Product Preview

Differential Data and Clock D Flip-Flop

The MC10EP/100EP52 is a differential data, differential clock D flip-flop with reset. The device is functionally equivalent to the EL52 device.

Data enters the master portion of the flip-flop when the clock is LOW and is transferred to the slave, and thus the outputs, upon a positive transition of the clock. The differential clock inputs of the EP52 allow the device to also be used as a negative edge triggered device.

The EP52 employs input clamping circuitry so that under open input conditions (pulled down to V_{EE}) the outputs of the device will remain stable.

- 400ps Typical Propagation Delay
- High Bandwidth to 3 Ghz Typical
- PECL mode: 3.0V to 5.5V V_{CC} with $V_{EE} = 0V$
- ECL mode: $0V V_{CC}$ with $V_{EE} = -3.0V$ to -5.5V
- 75kΩ Internal Input Pulldown Resistors
- ullet Q Output will default LOW with inputs open or at $V_{\mbox{\footnotesize{EE}}}$
- ESD Protection: >2KV HBM, >200V MM
- Moisture Sensitivity Level 1, Indefinite Time Out of Drypack.
 For Additional Information, See Application Note AND8003/D
- Flammability Rating: UL-94 code V-0 @ 1/8", Oxygen Index 28 to 34
- Transistor Count = 155 devices

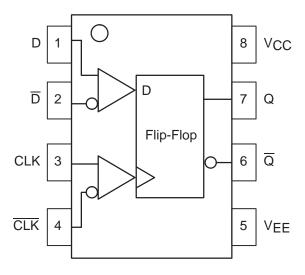


Figure 1. 8-Lead Pinout (Top View) and Logic Diagram

This document contains information on a product under development. ON Semiconductor reserves the right to change or discontinue this product without notice.

ON Semiconductor

Formerly a Division of Motorola

http://onsemi.com

MARKING DIAGRAM

8 <u>A A A A</u>	<u> 8 д д д Д</u>
HEP52	KEP52
OALYW	OALYW
1 1 1 1 1	1888

H = MC10 L = Wafer Lot K = MC100 Y = Year A = Assembly Location W = Work Week

^{*}For additional information, see Application Note AND8002/D

PIN DESCRIPTION						
PIN	FUNCTION					
CLK, CLK	ECL Clock Inputs					
D, \overline{D}	ECL Data Input					
Q, \overline{Q}	ECL Data Outputs					
VCC	Positive Supply					
VEE	Negative, 0 Supply					

TRUTH TABLE

D	CLK	Q
L	Z Z	L H

Z = LOW to HIGH Transition

ORDERING INFORMATION

Device	Package	Shipping
MC10EP52D	SO-8	98 Units/Rail
MC10EP52DR2	SO-8	2500 Tape & Reel
MC100EP52D	SO-8	98 Units/Rail
MC100EP52DR2	SO-8	2500 Tape & Reel

MAXIMUM RATINGS*

Symbol	Parameter	Value	Unit
VEE	Power Supply (V _{CC} = 0V)	-6.0 to 0	VDC
Vcc	Power Supply (VEE = 0V)	6.0 to 0	VDC
VI	Input Voltage ($V_{CC} = 0V$, V_I not more negative than V_{EE})	-6.0 to 0	VDC
VI	Input Voltage ($V_{EE} = 0V$, V_{I} not more positive than V_{CC})	6.0 to 0	VDC
l _{out}	Output Current Continu	ous 50 rge 100	mA
TA	Operating Temperature Range	-40 to +85	°C
T _{stg}	Storage Temperature	-65 to +150	°C
θЈА	Thermal Resistance (Junction–to–Ambient) Still 500li	Air 190 fpm 130	°C/W
θJC	Thermal Resistance (Junction–to–Case)	41 to 44 ± 5%	°C/W
T _{sol}	Solder Temperature (<2 to 3 Seconds: 245°C desired)	265	°C

^{*} Maximum Ratings are those values beyond which damage to the device may occur.

DC CHARACTERISTICS, ECL/LVECL ($V_{CC} = 0V$; $V_{EE} = -5.5V$ to -3.0V) (Note 3.)

			–40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
IEE	Power Supply Current (Note 1.)	26	34	44	26	35	45	28	37	47	mA
VOH	Output HIGH Voltage (Note 2.)	-1135	-1060	-885	-1070	-945	-820	-1010	-885	-760	mV
VOL	Output LOW Voltage (Note 2.)	-1935	-1810	-1685	-1870	-1745	-1620	-1810	-1685	-1560	mV
VIH	Input HIGH Voltage Single Ended	-1210		-885	-1145		-820	-1085		-760	mV
V _{IL}	Input LOW Voltage Single Ended	-1935		-1610	-1870		-1545	-1810		-1485	mV
lн	Input HIGH Current			150			150			150	μΑ
I _I L	Input LOW Current	0.5			0.5			0.5			μΑ

NOTE: 10EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500lfpm is maintained.

1. V_{CC} = 0V, V_{EE} = V_{EEmin} to V_{EEmax}, all other pins floating.

2. All loading with 50 ohms to V_{CC}-2.0 volts.

3. Input and output parameters vary 1:1 with V_{CC}.

DC CHARACTERISTICS, LVPECL ($V_{CC} = 3.3V \pm 0.3V$, $V_{EE} = 0V$) (Note 6.)

			–40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
IEE	Power Supply Current (Note 4.)	26	34	44	26	35	45	28	37	47	mA
VOH	Output HIGH Voltage (Note 5.)	2165	2240	2415	2230	2355	2480	2290	2415	2540	mV
VOL	Output LOW Voltage (Note 5.)	1365	1490	1615	1430	1555	1680	1490	1615	1740	mV
VIH	Input HIGH Voltage Single Ended	2090		2415	2155		2480	2215		2540	mV
V _{IL}	Input LOW Voltage Single Ended	1365		1690	1430		1755	1490		1815	mV
lН	Input HIGH Current			150			150			150	μΑ
I _{IL}	Input LOW Current	0.5			0.5			0.5			μΑ

NOTE: 10EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500lfpm is maintained.

- 4. $V_{CC} = 3.3V$, $V_{EE} = 0V$, all other pins floating.
- 5. All loading with 50 ohms to V_{CC}-2.0 volts.
- 6. Input and output parameters vary 1:1 with V_{CC}.

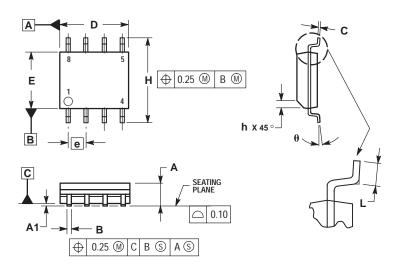
DC CHARACTERISTICS, PECL ($V_{CC} = 5.0V \pm 0.5V$, $V_{EE} = 0V$) (Note 9.)

			–40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
IEE	Power Supply Current (Note 7.)	26	34	44	26	35	45	28	37	47	mA
Vон	Output HIGH Voltage (Note 8.)	3865	3940	4115	3930	4055	4180	3990	4115	4240	mV
VOL	Output LOW Voltage (Note 8.)	3065	3190	3315	3130	3255	3380	3190	3315	3440	mV
VIH	Input HIGH Voltage Single Ended	3790		4115	3855		4180	3915		4240	mV
VIL	Input LOW Voltage Single Ended	3065		3390	3130		3455	3190		3515	mV
lН	Input HIGH Current			150			150			150	μА
I _I L	Input LOW Current	0.5			0.5			0.5			μΑ

NOTE: 10EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500lfpm is maintained.

- 7. $V_{CC} = 5.0V$, $V_{EE} = 0V$, all other pins floating.
- 8. All loading with 50 ohms to V_{CC} -2.0 volts.
- 9. Input and output parameters vary 1:1 with V_{CC}.

AC CHARACTERISTICS ($V_{CC} = 0V$; $V_{EE} = -3.0V$ to -5.5V) or ($V_{CC} = 3.0V$ to 5.5V; $V_{EE} = 0V$)


			–40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
f _{max}	Maximum Toggle Frequency (Note 10.)					3.0					GHz
tpLH, tpHL	Propagation Delay to Output Differential CLK, CLK->Q, Q					400					ps
t _S	Setup Time Hold Time					50 50					ps
tSKEW	Duty Cycle Skew (Note 11.) Skew Part–to–Part					TBD TBD					ps
tPW	Minimum Pulse Width CLK					450					ps
^t JITTER	Cycle-to-Cycle Jitter					TBD					ps
t _r t _f	Output Rise/Fall Times (20% – 80%) Q, $\overline{\mathbb{Q}}$					130					ps

^{10.} F_{max} guaranteed for functionality only. V_{OL} and V_{OH} levels are guaranteed at DC only.

11. Skew is measured between outputs under identical transitions. Duty cycle skew is defined only for differential operation when the delays are measured from the cross point of the inputs to the cross point of the outputs.

PACKAGE DIMENSIONS

SO-8 **D SUFFIX** PLASTIC SOIC PACKAGE CASE 751-06 ISSUE T

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 2. DIMENSIONS ARE IN MILLIMETER.
 3. DIMENSION D AND E DO NOT INCLUDE MOLD PROTRUSION.
 4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
 5. DIMENSION B DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 TOTAL IN EXCESS OF THE B DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIMETERS							
DIM	MIN	MAX						
Α	1.35	1.75						
A1	0.10	0.25						
В	0.35	0.49						
С	0.19	0.25						
D	4.80	5.00						
Е	3.80	4.00						
е	1.27	BSC						
Н	5.80	6.20						
h	0.25	0.50						
L	0.40	1.25						
θ	0°	7 °						

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

NORTH AMERICA Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax**: 303–675–2176 or 800–344–3867 Toll Free USA/Canada

Email: ONlit@hibbertco.com

Fax Response Line: 303-675-2167 or 800-344-3810 Toll Free USA/Canada

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor - European Support

German Phone: (+1) 303-308-7140 (M-F 1:00pm to 5:00pm Munich Time)

Email: ONlit-german@hibbertco.com

French Phone: (+1) 303-308-7141 (M-F 1:00pm to 5:00pm Toulouse Time)

Email: ONlit-french@hibbertco.com

English Phone: (+1) 303–308–7142 (M–F 12:00pm to 5:00pm UK Time)

Email: ONlit@hibbertco.com

EUROPEAN TOLL-FREE ACCESS*: 00-800-4422-3781

*Available from Germany, France, Italy, England, Ireland

CENTRAL/SOUTH AMERICA:

Spanish Phone: 303-308-7143 (Mon-Fri 8:00am to 5:00pm MST)

Email: ONlit-spanish@hibbertco.com

ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support

Phone: 303-675-2121 (Tue-Fri 9:00am to 1:00pm, Hong Kong Time)

Toll Free from Hong Kong & Singapore:

001-800-4422-3781
Email: ONlit-asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–8549

Phone: 81–3–5740–2745 **Email**: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.