68030/040 PECL to TTL Clock Driver

The MC10H/100H644 generates the necessary clocks for the 68030, 68040 and similar microprocessors. The device is functionally equivalent to the H640, but with fewer outputs in a smaller outline 20–lead PLCC package. It is guaranteed to meet the clock specifications required by the 68030 and 68040 in terms of part–to–part skew, within–part skew and also duty cycle skew.

The user has a choice of using either TTL or PECL (ECL referenced to +5.0V) for the input clock. TTL clocks are typically used in present MPU systems. However, as clock speeds increase to 50MHz and beyond, the inherent superiority of ECL (particularly differential ECL) as a means of clock signal distribution becomes increasingly evident. The H644 also uses differential ECL internally to achieve its superior skew characteristic.

The H644 includes divide–by–two and divide–by–four stages, both to achieve the necessary duty cycle and skew to generate MPU clocks as required. A typical 50MHz processor application would use an input clock running at 100MHz, thus obtaining output clocks at 50MHz and 25MHz (see Logic Symbol).

The 10H version is compatible with MECL $10H^{TM}$ ECL logic levels, while the 100H version is compatible with 100K levels (referenced to +5.0V).

- Generates Clocks for 68030/040
- Meets 68030/040 Skew Requirements
- TTL or PECL Input Clock
- Extra TTL and ECL Power/Ground Pins
- Within Device Skew on Similar Paths is 0.5 ns
- Asynchronous Reset
- Single +5.0V Supply

Function

Reset (R): LOW on RESET forces all Q outputs LOW and all \overline{Q} outputs HIGH.

Synchronized Outputs: The device is designed to have the POS edges of the ÷2 and ÷4 outputs synchronized.

Select (SEL): LOW selects the PECL input source (DE/DE). HIGH selects the TTL input source (DT).

The H644 also contains circuitry to force a stable state of the PECL input differential pair, should both sides be left open. In this case, the DE side of the input is pulled LOW, and DE goes HIGH.

ON Semiconductor

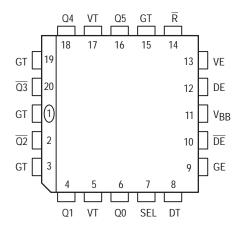
http://onsemi.com

PLCC-20 FN SUFFIX CASE 775

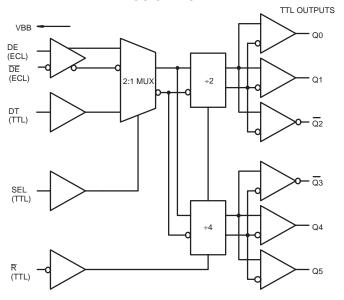
MARKING

DIAGRAM

= Assembly Location


WL = Wafer Lot YY = Year

WW = Work Week


ORDERING INFORMATION

Device	Package	Shipping
MC10H644FN	PLCC-20	37 Units/Rail
MC100H644FN	PLCC-20	37 Units/Rail

Pinout: 20-Lead PLCC (Top View)

LOGIC DIAGRAM

PIN NAMES

PIN	FUNCTION
GT VT VE GE DE, DE VBB DT Qn, Qn SEL R	TTL Ground (0V) TTL V _{CC} (+5.0V) ECL V _{CC} (+5.0V) ECL Ground (0V) ECL Signal Input (positive ECL) V _{BB} Reference Output TTL Signal Input Signal Outputs (TTL) Input Select (TTL) Reset (TTL)

AC CHARACTERISTICS (VT = VE = $5.0 \text{ V} \pm 5\%$)

			0 °	С	25	°C	85°C			
Symbol	Characteristic		Min	Max	Min	Max	Min	Max	Unit	Condition
tPLH	Propagation Delay ECL D to Output	All Outputs	5.8	6.8	5.7	6.7	6.1	7.1	ns	CL = 50pF
tPLH	Propagation Delay TTL D to Output		5.7	6.7	5.7	6.7	6.0	7.0	ns	CL = 50pF
tskwd*	Within-Device Skew	Q0, 1, 4, 5	-	0.5	-	0.5	-	0.5	ns	CL = 50pF
^t skwd*	Within-Device Skew	Q2, Q3	_	0.5	_	0.5	-	0.5	ns	CL = 50pF
^t skwd*	Within-Device Skew	All Outputs	-	1.5	-	1.5	-	1.5	ns	CL = 50pF
tskp-p*	Part-to-Part Skew	Q0, 1, 4, 5	-	1.0	-	1.0	-	1.0	ns	CL = 50pF
t _{PD}	Propagation Delay R to Output	All Outputs	4.3	7.3	4.3	7.3	4.5	7.5	ns	CL = 50pF
t _R	Output Rise/Fall Time 0.8V – 2.0V	All Outputs	-	1.6	-	1.6	-	1.6	ns	CL = 50pF
fmax	Maximum Input Frequency		135	-	135	-	135	-	MHz	CL = 50pF
TW	Minimum Pulse Width Rese	et	1.5	-	1.5	_	1.5	-	ns	
t _{rr}	Reset Recovery Time		1.25	-	1.25	-	1.25	_	ns	
T _{PW}	Pulse Width Out High or Low @ f _{in} = 100 MHz and CL = 50 pf	Q0, 1	9.5	10.5	9.5	10.5	9.5	10.5	ns	CL = 50pf Relative 1.5V
TS	Setup Time SEL to DE, DT		2.0	-	2.0	-	2.0	-	ns	
TH	Hold Time SEL to DE, DT		2.0	-	2.0	_	2.0	- 1	ns	

^{*} Skews are specified for Identical Edges

DC CHARACTERISTICS (VT = VE = $5.0 \text{ V} \pm 5\%$)

			0°C		25°C		85°C			
Symbol	Characteristic	;	Min	Max	Min	Max	Min	Max	Unit	Condition
IEE	Power Supply Current	ECL		65		65		65	mA	VE Pin
Icc		TTL		85		85		85	mA	Total all V _T pins

TTL DC CHARACTERISTICS (VT = VE = $5.0 \text{ V} \pm 5\%$)

		0 °	С	25	°C	85	°C		
Symbol	Characteristic	Min	Max	Min	Max	Min	Max	Unit	Condition
V _I H V _I L	Input HIGH Voltage Input LOW Voltage	2.0	0.8	2.0	0.8	2.0	0.8	V	
IH	Input HIGH Current		20 100		20 100		20 100	μА	V _{IN} = 2.7 V V _{IN} = 7.0 V
IIL	Input LOW Current		-0.6		-0.6		-0.6	mA	V _{IN} = 0.5 V
VOH	Output HIGH Voltage	2.5 2.0		2.5 2.0		2.5 2.0		V	I _{OH} = -3.0 mA I _{OH} = -24 mA
VOL	Output LOW Voltage		0.5		0.5		0.5	V	I _{OL} = 24 mA
VIK	Input Clamp Voltage		-1.2		-1.2		-1.2	V	I _{IN} = -18 mA
los	Output Short Circuit Current	-100	-225	-100	-225	-100	-225	mA	V _{OUT} = 0 V

10H PECL DC CHARACTERISTICS (VT = VE = $5.0 \text{ V} \pm 5\%$)

		0 °	С	25	°C	85	°C		
Symbol	Characteristic	Min	Max	Min	Max	Min	Max	Unit	Condition
INH INL	Input HIGH Current Input LOW Current	0.5	225	0.5	175	0.5	175	μА	
VIH* VIL*	Input HIGH Voltage Input LOW Voltage	3.83 3.05	4.16 3.52	3.87 3.05	4.19 3.52	3.94 3.05	4.28 3.55	V	VE = 5.0 V
V _{BB} *	Output Reference Voltage	3.62	3.73	3.65	3.75	3.69	3.81	V	VE = 5.0 V

100H PECL DC CHARACTERISTICS (VT = VE = $5.0 \text{ V} \pm 5\%$)

		0 °	С	25	°C	85	°C		
Symbol	Characteristic	Min	Max	Min	Max	Min	Max	Unit	Condition
I _{INH} I _{INL}	Input HIGH Current Input LOW Current	0.5	225	0.5	175	0.5	175	μА	
VIH* VIL*	Input HIGH Voltage Input LOW Voltage	3.835 3.19	4.12 3.525	3.835 3.19	4.12 3.525	3.835 3.19	4.12 3.525	V	VE = 5.0 V
V _{BB} *	Output Reference Voltage	3.62	3.74	3.62	3.74	3.62	3.74	V	VE = 5.0 V

^{*} NOTE: PECL levels are referenced to V_{CC} and will vary 1:1 with the power supply. The values shown are for $V_{CC} = 5.0 \text{ V}$. Only corresponds to ECL Clock Inputs.

PACKAGE DIMENSIONS

PLCC-20 **FN SUFFIX** PLASTIC PLCC PACKAGE CASE 775-02 **ISSUE C**

NOTES:

⊕ 0.010 (0.250)⑤ T L-M ⑤ N ⑤

- 1. DATUMS -L-, -M-, AND -N- DETERMINED WHERE TOP OF LEAD SHOULDER EXITS PLASTIC BODY AT MOLD PARTING LINE.
- 2. DIMENSION G1, TRUE POSITION TO BE MEASURED AT DATUM -T-, SEATING PLANE.

 3. DIMENSIONS R AND U DO NOT INCLUDE MOLD.
- FLASH. ALLOWABLE MOLD FLASH IS 0.010 (0.250) PER SIDE.

 4. DIMENSIONING AND TOLERANCING PER ANSI

- 714.5M, 1982.

 5. CONTROLLING DIMENSION: INCH.

 6. THE PACKAGE TOP MAY BE SMALLER THAN THE PACKAGE BOTTOM BY UP TO 0.012 (0.300).
 DIMENSIONS R AND U ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY EXCLUSIVE OF MOLD FLASH, TIE BAR BURRS, GATE BURRS AND INTERLEAD FLASH, BUT INCLUDING ANY MISMATCH BETWEEN THE TOP
- INCLUDING ANY MISMAICH BE I WEEN THE TOP AND BOTTOM OF THE PLASTIC BODY.

 7. DIMENSION H DOES NOT INCLUDE DAMBAR PROTRUSION OR INTRUSION. THE DAMBAR PROTRUSION(S) SHALL NOT CAUSE THE H DIMENSION TO BE GREATER THAN 0.037 (0.940). THE DAMBAR INTRUSION(S) SHALL NOT CAUSE THE H DIMENSION TO BE SMALLER THAN 0.025 (0.635).

	INC	HES	MILLIN	IETERS			
DIM	MIN	MAX	MIN	MAX			
Α	0.385	0.395	9.78	10.03			
В	0.385	0.395	9.78	10.03			
С	0.165	0.180	4.20	4.57			
Е	0.090	0.110	2.29	2.79			
F	0.013	0.019	0.33	0.48			
G	0.050	BSC	1.27 BSC				
Н	0.026	0.032	0.66	0.81			
J	0.020		0.51				
K	0.025		0.64				
R	0.350	0.356	8.89	9.04			
U	0.350	0.356	8.89	9.04			
٧	0.042	0.048	1.07	1.21			
W	0.042	0.048	1.07	1.21			
Χ	0.042	0.056	1.07	1.42			
Υ		0.020		0.50			
Z	2°	10°	2°	10 °			
G1	0.310	0.330	7.88	8.38			
K1	0.040		1.02				

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

North America Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA **Phone**: 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax**: 303–675–2176 or 800–344–3867 Toll Free USA/Canada

Email: ONlit@hibbertco.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor – European Support

German Phone: (+1) 303–308–7140 (M–F 2:30pm to 5:00pm Munich Time)

Email: ONlit-german@hibbertco.com

French Phone: (+1) 303–308–7141 (M–F 2:30pm to 5:00pm Toulouse Time)

Email: ONlit-french@hibbertco.com

English Phone: (+1) 303–308–7142 (M–F 1:30pm to 5:00pm UK Time)

Email: ONlit@hibbertco.com

ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support

Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time) Toll Free from Hong Kong 800–4422–3781

Email: ONlit-asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–8549

Phone: 81–3–5740–2745 **Email**: r14525@onsemi.com

Fax Response Line: 303-675-2167

800-344-3810 Toll Free USA/Canada

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local

Sales Representative.