Product Preview Differential Receiver

The MC10LVEP16 is a differential receiver. The device is functionally equivalent to the EL16, EP16 and LVEL16 devices. With output transition times significantly faster than the EL16 and LVEL16, the LVEP16 is ideally suited for interfacing with high frequency and low voltage sources.

The LVEP16 provides a V_{BB} output for either single-ended use or as a DC bias for AC coupling to the device within the package. The V_{BB} pin should be used only as a bias for the LVEP16 as its current sink/source capability is limited. Whenever used, the V_{BB} pin should be bypassed to ground via a 0.01µf capacitor.

- 160ps Propagation Delay
- High Bandwidth to 3 GHz Typical
- PECL mode: 2.375V to 3.8V V_{CC} with $V_{EE} = 0V$
- ECL mode: 0V V_{CC} with $V_{EE} = -2.375V$ to -3.8V
- Internal Input Resistors: Pulldown on D, Pulldown and Pullup on \overline{D}
- Q Output will default LOW with inputs open or at VEE
- ESD Protection: 4KV HBM, 200V MM
- V_{BB} Output
- Moisture Sensitivity Level 1, Indefinite Time Out of Drypack. For Additional Information, See Application Note AND8003/D
- Flammability Rating: UL–94 code V–0 @ 1/8", Oxygen Index 28 to 34
- Transistor Count: 167 devices

This document contains information on a product under development. ON Semiconductor reserves the right to change or discontinue this product without notice.

ON Semiconductor

http://onsemi.com

L = Vvater LcY = Year

*For additional information, see Application Note AND8002/D

PIN DESCRIPTION						
PIN	FUNCTION					
D, \overline{D}	ECL Data Inputs					
Q, Q	ECL Data Outputs					
V _{BB}	Ref. Voltage Output					
VCC	Positive Supply					
VEE	Negative, 0 Supply					

ORDERING INFORMATION

Device	Package	Shipping
MC10LVEP16D	SO–8	98 Units / Rail
MC10LVEP16DR2	SO–8	2500 / Reel
MC10LVEP16DT	TSSOP-8	98 Units / Rail
MC10LVEP16DTR2	TSSOP-8	2500 / Reel

W = Work Week

MAXIMUM RATINGS*

Symbol	Parameter		Value	Unit
V _{EE}	Power Supply ($V_{CC} = 0V$)		-6.0 to 0	VDC
VCC	Power Supply ($V_{EE} = 0V$)		6.0 to 0	VDC
VI	Input Voltage (V _{CC} = 0V, V _I not more negative t	han V _{EE})	-6.0 to 0	VDC
VI	Input Voltage (VEE = 0V, VI not more positive th	an V _{CC})	6.0 to 0	VDC
l _{out}	Output Current	Continuous Surge	50 100	mA
I _{BB}	V _{BB} Sink/Source Current†		± 0.5	mA
T _A	Operating Temperature Range		-40 to +85	°C
T _{stg}	Storage Temperature		-65 to +150	°C
θJA	Thermal Resistance (Junction-to-Ambient) (8-Pin SOIC)	Still Air 500lfpm	190 130	°C/W
θJA	Thermal Resistance (Junction-to-Ambient) (8-Pin TSSOP)	Still Air 500lfpm	190 130	°C/W
θJC	Thermal Resistance (Junction-to-Case)		41 to 44 $\pm5\%$	°C/W
T _{sol}	Solder Temperature (<2 to 3 Seconds: 245°C de	esired)	265	°C

* Maximum Ratings are those values beyond which damage to the device may occur.

† Use for inputs of same package only.

DC CHARACTERISTICS, ECL/LVECL ($V_{CC} = 0V$; $V_{EE} = -3.8V$ to -2.375V) (Note 4.)

		-40°C		25°C			85°C				
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
IEE	Power Supply Current (Note 1.)	20	24	31	20	24	31	20	24	32	mA
Vон	Output HIGH Voltage (Note 2.)	-1135	-1060	-885	-1070	-945	-820	-1010	-885	-760	mV
VOL	Output LOW Voltage (Note 2.)	-1935	-1810	-1685	-1870	-1745	-1620	-1810	-1685	-1560	mV
VIH	Input HIGH Voltage Single Ended	-1210		-885	-1145		-820	-1085		-760	mV
VIL	Input LOW Voltage Single Ended	-1935		-1610	-1870		-1545	-1810		-1485	mV
V _{BB}	Output Voltage Reference	-1510	-1410	-1310	-1445	-1345	-1245	-1385	-1285	-1185	mV
VIHCMR	Input HIGH Voltage Common Mode Range (Note 3.)	VEE	+1.2	0.0	VEE	+1.2	0.0	VEE	+1.2	0.0	V
Ιн	Input HIGH Current			150			150			150	μA
IIL	Input LOW Current D D	0.5 -150			0.5 -150			0.5 -150			μΑ

NOTE: 10EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The NOTE: TOEP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been estat circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500lfpm is maintained.
V_{CC} = 0V, V_{EE} = V_{EEmin} to V_{EEmax}, all other pins floating.
All loading with 50 ohms to V_{CC}-2.0 volts.
V_{IHCMR} min varies 1:1 with V_{EE}, max varies 1:1 with V_{CC}.
Input and output parameters vary 1:1 with V_{CC}.

			–40°C		25°C			85°C			
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
IEE	Power Supply Current (Note 5.)	20	24	31	20	24	31	20	24	32	mA
VOH	Output HIGH Voltage (Note 6.)	2165	2240	2415	2230	2355	2480	2290	2415	2540	mV
VOL	Output LOW Voltage (Note 6.)	1365	1490	1615	1430	1555	1680	1490	1615	1740	mV
VIH	Input HIGH Voltage Single Ended	2090		2415	2155		2480	2215		2540	mV
VIL	Input LOW Voltage Single Ended	1365		1690	1430		1755	1490		1815	mV
V _{BB}	Output Voltage Reference	1790	1890	1990	1855	1955	2055	1915	2015	2115	mV
VIHCMR	Input HIGH Voltage Common Mode Range (Note 7.)	1.2		3.3	1.2		3.3	1.2		3.3	V
IIН	Input HIGH Current			150			150			150	μΑ
IIL	Input LOW Current D	0.5 -150			0.5 150			0.5 -150			μA

DC CHARACTERISTICS. LVPECL (VCC = $3.3V \pm 0.3V$. VFF = 0V) (Note 8.)

NOTE: 10EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500lfpm is maintained.

5. $V_{CC} = 3.0V$, $V_{EE} = 0V$, all other pins floating. 6. All loading with 50 ohms to V_{CC} -2.0 volts.

7. VIHCMR min varies 1:1 with V_{EE}, max varies 1:1 with V_{CC}. 8. Input and output parameters vary 1:1 with V_{CC}.

DC CHARACTERISTICS, PECL (V_{CC} = $2.5V \pm 0.125V$, V_{EE} = 0V) (Note 12.)

		-40°C		25°C			85°C				
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
IEE	Power Supply Current (Note 9.)	20	24	31	20	24	31	20	24	32	mA
VOH	Output HIGH Voltage (Note 10.)	1365	1440	1615	1430	1555	1680	1490	1615	1740	mV
V _{OL}	Output LOW Voltage (Note 10.)	565	690	815	630	755	880	690	815	940	mV
VIH	Input HIGH Voltage Single Ended	1290		1615	1355		1680	1415		1740	mV
VIL	Input LOW Voltage Single Ended	565		890	630		955	690		1015	mV
V _{BB}	Output Voltage Reference	3490	3590	3690	3555	3655	3755	3615	3715	3815	mV
VIHCMR	Input HIGH Voltage Common Mode Range (Note 11.)	1.2		2.5	1.2		2.5	1.2		2.5	V
ЧΗ	Input HIGH Current			150			150			150	μΑ
ΙL	Input LOW Current D D	0.5 -150			0.5 -150			0.5 -150			μΑ

NOTE: 10EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500lfpm is maintained.

9. $V_{CC} = 2.5V$, $V_{EE} = 0V$, all other pins floating. 10. All loading with 50 ohms to V_{CC} -2.0 volts. 11. V_{IHCMR} min varies 1:1 with V_{EE} , max varies 1:1 with V_{CC} . 12. Input and output parameters vary 1:1 with V_{CC} .

			–40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
fmax	Maximum Toggle Frequency (Note 13.)		3.0			3.0			3.0		GHz
tpLH, tpHL	Propagation Delay to Output Differential	100	160	240	100	160	240	120	190	280	ps
^t SKEW	Duty Cycle Skew (Note 14.)		5.0			5.0	20		5.0	20	ps
^t JITTER	Cycle-to-Cycle Jitter		TBD			TBD			TBD		ps
V _{PP}	Input Voltage Swing (Diff.)	150	800	1200	150	800	1200	150	800	1200	mV
t _r t _f	Output Rise/Fall Times Q (20% – 80%)	70	120	170	80	130	180	100	150	200	ps

13. F_{max} guaranteed for functionality only. V_{OL} and V_{OH} levels are guaranteed at DC only.
 14. Skew is measured between outputs under identical transitions. Duty cycle skew is defined only for differential operation when the delays are measured from the cross point of the inputs to the cross point of the outputs.

PACKAGE DIMENSIONS

SO-8 **D SUFFIX** PLASTIC SOIC PACKAGE CASE 751-06 ISSUE T

- NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. DIMENSIONS ARE IN MILLIMETER. 3. DIMENSION D AND E DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE. 5. DIMENSION B DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 TOTAL IN EXCESS OF THE B DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIMETERS								
DIM	MIN	MAX							
Α	1.35	1.75							
A1	0.10	0.25							
В	0.35	0.49							
С	0.19	0.25							
D	4.80	5.00							
E	3.80	4.00							
e	1.27	BSC							
Н	5.80	6.20							
h	0.25	0.50							
L	0.40	1.25							
θ	0 °	7 °							

PACKAGE DIMENSIONS

TSSOP-8 **DT SUFFIX** PLASTIC TSSOP PACKAGE CASE 948R-02 **ISSUE A**

NOTES:

DIES:
 DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
 DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0006) DED RUBC

FLASH OR GATE BURRS SHALL NOT EXCEED
0.15 (0.006) PER SIDE.
4. DIMENSION B DOES NOT INCLUDE
INTERLEAD FLASH OR PROTRUSION.
INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
5. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
6. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

	MILLIN	IETERS	INCHES				
DIM	M MIN MAX		MIN	MAX			
Α	2.90	3.10	0.114	0.122			
В	2.90	3.10	0.114	0.122			
С	0.80	1.10	0.031	0.043			
D	0.05	0.15	0.002	0.006			
F	0.40	0.70	0.016	0.028			
G	0.65	BSC	0.026	BSC			
К	0.25	0.40	0.010	0.016			
L	4.90	BSC	0.193 BSC				
M	0°	6 °	0°	6°			

Notes

ON Semiconductor and without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

NORTH AMERICA Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: ONlit@hibbertco.com Fax Response Line: 303–675–2167 or 800–344–3810 Toll Free USA/Canada

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor – European Support German Phone: (+1) 303–308–7140 (M–F 1:00pm to 5:00pm Munich Time)

Email: ONlit-german@hibbertco.com

- French Phone: (+1) 303–308–7141 (M–F 1:00pm to 5:00pm Toulouse Time) Email: ONlit-french@hibbertco.com
- English Phone: (+1) 303–308–7142 (M–F 12:00pm to 5:00pm UK Time) Email: ONlit@hibbertco.com

EUROPEAN TOLL-FREE ACCESS*: 00-800-4422-3781 *Available from Germany, France, Italy, England, Ireland

CENTRAL/SOUTH AMERICA:

Spanish Phone: 303–308–7143 (Mon–Fri 8:00am to 5:00pm MST) Email: ONlit–spanish@hibbertco.com

ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time) Toll Free from Hong Kong & Singapore: 001–800–4422–3781 Email: ONlit–asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–8549 Phone: 81–3–5740–2745 Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.