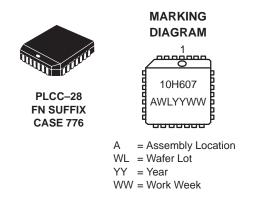
Registered Hex PECL to TTL Translator

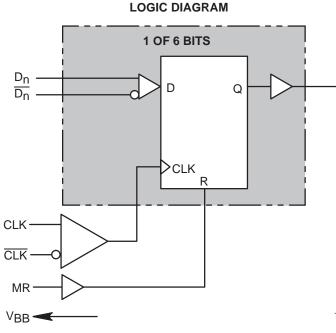
The MC10H/100H607 is a 6-bit, registered PECL to TTL translator. The device features differential PECL inputs for both data and clock. The TTL outputs feature 48mA sink, 24mA source drive capability for driving high fanout loads or transmission lines. The asynchronous master reset control is an ECL level input.

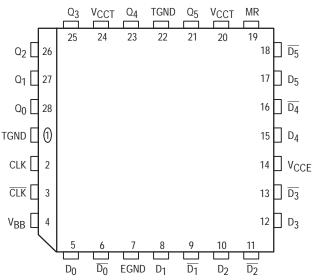
With its differential PECL inputs and TTL outputs the H607 device is ideally suited for the receive function of a HPPI bus type board—to—board interface application. The on chip registers simplify the task of synchronizing the data between the two boards.


The device is available in either ECL standard: the 10H device is compatible with MECL 10HTM logic levels, with a V_{CC} of +5.0 volts, while the 100H device is compatible with 100K logic levels, with a V_{CC} of +5.0 volts.

- Differential ECL Data and Clock Inputs
- 48mA Sink, 24mA Source TTL Outputs
- Single Power Supply
- Multiple Power and Ground Pins to Minimize Noise

ON Semiconductor


http://onsemi.com


ORDERING INFORMATION

Device	Package	Shipping
MC10H607FN	PLCC-28	37 Units/Rail
MC100H607FN	PLCC-28	37 Units/Rail

Qn

Pinout: 28-Lead PLCC (Top View)

PIN NAMES

Pin	Function
$\begin{array}{l} \underline{D_0} - \underline{D_5} \\ \overline{D_0} - \underline{D_5} \\ CLK, \overline{CLK} \\ MR \\ Q_0 - Q_5 \end{array}$	True PECL Data Inputs Inverted PECL Data Inputs Differential PECL Clock Input PECL Master Reset Input TTL Outputs
VCCE VCCT TGND EGND	PECL V _{CC} TTL V _{CC} TTL Ground PECL Ground

TRUTH TABLE

D _n	MR	TCLK/CLK	Q _n + 1
L	LLHX	Z	L
H		Z	H
X		X	L
Open Input		X	L

Z = LOW to HIGH Transition

DC CHARACTERISTICS ($V_{CCT} = V_{CCE} = 5.0V \pm 5\%$)

		T _A = 0°C			T,	T _A = + 25°C			Δ = + 85	5°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit	Condition
IEE	ECL Power Supply Cur- rent 10H 100H		70 65	85 80		70 70	85 85		70 75	85 95	mA	
ICCL	TTL Supply Current		100	120		100	120		100	120	mA	
Іссн	TTL Supply Current		100	120		100	120		100	120	mA	

10H PECL DC CHARACTERISTICS ($V_{CCT} = V_{CCE} = 5.0V \pm 5\%$)

		T _A =	T _A = 0°C		T _A = 25°C		85°C		
Symbol	Characteristic	Min	Max	Min	Мах	Min	Max	Unit	Condition
IINH	Input HIGH Current		255		145		145	μд	
I _{INL}	Input LOW Current		0.5		0.5		0.5	μΑ	
VIH	Input HIGH Voltage	3830	4160	3870	4190	3930	4280	mV	V _{CCT} = 5.0V
VIL	Input LOW Voltage	3050	3520	3050	3520	3050	3555	mV	$V_{CCT} = 5.0V$
V _{BB}	Output Bias Voltage	3600	3710	3630	3730	3670	3790	mV	V _{CCT} = 5.0V

NOTE: PECL VIL, VIH, VOL, VOH, VBB are given for VCCT = VCCE = 5.0V and will vary 1:1 with power supply.

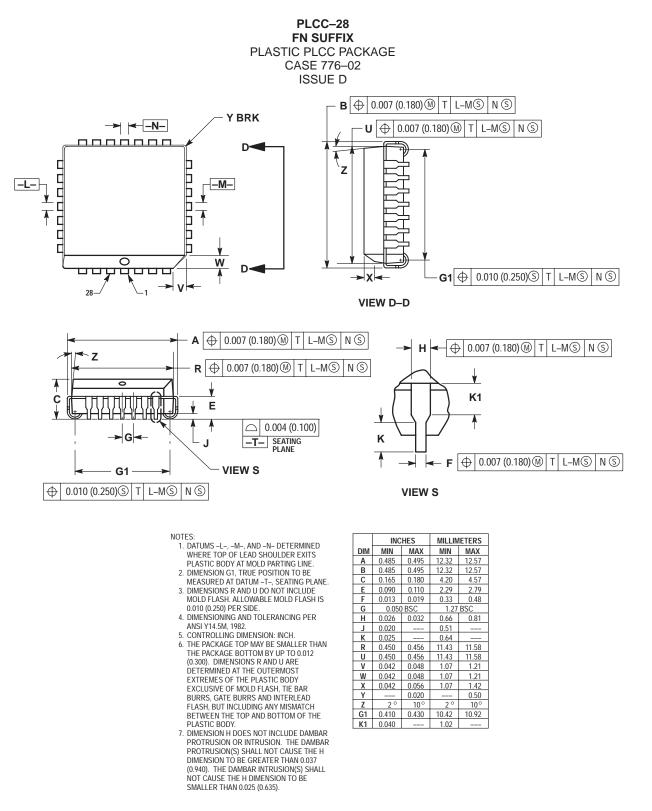
100H PECL DC CHARACTERISTICS (V_{CCT} = V_{CCE} = $5.0V \pm 5\%$)

		T _A =	O°C	T _A =	25°C	T _A = 85°C			
Symbol	Characteristic	Min	Max	Min	Max	Min	Max	Unit	Condition
IIН	Input HIGH Current		255		145		145	μΑ	
١ _{IL}	Input LOW Current		0.5		0.5		0.5	μд	
VIH	Input HIGH Voltage	3835	4120	3835	4120	3835	4120	mV	$V_{CCT} = 5.0V$
VIL	Input LOW Voltage	3190	3525	3190	3525	3190	3525	mV	V _{CCT} = 5.0V
V _{BB}	Output Bias Voltage	3600	3720	3600	3720	3600	3720	mV	V _{CCT} = 5.0V

NOTE: PECL V_{IL}, V_{IH}, V_{OL}, V_{OH}, V_{BB} are given for V_{CCT} = V_{CCE} = 5.0V and will vary 1:1 with power supply.

10H/100H TTL DC CHARACTERISTICS (V_{CCT} = V_{CCE} = 5.0V $\pm 5\%$)

		T _A = 0°C		T _A = 25°C		T _A = 85°C			
Symbol	Characteristic	Min	Max	Min	Max	Min	Max	Unit	Condition
VOH	Output HIGH Voltage	2.5 2.0		2.5 2.0		2.5 2.0		V	$I_{OH} = -15mA$ $I_{OH} = -24mA$
V _{OL}	Output LOW Voltage		0.55		0.55		0.55	V	I _{OL} = 48mA


NOTE: DC levels such as V_{OH}, V_{OL}, etc., are standard for PECL and FAST devices, with the exceptions of: I_{OL} = 48mA at 0.5V_{OL}; and I_{OH} = -24mA at 2.0V_{OH}.

AC CHARACTERISTICS ($V_{CCT} = V_{CCE} = 5.0V \pm 5\%$)

		T _A = 0°C		T _A = + 25°C		T _A = + 85°C			
Symbol	Characteristic	Min	Max	Min	Max	Min	Max	Unit	Condition
^t PLH ^t PHH	Propagation Delay to Output CLK to Q	5.5 4.6	7.7 7.7	6.0 4.9	8.2 8.3	6.7 5.9	10.0 10.0	ns	CL = 50pF
^t PHL	Propagation Delay to Output MR to Q	4.4	7.5	4.7	8.1	5.8	10.5	ns	CL = 50pF
^t PW	Minimum Pulse Width CLK, MR	1.0		1.0		1.0		ns	
tr	Rise Time	0.5	2.0	0.5	2.0	0.5	2.0	ns	1.0V to 2.0V
t _f	Fall Time	0.5	2.0	0.5	2.0	0.5	2.0	ns	1.0V to 2.0V
ts	Setup Time	1.5		1.5		1.5		ns	
tH	Hold Time	1.5		1.5		1.5		ns	
VPP	Minimum Input Swing	200		200		200		mV	

1. Numbers are for both ++ and -- delay MR to Q.

PACKAGE DIMENSIONS

Notes

Notes

Notes

ON Semiconductor and without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

North America Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA **Phone:** 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax:** 303–675–2176 or 800–344–3867 Toll Free USA/Canada **Email:** ONlit@hibbertco.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor – European Support

German Phone: (+1) 303–308–7140 (M–F 2:30pm to 5:00pm Munich Time) Email: ONlit–german@hibbertco.com

French Phone: (+1) 303–308–7141 (M–F 2:30pm to 5:00pm Toulouse Time) Email: ONlit-french@hibbertco.com

English Phone: (+1) 303–308–7142 (M–F 1:30pm to 5:00pm UK Time) Email: ONlit@hibbertco.com ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time) Toll Free from Hong Kong 800–4422–3781 Email: ONlit–asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–8549 Phone: 81–3–5740–2745 Email: r14525@onsemi.com

Fax Response Line: 303–675–2167 800–344–3810 Toll Free USA/Canada

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.