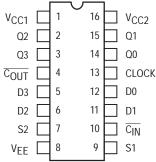
Universal Hexadecimal Counter

The MC10H136 is a high speed synchronous hexadecimal counter. This 10H part is a functional/pinout duplication of the standard MECL 10K family part, with 100% improvement in counting frequency and no increase in power-supply current.

- Counting Frequency, 250 MHz Minimum
- Power Dissipation, 625 mW Typical
- Improved Noise Margin 150 mV (Over Operating Voltage and Temperature Range)
- Voltage Compensated
- MECL 10K-Compatible

FUNCTION SELECT TABLE


CĪN	S1	S2	Operating Mode
Х	L	L	Preset (Program)
L	L	Н	Increment (Count Up)
Н	L	Н	Hold Count
L	Н	L	Decrement (Count Down)
Н	Н	L	Hold Count
Х	Н	Н	Hold (Stop Count)

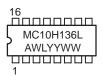
SEQUENTIAL TRUTH TABLE *

	INPUTS					OUTPUTS						
S1	S2	D0	D1	D2	D3	Carry In	Clock * *	Q0	Q1	Q2	Q3	Carry Out
L	L	L	L	Н	Н	Χ	Н	L	L	Н	Н	L
L	Н	Х	Х	Х	Х	L	Н	Н	L	Н	Н	н
L	Н	Х	Х	Х	Х	L	Н	L	Н	Н	Н	н
L	Н	Х	Х	Χ	Χ	L	Н	Н	Н	Н	Н	L
L	Н	Х	Х	Χ	Х	Н	L	Н	Н	Н	Н	Н
L	Н	Х	Х	Х	Х	Н	Н	Н	Н	Н	Н	н
Н	Н	Х	Χ	Х	Х	Х	Н	Н	Н	Н	Н	Н
L	L	Н	Н	L	L	Χ	Н	Н	Н	L	L	L
Н	L	Х	Х	Х	Х	L	Н	L	Н	L	L	Н
Н	L	Х	Х	Х	Х	L	Н	Н	L	L	L	Н
Н	L	Х	Χ	Х	Х	L	Н	L	L	L	L	L
Н	L	Χ	Х	Х	Χ	L	Н	Н	Н	Н	Н	Н

^{*} Truth table shows logic states assuming inputs vary in sequence shown from top to bottom.
** A clock H is defined as a clock input transition from a low to a high logic level.

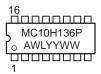
DIP PIN ASSIGNMENT

Pin assignment is for Dual-in-Line Package. For PLCC pin assignment, see the Pin Conversion Tables on page 18 of the ON Semiconductor MECL Data Book (DL122/D).


ON Semiconductor

http://onsemi.com

MARKING DIAGRAMS



CDIP-16 **L SUFFIX CASE 620**

PDIP-16 **P SUFFIX CASE 648**

PLCC-20 **FN SUFFIX CASE 775**

= Assembly Location

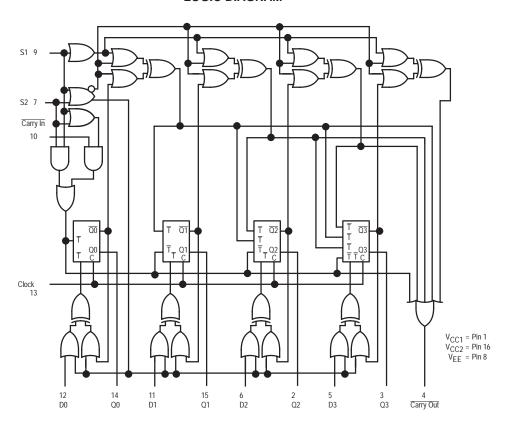
WL = Wafer Lot YY = Year

WW = Work Week

ORDERING INFORMATION

Device	Package	Shipping
MC10H136L	CDIP-16	25 Units/Rail
MC10H136P	PDIP-16	25 Units/Rail
MC10H136FN	PLCC-20	46 Units/Rail

MAXIMUM RATINGS


Symbol	Characteristic	Rating	Unit
VEE	Power Supply (V _{CC} = 0)	-8.0 to 0	Vdc
VI	Input Voltage (V _{CC} = 0)	0 to V _{EE}	Vdc
l _{out}	Output Current – Continuous – Surge	50 100	mA
TA	Operating Temperature Range	0 to +75	°C
T _{stg}	Storage Temperature Range – Plastic – Ceramic	−55 to +150 −55 to +165	°C °C

ELECTRICAL CHARACTERISTICS (VFF = -5.2 V ±5%) (See Note 1.)

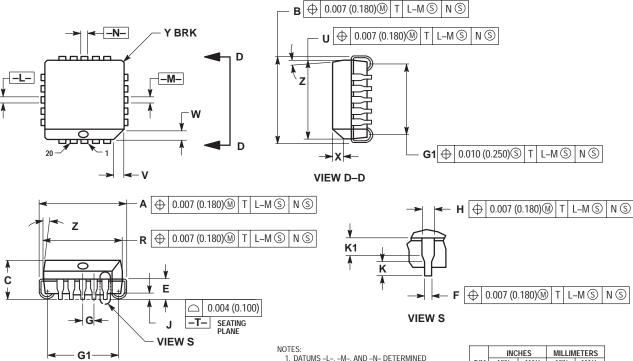
		0 °		25 °		75°		
Symbol	Characteristic	Min	Max	Min	Max	Min	Max	Unit
ΙΕ	Power Supply Current	_	165	_	150	-	165	mA
linH	Input Current High Pins 5, 6, 11, 12, 13 Pin 9 Pin 7 Pin 10	- - - -	430 670 535 380		275 420 335 240		275 420 335 240	μА
l _{inL}	Input Current Low	0.5	_	0.5	_	0.3	-	μΑ
Voн	High Output Voltage	-1.02	-0.84	-0.98	-0.81	-0.92	-0.735	Vdc
Vol	Low Output Voltage	-1.95	-1.63	-1.95	-1.63	-1.95	-1.60	Vdc
VIH	High Input Voltage	-1.17	-0.84	-1.13	-0.81	-1.07	-0.735	Vdc
V _{IL}	Low Input Voltage	-1.95	-1.48	-1.95	-1.48	-1.95	-1.45	Vdc
AC PARAN	METERS							
^t pd	Propagation Delay Clock to Q Clock to Carry Out Carry in to Carry Out	0.7 1.0 0.7	2.3 4.8 2.5	0.7 1.0 0.7	2.4 4.9 2.6	0.7 1.0 0.7	2.5 5.0 2.7	ns
^t set	Set-up Time Data (D0 to C) Select (S to C) Carry In (C _{in} to C) (C to C _{in})	2.0 3.5 2.0 0	- - - -	2.0 3.5 2.0 0	- - - -	2.0 3.5 2.0 0	- - - -	ns
^t hold	Hold Time Data (C to D0) Select (C to S) Carry In (C to C _{in}) (C _{in} to C)	0 -0.5 0 2.2	- - - -	0 -0.5 0 2.2	- - - -	0 -0.5 0 2.2	- - - -	ns
fcount	Counting Frequency	250	-	250	-	250	-	MHz
t _r	Rise Time	0.5	2.3	0.5	2.4	0.5	2.5	ns
t _f	Fall Time	0.5	2.3	0.5	2.4	0.5	2.5	ns

^{1.} Each MECL 10H series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to –2.0 volts.

LOGIC DIAGRAM

NOTE: FLIP-FLOPS WILL TOGGLE WHEN ALL $\overline{\mathsf{T}}$ INPUTS ARE LOW.

APPLICATION INFORMATION


The MC10H136 is a high speed synchronous counter that operates at 250 MHz. Counter operating modes include count up, count down, pre-set and hold count. This device allows the designer to use one basic counter for many applications.

The S1, S2, control lines determine the operating modes of the counter. In the pre-set mode, a clock pulse is necessary to load the counter with the information present on the data inputs (D0, D1, D2, and D3). Carry out goes low on the terminal count or when the counter is being pre-set.

PACKAGE DIMENSIONS

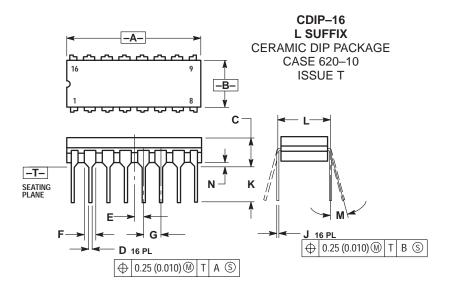
PLCC-20 **FN SUFFIX**

PLASTIC PLCC PACKAGE CASE 775-02 ISSUE C

⊕ 0.010 (0.250)⑤ T L-M ⑤ N ⑤

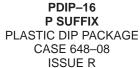
- DATUMS -L-, -M-, AND -N- DETERMINED
 WHERE TOP OF LEAD SHOULDER EXITS PLASTIC WILLY LOVE LEAD STOUDER EXTENSIVE SOLUTION TO BE MEASURED AT DATUM -T-, SEATING PLANE.

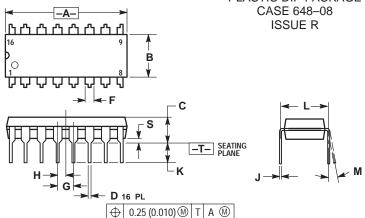
 3. DIMENSIONS R AND U DO NOT INCLUDE MOLD
- FLASH. ALLOWABLE MOLD FLASH IS 0.010 (0.250) PER SIDE.
 4. DIMENSIONING AND TOLERANCING PER ANSI


- 714.5M, 1982.

 5. CONTROLLING DIMENSION: INCH.

 6. THE PACKAGE TOP MAY BE SMALLER THAN THE PACKAGE BOTTOM BY UP TO .012 (0.300). DIMENSIONS R AND U ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY EXCLUSIVE OF MOLD FLASH, TIE BAR BURRS, GATE BURRS AND INTERLEAD FLASH, BUT INCLUDING ANY MISMATCH BETWEEN THE TOP AND BOTTOM OF THE PLASTIC BODY.
- DIMENSION H DOES NOT INCLUDE DAMBAR PROTRUSION OR INTRUSION. THE DAMBAR PROTRUSION(S) SHALL NOT CAUSE THE H DIMENSION TO BE GREATER THAN 0.037 (0.940). THE DAMBAR INTRUSION(S) SHALL NOT CAUSE THE H DIMENSION TO BE SMALLER THAN 0.025 (0.635).


	INC	HES	MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.385	0.395	9.78	10.03
В	0.385	0.395	9.78	10.03
С	0.165	0.180	4.20	4.57
Ε	0.090	0.110	2.29	2.79
F	0.013	0.019	0.33	0.48
G	0.050	BSC	1.27	BSC
Н	0.026	0.032	0.66	0.81
J	0.020		0.51	
K	0.025		0.64	
R	0.350	0.356	8.89	9.04
U	0.350	0.356	8.89	9.04
٧	0.042	0.048	1.07	1.21
W	0.042	0.048	1.07	1.21
Х	0.042	0.056	1.07	1.42
Υ		0.020		0.50
Z	2°	10 °	2 °	10 °
G1	0.310	0.330	7.88	8.38
K1	0.040		1.02	


PACKAGE DIMENSIONS

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.
 3. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL.
 4. DIMENSION F MAY NARROW TO 0.76 (0.030) WHERE THE LEAD ENTERS THE CERAMIC BODY.

	INC	HES	MILLIN	IETERS	
DIM	MIN	MAX	MIN	MAX	
Α	0.750	0.785	19.05	19.93	
В	0.240	0.295	6.10	7.49	
С		0.200		5.08	
D	0.015	0.020	0.39	0.50	
Е	0.050	BSC	1.27 BSC		
F	0.055	0.065	1.40	1.65	
G	0.100	BSC	2.54 BSC		
Н	0.008	0.015	0.21	0.38	
K	0.125	0.170	3.18	4.31	
L	0.300	BSC	7.62 BSC		
M	0°	15°	0 °	15°	
N	0.020	0.040	0.51	1.01	

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.
 3. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.
 4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.
 5. ROUNDED CORNERS OPTIONAL.

	INC	HES	MILLIN	IETERS	
DIM	MIN	MAX	MIN	MAX	
Α	0.740	0.770	18.80	19.55	
В	0.250	0.270	6.35	6.85	
С	0.145	0.175	3.69	4.44	
D	0.015	0.021	0.39	0.53	
F	0.040	0.70	1.02	1.77	
G	0.100	BSC	2.54	BSC	
Н	0.050	BSC	1.27 BSC		
J	0.008	0.015	0.21	0.38	
K	0.110	0.130	2.80	3.30	
L	0.295	0.305	7.50	7.74	
M	0°	10 °	0 °	10 °	
S	0.020	0.040	0.51	1.01	

Notes

Notes

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

North America Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA **Phone**: 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax**: 303–675–2176 or 800–344–3867 Toll Free USA/Canada

Email: ONlit@hibbertco.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor – European Support

German Phone: (+1) 303–308–7140 (M–F 2:30pm to 5:00pm Munich Time)

Email: ONlit-german@hibbertco.com

French Phone: (+1) 303–308–7141 (M–F 2:30pm to 5:00pm Toulouse Time)

Email: ONlit-french@hibbertco.com

English Phone: (+1) 303–308–7142 (M–F 1:30pm to 5:00pm UK Time)

Email: ONlit@hibbertco.com

ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support

Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time) Toll Free from Hong Kong 800–4422–3781

Email: ONlit-asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–8549

Phone: 81–3–5740–2745 **Email**: r14525@onsemi.com

Fax Response Line: 303-675-2167

800-344-3810 Toll Free USA/Canada

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local

Sales Representative.