Coaxial Cable Driver

The MC10EP89 is a differential fanout gate specifically designed to drive coaxial cables. The device is especially useful in digital video broadcasting applications; for this application, since the system is polarity free, each output can be used as an independent driver. The driver produces swings 70% larger than a standard ECL output. When driving a coaxial cable, proper termination is required at both ends of the line to minimize signal loss. The 1.6 (5V) and 1.4V (3.3V) swing allow for termination at both ends of the cable, while maintaining a 800mV (5V) and 700mV (3.3V) swing at the receiving end of the cable. Because of the larger output swings, the device cannot be terminated into the standard V_{CC}-2.0V. All of the DC parameters are tested with a 50 Ω to V_{CC}-3.0V load. The driver accepts a standard differential ECL input and can run off of the digital video broadcast standard -5.0V supply.

The MC10EP89 meets ANSI/SMPTE standard 292M–Bit Serial Digital Interface for High Definition Television Systems 8.1.3 and 8.1.5 requirements.

- 310ps Typical Propagation Delay
- 3.0 GHz Typical Toggle Frequency
- 1.6V (5V) and 1.4V (3.3V) Swing
- PECL mode: 3.0V to 5.5V V_{CC} with $V_{EE} = 0V$
- ECL mode: 0V V_{CC} with $V_{EE} = -3.0V$ to -5.5V
- Internal Input Resistors: Pulldown on D, Pulldown and Pullup on \overline{D}
- Q Output will default LOW with inputs open or at $V_{\mbox{\scriptsize EE}}$
- ESD Protection: >4KV HBM, >200V MM
- New Differential Input Common Mode Range
- Moisture Sensitivity Level 1, Indefinite Time Out of Drypack
- Flammability Rating: UL–94 code V–0 @ 1/8", Oxygen Index 28 to 34
- Transistor Count = 152 devices

Figure 1. 8-Lead Pinout (Top View) and Logic Diagram

ON Semiconductor Formerly a Division of Motorola http://onsemi.com

MARKING DIAGRAM

*For additional information, see Application Note AND8002/D

PIN DESCRIPTION								
PIN FUNCTION								
D, D ECL Data Inputs								
Q0, Q1, <u>Q0</u> , <u>Q1</u>	ECL Data Outputs							
V _{CC}	Positive Supply							
VEE Negative, 0 Supply								

ORDERING INFORMATION

Device	Package	Shipping				
MC10EP89D	SOIC	98 Units/Rail				
MC10EP89DR2	SOIC	2500 Tape & Reel				

MAXIMUM RATINGS*

Symbol	Parameter	Value	Unit
V _{EE}	Power Supply ($V_{CC} = 0V$)	-6.0 to 0	VDC
VCC	Power Supply (V _{EE} = 0V)	6.0 to 0	VDC
VI	Input Voltage (V _{CC} = 0V, V _I not more negative than V _{EE})	-6.0 to 0	VDC
VI	Input Voltage (V_{EE} = 0V, VI not more positive than V _{CC})	6.0 to 0	VDC
l _{out}	Output Current Continuous Surge	50 100	mA
Т _А	Operating Temperature Range	-40 to +85	°C
T _{stg}	Storage Temperature	-65 to +150	°C
θJA	Thermal Resistance (Junction-to-Ambient) Still Air 500lfpm	190 130	°C/W
θJC	Thermal Resistance (Junction-to-Case)	41 to 44 \pm 5%	°C/W
T _{sol}	Solder Temperature (<2 to 3 Seconds: 245°C desired)	265	°C

* Maximum Ratings are those values beyond which damage to the device may occur.

Figure 2. EP89 Termination Configuration

			–40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Мах	Min	Тур	Max	Unit
IEE	Power Supply Current (Note 1.)	22	28	34	24	32	38	28	34	40	mA
Vон	Output HIGH Voltage (Note 2.)	-1220	-1120	-1020	-1150	-1050	-950	-1075	-975	-875	mV
VOL	Output LOW Voltage (Note 2.)	-2680	-2580	-2480	-2670	-2570	-2470	-2630	-2530	-2430	mV
VIH	Input HIGH Voltage Single Ended	-1230		-890	-1130		-810	-1060		-720	mV
VIL	Input LOW Voltage Single Ended	-1950		-1500	-1950		-1480	-1950		-1445	mV
VIHCMR	Input HIGH Voltage Common Mode Range (Note 3.)		1.3	0.0	-1	1.3	0.0	-1	.3	0.0	V
ЧΗ	Input HIGH Current			150			150			150	μΑ
IL	Input LOW Current D	0.5 -150			0.5 -150			0.5 -150			μA

DC CHARACTERISTICS, ECL/LVECL ($V_{CC} = 0V$; $V_{FF} = -3.3 \pm 0.01V$) (Note 4.)

NOTE: 10EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500lfpm is maintained.

1. $V_{CC} = 0V$, $V_{EE} = -3.3V$, all other prins floating. 2. All loading with 50 ohms to V_{CC} -3.0 volts. 3. V_{IHCMR} min varies 1:1 with V_{EE} , max varies 1:1 with V_{CC} . 4. Input and output parameters vary 1:1 with V_{CC} .

DC CHARACTERISTICS, ECL/LVECL ($V_{CC} = 0V$; $V_{EE} = -5.2 \pm 0.01V$) (Note 8.)

			–40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Мах	Min	Тур	Max	Min	Тур	Max	Unit
IEE	Power Supply Current (Note 5.)	25	32	39	28	35	42	31	38	45	mA
VOH	Output HIGH Voltage (Note 6.)	-1220	-1120	-1020	-1150	-1050	-950	-1075	-975	-875	mV
VOL	Output LOW Voltage (Note 6.)	-2950	-2800	-2650	-2950	-2850	-2650	-2950	-2800	-2650	mV
VIH	Input HIGH Voltage Single Ended	-1230		-890	-1130		-810	-1060		-720	mV
VIL	Input LOW Voltage Single Ended	-1950		-1500	-1950		-1480	-1950		-1445	mV
VIHCMR	Input HIGH Voltage Common Mode Range (Note 7.)	-3	3.2	0.0	-3	3.2	0.0	-3	3.2	0.0	V
ЧΗ	Input HIGH Current			150			150			150	μΑ
ΙIL	Input LOW Current D D	0.5 -150			0.5 -150			0.5 -150			μA

NOTE: 10EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500lfpm is maintained.

5. $V_{CC} = 0V$, $V_{EE} = -5.2V$, all other pins floating. 6. All loading with 50 ohms to V_{CC} -3.0 volts. 7. V_{IHCMR} min varies 1:1 with V_{EE} , max varies 1:1 with V_{CC} . 8. Input and output parameters vary 1:1 with V_{CC} .

			–40°C 25°C								
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
IEE	Power Supply Current (Note 9.)	22	28	34	24	32	38	28	34	40	mA
Vон	Output HIGH Voltage (Note 10.)	2080	2180	2280	2150	2250	2350	2225	2325	2425	mV
VOL	Output LOW Voltage (Note 10.)	620	720	820	630	730	830	670	770	870	mV
VIH	Input HIGH Voltage Single Ended	2070		2410	2170		2490	2240		2580	mV
VIL	Input LOW Voltage Single Ended	1350		1800	1350		1820	1350		1855	mV
VIHCMR	Input HIGH Voltage Common Mode Range (Note 11.)	2.0		3.3	2.0		3.3	2.0		3.3	V
Чн	Input HIGH Current			150			150			150	μΑ
ΙIL	Input LOW Current D D	0.5 -150			0.5 -150			0.5 -150			μA

DC CHARACTERISTICS, LVPECL ($V_{CC} = 3.3V \pm 0.01V$, $V_{FF} = 0V$) (Note 12.)

NOTE: 10EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500lfpm is maintained.

9. $V_{CC} = 3.3V$, $V_{EE} = 0V$, all other pins floating.

10. All loading with 50 ohms to V_{CC} -3.0 volts. 11. V_{IHCMR} min varies 1:1 with V_{EE} , max varies 1:1 with V_{CC} .

12. Input and output parameters vary 1:1 with V_{CC} .

DC CHARACTERISTICS, PECL ($V_{CC} = 5.0V \pm 0.5V$, $V_{FF} = 0V$) (Note 16.)

			–40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Мах	Min	Тур	Мах	Min	Тур	Max	Unit
IEE	Power Supply Current (Note 13.)	27	34	41	30	37	44	32	39	46	mA
VOH	Output HIGH Voltage (Note 14.)	3780	3880	3980	3850	3950	4050	3925	4025	4125	mV
VOL	Output LOW Voltage (Note 14.)	2075	2225	2375	2060	2210	2360	2090	2240	2390	mV
VIH	Input HIGH Voltage Single Ended	3770		4110	3870		4190	3940		4280	mV
VIL	Input LOW Voltage Single Ended	3050		3500	3050		3520	3050		3555	mV
VIHCMR	Input HIGH Voltage Common Mode Range (Note 15.)	2.0		5.0	2.0		5.0	2.0		5.0	V
ЧΗ	Input HIGH Current			150			150			150	μΑ
ΙL	Input LOW Current D	0.5 -150			0.5 -150			0.5 -150			μA

NOTE: 10EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500lfpm is maintained.

13. V_{CC} = 5.0V, V_{EE} = 0V, all other pins floating.

14. All loading with 50 ohms to V_{CC} -3.0 volts. 15. V_{IHCMR} min varies 1:1 with V_{EE} , max varies 1:1 with V_{CC} . 16. Input and output parameters vary 1:1 with V_{CC} .

AC CHARACTERISTICS ($V_{CC} = 0V$; $V_{EE} = -3.0V$	/ to $-5.5V$) or (V _{CC} = 3.0V to 5.5V; V _{EE} = 0V)
---	--

			–40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Мах	Min	Тур	Max	Unit
fmax	Maximum Toggle Frequency (Note 17.)					3.0					GHz
tPLH, tPHL	Propagation Delay to Output Differential	200	280	380	220	310	400	250	330	420	ps
^t SKEW	Duty Cycle Skew (Note 18.)		5.0	20		5.0	20		5.0	20	ps
^t JITTER	Cycle-to-Cycle Jitter		TBD			TBD			TBD		ps
V _{PP}	Input Voltage Swing (Diff.) (Note 19.)	150	800	1200	150	800	1200	150	800	1200	mV
t _r t _f	Output Rise/Fall Times Q (20% – 80%)	120	230	380	130	250	410	150	270	430	ps

17. F_{max} guaranteed for functionality only.
18. Skew is measured between outputs under identical transitions. Duty cycle skew is defined only for differential operation when the delays are measured from the cross point of the inputs to the cross point of the outputs.
19. V_{IL} must not go below V_{CC} - 3V.

PACKAGE DIMENSIONS

SO-8 **D SUFFIX** PLASTIC SOIC PACKAGE CASE 751-06 ISSUE T

NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. DIMENSIONS ARE IN MILLIMETER. 3. DIMENSION D AND E DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE. 5. DIMENSION B DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 TOTAL IN EXCESS OF THE B DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIMETERS									
DIM	MIN	MAX								
Α	1.35	1.75								
A1	0.10	0.25								
В	0.35	0.49								
С	0.19	0.25								
D	4.80	5.00								
Ε	3.80	4.00								
е	1.27	BSC								
Н	5.80	6.20								
h	0.25	0.50								
L	0.40	1.25								
θ	0 °	7 °								

Notes

ON Semiconductor and without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

USA/EUROPE Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: ONlit@hibbertco.com

Fax Response Line*: 303–675–2167 800–344–3810 Toll Free USA/Canada *To receive a Fax of our publications

N. America Technical Support: 800-282-9855 Toll Free USA/Canada

ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time) Email: ONlit–asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–8549 Phone: 81–3–5487–8345 Email: r14153@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.