin}	V _{ILAmax}	VIH	VIL	(V _{EE} Gnd		
Power Supply Drain Current	ICC1	8							8		
	ICC2	6	4	5					8		
Input Current	linH1	15 11 12 13	15 11 12 13						8 8 8 8		
	linH2	4 5	5 5	4 4					8 8		
	l _{inH3}	5	4	5					8		
	linH4	9 10					9 10		8 8		
Leakage Current	linL1	15 11 12 13							8,15 8,11 8,12 8,13		
	linL2	9 10						9 10	8 8		
Reference Voltage	V _{BB}	14							8		
Logic '1' Output Voltage	VOH1 (Note 1)	2 3		11,12,13 11,12,13				9,10 9,10	8 8		
	V _{OH2}	7	5	4					8		
Logic '0' Output Voltage	VOL1 (Note 1)	2 3		11,12,13 11,12,13				9,10 9,10	8 8		
	V _{OL2}	7	4	5					8		
Logic '1' Threshold Voltage	VOHA (Note 2)	2 3			11,12,13 11,12,13				8 8		
Logic '0' Threshold Voltage	V _{OLA} (Note 3)	2 3				11,12,13 11,12,13			8 8		
Short Circuit Current	IOS	7	5	4				7	8		

NOTES: 1. Test outputs of the device must be tested by sequencing through the truth table. All input, power supply and ground voltages must be maintained between tests. The clock input is the waveform shown.

2. In addition to meeting the output levels specified, the device must divide by 5 or 8 during this test. The clock input is the waveform shown.

input is the waveform shown.3. In addition to meeting the output levels specified, the device must divide by 6 or 9 during this test. The clock input is the waveform shown.

VIHmax

VILmin

Clock Input

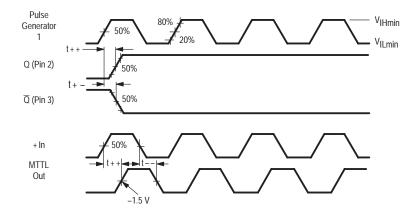
ELECTRICAL CHARACTERISTICS (continued) (Supply Voltage = 5.0 V, unless otherwise noted.)

			TEST VOLTAGE/CURRENT VALUES									
				Volts		mA						
	@ Test Temp	perature	VIHT	VILT	IL IOL IOH							
		–30°C	2.0	0.8	5.0	-0.25	16	-0.40				
		25°C	2.0	0.8	5.0	-0.25	16	-0.40				
		85°C	2.0	0.8	5.0	-0.25	16	-0.40				
		Pin	TE	ST VOLTAGE	APPLIED	TO PINS LIS	STED BELO	SW				
Characteristic	Symbol	Under Test	VIHT	VILT	V _{CC}	١L	IOL	ЮН	(V _E Gn			
Power Supply Drain Current	ICC1	8			1,16				8			
	ICC2	6			6				8			
Input Current	linH1	15 11 12 13	9,10 9,10 9,10		1,16 1,16 1,16 1,16				8 8 8 8			
	linH2	4 5			6 6				8 8			
	l _{inH3}	5			6				8			
	linH4	9 10			1,16 1,16				8 8			
Leakage Current	linL1	15 11 12 13			1,16 1,16 1,16 1,16 1,16				8,1 8,1 8,1 8,1			
	linL2	9 10			1,16 1,16				8			
Reference Voltage	V _{BB}	14			1,16	14			8			
Logic '1' Output Voltage	VOH1 (Note 1)	2 3			1,16 1,16				8 8			
	V _{OH2}	7			6			7	8			
Logic '0' Output Voltage	VOL1 (Note 1)	2 3			1,16 1,16				8 8			
	V _{OL2}	7			6		7		8			
Logic '1' Threshold Voltage	VOHA (Note 2)	2 3	9,10 9,10		1,16 1,16				8 8			
Logic '0' Threshold Voltage	V _{OLA} (Note 3)	2 3		9,10 9,10	1,16 1,16				8 8			
Short Circuit Current	los	7			6				8			

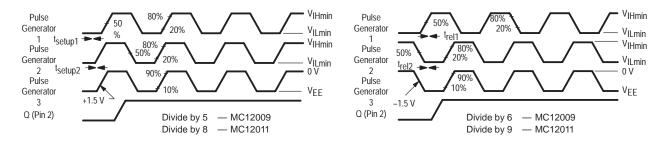
NOTES: 1. Test outputs of the device must be tested by sequencing through the truth table. All input, power supply and ground voltages must be maintained between tests. The clock input is the waveform shown. 2. In addition to meeting the output levels specified, the device must divide by 5 or 8 during this test. The clock

Clock Input VIHmax VILmin

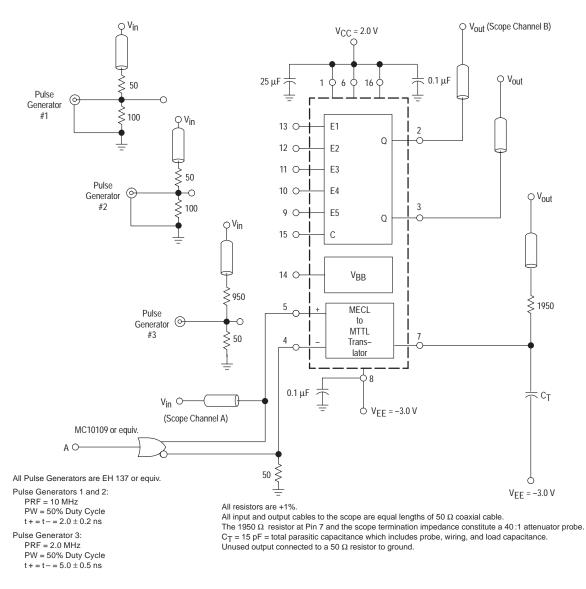
input is the waveform shown. 3. In addition to meeting the output levels specified, the device must divide by 6 or 9 during this test. The clock input is the waveform shown.

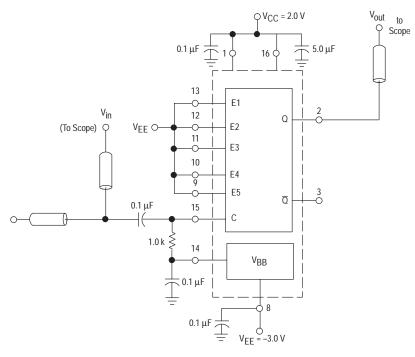

SWITCHING CHARACTERISTICS

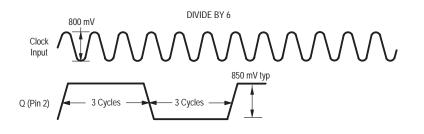
		Pin		MC12009, MC12011								TEST VOLTAGES/WAVEFORMS APPLIED TO PINS LISTED BELOW:								BELOW:
		Under		-30°C			25°C	_		85°C			Pulse	Pulse	Pulse	VIHmin	VILmin	VF	VEE	Vcc
Characteristic	Symbol	Test	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit	Gen.1	Gen.2	Gen.3	†	†	-3.0 V	-3.0 V	+2.0
Propagation Delay (See Figures 3 and 5)	t _{15+ 2+} t _{15+ 2-} t _{5+ 7+} t _{5- 7-}	2 2 7 7			8.1 7.5 8.4 6.5		 	8.1 7.5 8.1 6.5	 		8.9 82 8.9 7.1	ns 	15 15 A A	 			11,12,13 11,12,13 — —	9,10 9,10 — —	8 8 8	1,6,16 1,6,16 1,6,16 1,6,16
Setup Time (See Figures 4 and 5)	t _{setup1} t _{setup2}	11 9	5.0 5.0		-	5.0 5.0	_	-	5.0 5.0	_		ns ns	15 15	* 	*		* 11,12,13	9,10 *	8 8	1,6,16 1,6,16
Release Time (See Figures 4 and 5)	t _{rel1} t _{rel2}	11 9	5.0 5.0		-	5.0 5.0	_	-	5.0 5.0	_	_	ns ns	15 15	* 	*		* 11,12,13	9.10 *	8 8	1,6,16 1,6,16
Toggle Frequency (See Figure 6) MC12009 : 5/6 MC12011 : 8/9	f _{max}	2	440 500			480 550			440 500		_	MHz	_			11 11			8 8	16 16

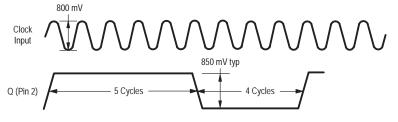

*Test inputs sequentially, with Pulse Generator 2 or 3 as indicated connected to input under test, and the voltage indicated applied to the other input(s) of the same type (i.e., MECL or MTTL).

	-30°C	25°C	85°C	
†V _{IHmin}	1.03	1.115	1.20	Vdc
†V _{ILmin}	0.175	0.200	0.235	Vdc

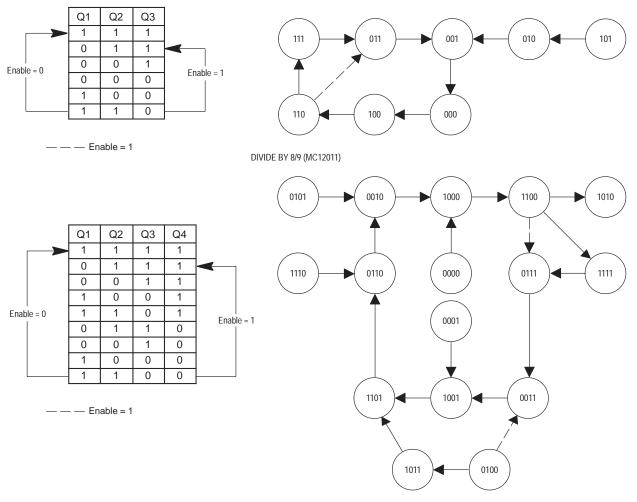

Figure 3. AC Voltage Waveforms


Figure 4. Setup and Release Time Waveforms


Figure 5. AC Test Circuit


Figure 6. Maximum Frequency Test Circuit

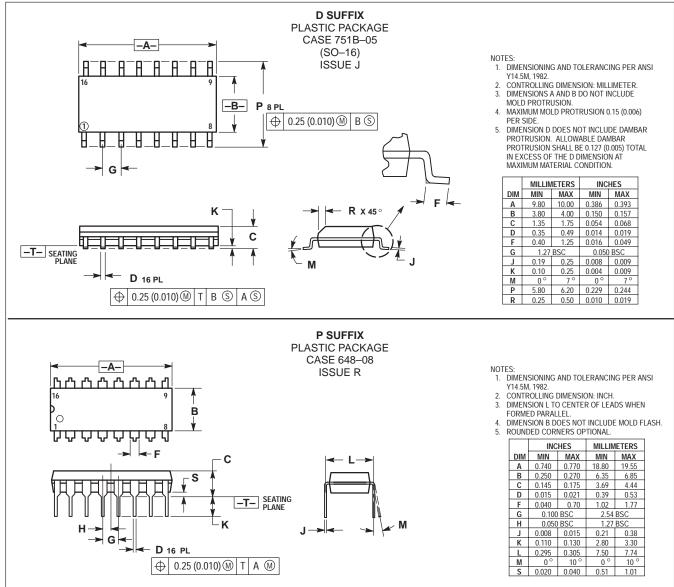
Unused output connected to a 50 $\boldsymbol{\Omega}$ resistor to ground



DIVIDE BY 9

Figure 7. State Diagram

DIVIDE BY 5/6 (MC12009/MC12509)



APPLICATIONS INFORMATION

The primary application of these devices is as a high–speed variable modulus prescaler in the divide by N section of a phase–locked loop synthesizer used as the local oscillator of two–way radios.

Proper VHF termination techniques should be followed when the clock is separated from the prescaler by any appreciable distance. In their basic form, these devices will divide by 5/6 or 8/9. Division by 5, or 8 occurs when any one or all of the five gate inputs E1 through E5 are high. Division by 6, or 9 occurs when all inputs E1 through E5 are low. (Unconnected MTTL inputs are normally high, unconnected MECL inputs are normally low). With the addition of extra parts, many different division configurations may be obtained.

OUTLINE DIMENSIONS

MC12009 MC12011 NOTES

MC12009 MC12011 NOTES

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights or the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and the such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and the apple of unauthorized or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and the apple of

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 1–303–675–2140 or 1–800–441–2447

Customer Focus Center: 1-800-521-6274

 Mfax™: RMFAX0@email.sps.mot.com
 - TOUCHTONE 1–602–244–6609

 Motorola Fax Back System
 - US & Canada ONLY 1–800–774–1848

 - http://sps.motorola.com/mfax/

HOME PAGE: http://motorola.com/sps/

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298

JAPAN: Nippon Motorola Ltd.; SPD, Strategic Planning Office, 141,

4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan. 81-3-5487-8488

 \Diamond

Mfax is a trademark of Motorola, Inc.