Registered Hex TTL to PECL Translator

The MC10/100H606 is a 6-bit, registered, single supply TTL to PECL translator. The device features differential PECL outputs as well as a choice between either a differential PECL clock input or a TTL clock input. The asynchronous master reset control is a PECL level input.

With its differential PECL outputs and TTL inputs the H606 device is ideally suited for the transmit function of a HPPI bus type board—to—board interface application. The on chip registers simplify the task of synchronizing the data between the two boards.

The device is available in either ECL standard: the MECLTM 10H device is compatible with MECL 10KH logic levels, with a V_{CC} of +5 volts while the 100H device is compatible with 100K logic levels, with a V_{CC} of +5 volts.

- Differential 50Ω ECL Outputs
- Choice Between Differential PECL or TTL Clock Input
- Single Power Supply
- Multiple Power and Ground Pins to Minimize Noise

CLK CLK MR

- When using PECL inputs, TCLK must be tied to ground (0V).
 - 2. When using only one PECL input, the unused PECL input must be tied to VBB, and TCLK must be tied to ground (0V).
 - 3. When using TCLK, both PECL inputs must be tied to ground (0V).

TRUTH TABLE

Dn	MR	TCLK/CLK	Qn+1
L	L	Z 7	L
X	Н	X	Ë

Z = LOW to HIGH Transition

ON Semiconductor

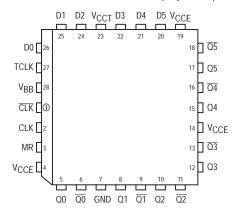
http://onsemi.com

PLCC-28 FN SUFFIX CASE 776

MARKING DIAGRAM

A = Assembly Location

VL = Wafer Lot


YY = Year

WW = Work Week

PIN NAMES

PIN	FUNCTION
D0-D5 CLK, CLK TCLK MR Q0-Q5 Q0-Q5 VCCE VCCT GND	TTL Data Inputs Differential PECL Clock Input TTL Clock Input PECL Master Reset Input True PECL Outputs Inverted PECL Outputs PECL V _{CC} (+5.0V) TTL V _{CC} (+5.0V) TTL/PECL Ground

Pinout: 28-Lead PLCC (Top View)

ORDERING INFORMATION

Device	Package	Shipping
MC10H606FN	PLCC-28	37 Units/Rail
MC100H606FN	PLCC-28	37 Units/Rail

DC CHARACTERISTICS ($V_{CCT} = V_{CCE} = 5.0V \pm 5\%$)

		T _A = 0°C		T _A = + 25°C			T _A = + 85°C					
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit	Condition
ICCL	Supply Current		18	30		18	30		18	30	mA	Outputs LOW
ICCH	Supply Current		13	25		13	25		13	25	mA	Outputs HIGH
I _{GND}	Supply Current		75	90		75	90		75	95	mA	

TTL DC CHARACTERISTICS ($V_{CCT} = V_{CCE} = 5.0V \pm 5\%$)

		T _A = 0°C		T _A = 25°C		T _A = 85°C			
Symbol	Characteristic	Min	Max	Min	Max	Min	Max	Unit	Condition
VIH	Input HIGH Voltage	2.0		2.0		2.0		V	
V _{IL}	Input LOW Voltage		0.8		0.8		0.8	V	
VIK	Input Clamp Voltage		-1.2		-1.2		-1.2	V	I _{IN} = -18mA
lн	Input HIGH Current		20 100		20 100		20 100	V	V _{IN} = 2.7V V _{IN} = 7.0V
I _I L	Input LOW Current		-0.6		-0.6		-0.6	mA	$V_{IN} = 0.5V$

10H PECL DC CHARACTERISTICS ($V_{CCT} = V_{CCE} = 5.0V \pm 5\%$)

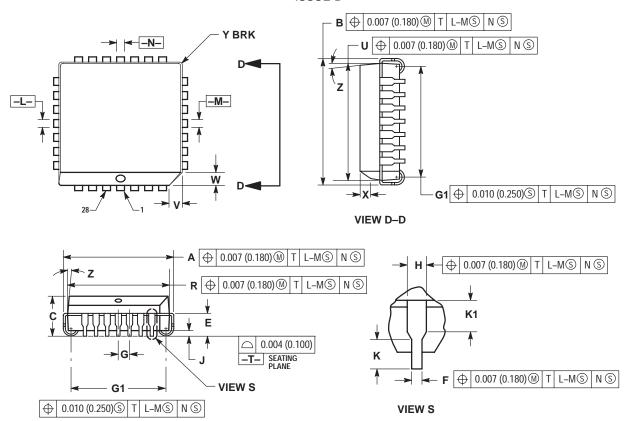
		T _A = 0°C		T _A = 25°C		T _A = 85°C			
Symbol	Characteristic	Min	Max	Min	Max	Min	Max	Unit	Condition
INH	Input HIGH Current		255		145		145	μд	
I _{INL}	Input LOW Current		0.5		0.5		0.5	μΑ	
VIH	Input HIGH Voltage (Note 1.)	3830	4160	3870	4190	3930	4280	mV	V _{CCT} = 5.0V
V _{IL}	Input LOW Voltage (Note 1.)	3050	3520	3050	3520	3050	3555	mV	V _{CCT} = 5.0V
Vон	Output HIGH Voltage (Note 1.)	3980	4160	4020	4190	4080	4270	mV	V _{CCT} = 5.0V
VOL	Output LOW Voltage (Note 1.)	3050	3370	3050	3370	3050	3400	mV	V _{CCT} = 5.0V
V _{BB}	Reference Voltage (Note 1.)	3600	3710	3630	3730	3670	3790	mV	V _{CCT} = 5.0V

^{1.} PECL V_{IL}, V_{IH}, V_{OL}, V_{OH} V_{BB} are given for V_{CCT} = V_{CCE} = 5.0V and will vary 1:1 with the power supply.

100H PECL DC CHARACTERISTICS ($V_{CCT} = V_{CCE} = 5.0V \pm 5\%$)

		T _A = 0°C		T _A = 25°C		T _A = 85°C			
Symbol	Characteristic	Min	Max	Min	Max	Min	Max	Unit	Condition
INH	Input HIGH Current		255		145		145	μд	
I _{INL}	Input LOW Current		0.5		0.5		0.5	μΑ	
VIH	Input HIGH Voltage (Note 2.)	3835	4120	3835	4120	3835	4120	mV	V _{CCT} = 5.0V
VIL	Input LOW Voltage (Note 2.)	3190	3525	3190	3525	3190	3525	mV	V _{CCT} = 5.0V
VOH	Output HIGH Voltage (Note 2.)	3975	4120	3975	4120	3975	4120	mV	V _{CCT} = 5.0V
VOL	Output LOW Voltage (Note 2.)	3190	3380	3190	3380	3190	3380	mV	V _{CCT} = 5.0V
V _{BB}	Output Bias Voltage (Note 2.)	3600	3720	3600	3720	3600	3720	mV	V _{CCT} = 5.0V

^{2.} PECL V_{IL} , V_{IH} , V_{OL} , V_{OH} V_{BB} are given for $V_{CCT} = V_{CCE} = 5.0V$ and will vary 1:1 with the power supply.


AC CHARACTERISTICS ($V_{CCT} = V_{CCE} = 5.0V \pm 5\%$)

			Γ _A = 0°C	;	T,	\ = + 25°	°C	T/	\ = + 85°	.C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit	Condition
tPD	Propagation Delay TCLK++	1.75		3.75	1.75	3.00	3.75	1.75		3.75	ns	50Ω to –2.0V
t _{PD}	Propagation Delay TCLK+-	1.75		3.75	1.75	3.00	3.75	1.75		3.75	ns	50Ω to –2.0V
tPD	Propagation Delay CLK++	1.50		3.50	1.50	2.50	3.50	1.50		3.50	ns	50Ω to –2.0V
tPD	Propagation Delay CLK+-	1.50		3.50	1.50	2.50	3.50	1.50		3.50	ns	50Ω to –2.0V
tPD	Propagation Delay MR+–	1.50		3.50	1.50	2.50	3.50	1.75		3.75	ns	50Ω to -2.0V
^t SKEW	Device Skew Part-to-Part Within Device			2.0 0.5		1.0 0.3	2.0 0.5			2.0 0.5	ns	50Ω to −2.0V
tS	Setup Time	1.5	0.5		1.5	0.5		1.5	0.5		ns	50Ω to –2.0V
tH	Hold Time	1.5	0.5		1.5	0.5		1.5	0.5		ns	50Ω to –2.0V
t _{PW}	Minimum Pulse Width CLK	1.5			1.5	1.0		1.5			ns	50Ω to –2.0V
t _{PW}	Minimum Pulse Width MR	1.5			1.5			1.5			ns	50Ω to –2.0V
t _r	Rise Time			2.0		1.0	2.0			2.0	ns	50Ω to –2.0V
t _f	Fall Time			2.0		1.0	2.0			2.0	ns	50Ω to –2.0V
^t RES/REC	Reset/Recovery Time	2.5	2.0		2.5	2.0		2.5	2.0		ns	50Ω to –2.0V

PACKAGE DIMENSIONS

PLCC-28 **FN SUFFIX**

PLASTIC PLCC PACKAGE CASE 776-02 ISSUE D

NOTES

- (OTES:

 1. DATUMS –L-, –M-, AND –N- DETERMINED WHERE TOP OF LEAD SHOULDER EXITS PLASTIC BODY AT MOLD PARTING LINE.

 2. DIMENSION G1, TRUE POSITION TO BE MEASURED AT DATUM –T-, SEATING PLANE.

 3. DIMENSIONS R AND U DO NOT INCLUDE MOLD FLASH. ALLOWABLE MOLD FLASH IS 0.010 (0.250) PER SIDE.

 4. DIMENSIONING AND TOLERANCING PER
- ANSI Y14.5M, 1982.
 5. CONTROLLING DIMENSION: INCH.
- THE PACKAGE TOP MAY BE SMALLER THAN THE PACKAGE BOTTOM BY UP TO 0.012 (0.300). DIMENSIONS R AND U ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY EXCLUSIVE OF MOLD FLASH, TIE BAR BURRS, GATE BURRS AND INTERLEAD FLASH, BUT INCLUDING ANY MISMATCH BETWEEN THE TOP AND BOTTOM OF THE PLASTIC BODY.
- 7. DIMENSION H DOES NOT INCLUDE DAMBAR PROTRUSION OR INTRUSION. THE DAMBAR PROTRUSION(S) SHALL NOT CAUSE THE H DIMENSION TO BE GREATER THAN 0.037 (0.940). THE DAMBAR INTRUSION(S) SHALL NOT CAUSE THE H DIMENSION TO BE SMALLER THAN 0.025 (0.635).

_				
	INC	HES	MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.485	0.495	12.32	12.57
В	0.485	0.495	12.32	12.57
С	0.165	0.180	4.20	4.57
Ε	0.090	0.110	2.29	2.79
F	0.013	0.019	0.33	0.48
G	0.050	BSC	1.27	BSC
Н	0.026	0.032	0.66	0.81
J	0.020		0.51	
K	0.025		0.64	
R	0.450	0.456	11.43	11.58
U	0.450	0.456	11.43	11.58
٧	0.042	0.048	1.07	1.21
W	0.042	0.048	1.07	1.21
Х	0.042	0.056	1.07	1.42
Υ		0.020		0.50
Z	2°	10°	2°	10°
G1	0.410	0.430	10.42	10.92
K1	0.040		1.02	

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

North America Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: ONlit@hibbertco.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor - European Support

German Phone: (+1) 303–308–7140 (M–F 2:30pm to 5:00pm Munich Time)

Email: ONlit-german@hibbertco.com

French Phone: (+1) 303–308–7141 (M–F 2:30pm to 5:00pm Toulouse Time)

Email: ONlit-french@hibbertco.com

English Phone: (+1) 303–308–7142 (M–F 1:30pm to 5:00pm UK Time)

Email: ONlit@hibbertco.com

ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support

Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time) Toll Free from Hong Kong 800–4422–3781

Email: ONlit-asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–8549

Phone: 81–3–5740–2745 **Email**: r14525@onsemi.com

Fax Response Line: 303–675–2167

800-344-3810 Toll Free USA/Canada

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local

Sales Representative.