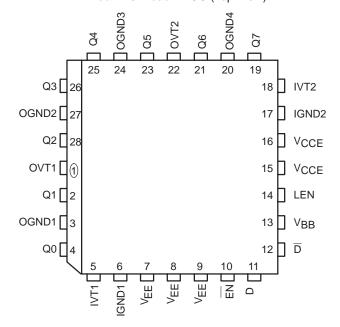
Dual Supply ECL to TTL1:8 Clock Driver


The MC10H/100H643 is a dual supply, low skew translating 1:8 clock driver. Devices in the Motorola H600 translator series utilize the 28–lead PLCC for optimal power pinning, signal flow through and electrical performance. The dual–supply H643 is similar to the H641, which is a single–supply 1:9 version of the same function.

The device features a 48mA TTL output stage, with AC performance specified into a 50pF load capacitance. A Latch is provided on–chip. When LEN is LOW (or left open, in which case it is pulled LOW by the internal pulldowns) the latch is transparent. A HIGH on the enable pin (\overline{EN}) forces all outputs LOW.

The 10H version is compatible with MECL $10H^{TM}$ ECL logic levels. The 100H version is compatible with 100K levels.

- ECL/TTL Version of Popular ECLinPS™ E111
- Low Skew Within Device 0.5ns
- Guaranteed Skew Spec Part-to-Part 1.0ns
- Latch
- Differential Internal Design
- VBB Output
- Dual Supply
- Reset/Enable
- Multiple TTL and ECL Power/Ground Pins

Pinout: 28-Lead PLCC (Top View)

ON Semiconductor

http://onsemi.com

PLCC-28 FN SUFFIX CASE 776

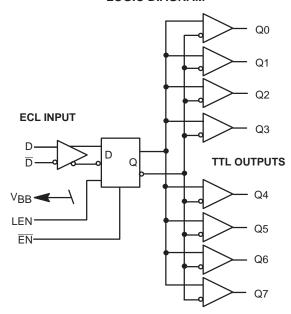
MARKING DIAGRAM

A = Assembly Location

VL = Wafer Lot

YY = Year

WW = Work Week


PIN NAMES

PIN	FUNCTION
OGND OVT IGND IVT VEE VCCE D, D VBB Q0-Q7 EN LEN	TTL Output Ground (0V) TTL Output V _{CC} (+5.0V) Internal TTL GND (0V) Internal TTL V _{CC} (+5.0V) ECL V _{EE} (-5.2/-4.5V) ECL Ground (0V) Signal Input (ECL) V _{BB} Reference Output Signal Outputs (TTL) Enable Input (ECL) Latch Enable Input (ECL)

ORDERING INFORMATION

Device	Package	Shipping			
MC10H643FN	PLCC-28	37 Units/Rail			
MC100H643FN	PLCC-28	37 Units/Rail			

LOGIC DIAGRAM

DC CHARACTERISTICS (IVT = OVT = $5.0V \pm 5\%$; $V_{EE} = -5.2V \pm 5\%$ (10H Version); $V_{EE} = -4.2V$ to 5.5V (100H Version))

			0°C		25°C		85°C			
Symbol	Characteristic	3	Min	Max	Min	Max	Min	Max	Unit	Condition
IEE		ECL	_	42	-	42	_	42	mA	V _{EE} Pins
ICCL	Power Supply Current	TTL	-	106	-	106	_	106	mA	Total all OVT
Іссн			-	95	_	95	_	95	mA	and IVT pins

AC CHARACTERISTICS (IVT = OVT = $5.0V \pm 5\%$; $V_{EE} = -5.2V \pm 10\%$ (10H); -4.2V to 5.5V (100H); $V_{CCE} = GND$)

		0 °	C	25	°C	85	°C		
Symbol	Characteristic	Min	Max	Min	Max	Min	Max	Unit	Condition
^t PLH	Propagation Delay to Output D LEN EN	4.0 3.5 3.5	5.0 5.5 5.5	4.1 3.5 3.5	5.1 5.5 5.5	4.4 3.9 3.9	5.4 5.9 5.9	ns	CL = 50pF
t _{SKEW}	Within-Device Skew	-	0.5	-	0.5		0.5	ns	Note 1
tw	Pulse Width Out HIGH or LOW @ f _{out} = 50MHz	9.0	11.0	9.0	11.0	9.0	11.0	ns	CL = 50pF Note 2
t _S	Setup Time D	0.75	-	0.75	-	0.75	-	ns	
th	Hold Time D	0.75	-	0.75	-	0.75	-	ns	
t _{RR}	Recovery Time LEN EN	1.25 1.25	- -	1.25 1.25	<u> </u>	1.25 1.25	- -	ns	
t _{pw}	Minimum Pulse Width LEN EN	1.5 1.5	- -	1.5 1.5	- 1	1.5 1.5	- -	ns	
t _r t _f	Rise / Fall Times 0.8 V – 2.0 V	_	1.2	_	1.2	_	1.2	ns	CL = 50pF

Within-Device skew defined as identical transitions on similar paths through a device.
 Pulse width is defined relative to 1.5V measurement points on the ouput waveform.

TRUTH TABLE

D	LEN	EN	Q
L H X X	L H X	ILLL	лπ⊘л

DC TTL CHARACTERISTICS

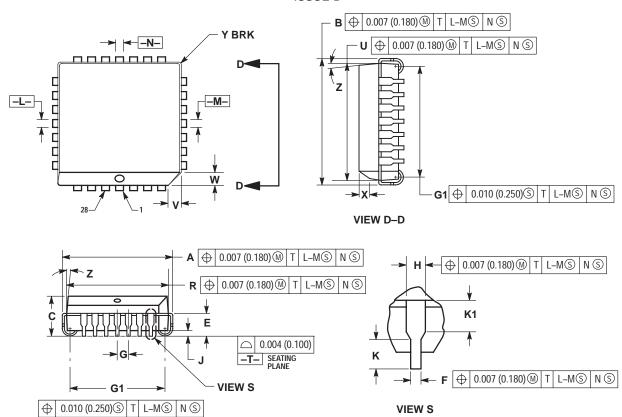
 $(IVT = OVT = 5.0V \pm 5\%; V_{EE} = -5.2V \pm 5\% (10H Version); V_{EE} = -4.2V to 5.5V (100H Version))$

		0°C		25°C		85°C			
Symbol	Characteristic	Min	Max	Min	Max	Min	Max	Unit	Condition
VOH	Output HIGH Voltage	2.5 2.0	- -	2.5 2.0	-	2.5 2.0	-	V	I _{OH} = -3.0mA I _{OH} = -15mA
VOL	Output LOW Voltage	_	0.5	-	0.5	-	0.5	V	I _{OH} = 48mA
IOS	Output Short Circuit Current	-100	-225	-100	-225	-100	-225	mA	V _{OUT} = 0V

10H ECL DC CHARACTERISTICS

 $(IVT = OVT = 5.0V \pm 5\%; V_{EE} = -5.2V \pm 5\% (10H Version); V_{EE} = -4.2V to 5.5V (100H Version))$

		0°C		25°C		85°C			
Symbol	Characteristic	Min	Max	Min	Max	Min	Max	Unit	Condition
INH INL	Input HIGH Current Input LOW Current	- 0.5	225 -	- 0.5	175 -	- 0.5	175 -	μА	
VIH VIL	Input HIGH Voltage Input LOW Voltage	-1170 -1950	-840 -1480	-1130 -1950	-810 -1480	-1070 -1950	-735 -1450	mV	
V _{BB}	Output Reference Voltage	-1380	-1270	-1350	-1250	-1310	-1190	mV	


100H ECL DC CHARACTERISTICS (IVT = OVT = $5.0V \pm 5\%$; $V_{EE} = -5.2V \pm 5\%$ (10H); $V_{EE} = -4.2V$ to 5.5V (100H))

		0 °	С	25	°C	85	°C		
Symbol	Characteristic	Min	Max	Min	Max	Min	Max	Unit	Condition
INH INL	Input HIGH Current Input LOW Current	- 0.5	225 -	- 0.5	175 -	- 0.5	175 -	μА	
V _{IH} V _{IL}	Input HIGH Voltage Input LOW Voltage	-1165 -1810	-880 -1475	-1165 -1810	-880 -1475	-1165 -1810	-880 -1475	mV	
V _{BB}	Output Reference Voltage	-1380	-1260	-1380	-1260	-1380	-1260	mV	

PACKAGE DIMENSIONS

PLCC-28 **FN SUFFIX**

PLASTIC PLCC PACKAGE CASE 776-02 ISSUE D

NOTES

- (OTES:

 1. DATUMS –L-, –M-, AND –N- DETERMINED WHERE TOP OF LEAD SHOULDER EXITS PLASTIC BODY AT MOLD PARTING LINE.

 2. DIMENSION G1, TRUE POSITION TO BE MEASURED AT DATUM –T-, SEATING PLANE.

 3. DIMENSIONS R AND U DO NOT INCLUDE MOLD FLASH. ALLOWABLE MOLD FLASH IS 0.010 (0.250) PER SIDE.

 4. DIMENSIONING AND TOLERANCING PER
- ANSI Y14.5M, 1982.
 5. CONTROLLING DIMENSION: INCH.
- THE PACKAGE TOP MAY BE SMALLER THAN THE PACKAGE BOTTOM BY UP TO 0.012 (0.300). DIMENSIONS R AND U ARE DETERMINED AT THE OUTERMOST DELERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY EXCLUSIVE OF MOLD FLASH, TIE BAR BURRS, GATE BURRS AND INTERLEAD FLASH, BUT INCLUDING ANY MISMATCH BETWEEN THE TOP AND BOTTOM OF THE PLASTIC BODY.
- 7. DIMENSION H DOES NOT INCLUDE DAMBAR PROTRUSION OR INTRUSION. THE DAMBAR PROTRUSION(S) SHALL NOT CAUSE THE H DIMENSION TO BE GREATER THAN 0.037 (0.940). THE DAMBAR INTRUSION(S) SHALL NOT CAUSE THE H DIMENSION TO BE SMALLER THAN 0.025 (0.635).

_				
	INC	HES	MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.485	0.495	12.32	12.57
В	0.485	0.495	12.32	12.57
С	0.165	0.180	4.20	4.57
Е	0.090	0.110	2.29	2.79
F	0.013	0.019	0.33	0.48
G	0.050	BSC	1.27	BSC
Н	0.026	0.032	0.66	0.81
J	0.020		0.51	
K	0.025		0.64	
R	0.450	0.456	11.43	11.58
U	0.450	0.456	11.43	11.58
٧	0.042	0.048	1.07	1.21
W	0.042	0.048	1.07	1.21
Х	0.042	0.056	1.07	1.42
Υ		0.020		0.50
Z	2°	10°	2°	10°
G1	0.410	0.430	10.42	10.92
K1	0.040		1.02	

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

North America Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA **Phone**: 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax**: 303–675–2176 or 800–344–3867 Toll Free USA/Canada

Email: ONlit@hibbertco.com

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor – European Support

German Phone: (+1) 303–308–7140 (M–F 2:30pm to 5:00pm Munich Time)

Email: ONlit-german@hibbertco.com

French Phone: (+1) 303–308–7141 (M–F 2:30pm to 5:00pm Toulouse Time)

Email: ONlit-french@hibbertco.com

English Phone: (+1) 303–308–7142 (M–F 1:30pm to 5:00pm UK Time)

Email: ONlit@hibbertco.com

ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support

Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time) Toll Free from Hong Kong 800–4422–3781

Email: ONlit-asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–8549

Phone: 81–3–5740–2745 **Email**: r14525@onsemi.com

Fax Response Line: 303-675-2167

800-344-3810 Toll Free USA/Canada

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local

Sales Representative.