Product Preview

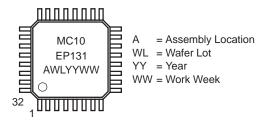
Quad D Flip Flop with Set, Reset and Differential Clock

The MC10EP131 is a Quad Master–slaved D flip flop with common set and separate resets. The device is an expansion of the E131 with differential common clock and individual clock enables. With AC performance faster than the E131 device, the EP131 is ideal for applications requiring the fastest AC performance available. Each flip-flop may be clocked separately by holding Common Clock (CC) LOW and using the Clock Enable (C0–3) inputs for clocking. Common clocking is achieved by holding the C0–3 inputs LOW and using CC to clock all four flip-flops. In this case, the C0–3 inputs perform the function of controlling the common clock, to each flip-flop.

Individual asynchronous resets (R0–3) and an asynchronous set (SET) are provided.

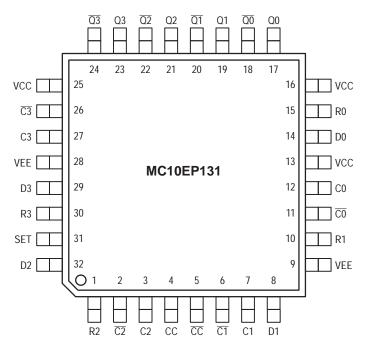
Data enters the master when both C_C and C0-3 are LOW, and transfers to the slave when either C_C or C0-3 (or both) go HIGH.

- 450ps Typical Propagation Delay
- High Bandwidth to 3 Ghz Typical
- Differential Individual and Common Clocks
- Individual Asynchronous Resets
- Asynchronous Set
- PECL mode: 3.0V to 5.5V V_{CC} with $V_{EE} = 0V$
- ECL mode: 0V V_{CC} with $V_{EE} = -3.0V$ to -5.5V
- 75kΩ Internal Input Pulldown Resistors
- Q Output will default LOW with inputs open or at VEE
- ESD Protection: >4KV HBM, >200V MM
- Moisture Sensitivity Level 2, For Additional Information, See Application Note AND8003/D
- Flammability Rating: UL-94 code V-0 @ 1/8", Oxygen Index 28 to 34
- Transistor Count = 935 devices



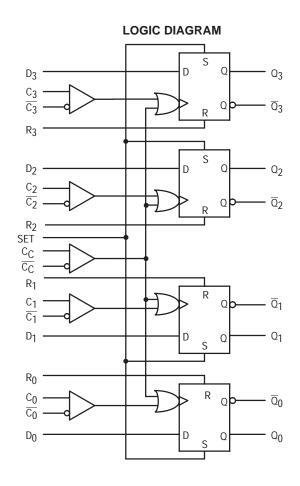
http://onsemi.com

32-LEAD TQFP FA SUFFIX CASE 873A


MARKING DIAGRAM*

*For additional information, see Application Note AND8002/D

ORDERING INFORMATION


Device	Device Package		
MC10EP131FA	TQFP	250 Units/Tray	
MC10EP131FAR2	TQFP	2000 Tape & Reel	

PIN DESCRIPTION							
PIN	FUNCTION						
D0-3	ECL Data Inputs						
C0-3, C0-3	ECL Separate Clock Inputs						
CC, CC	ECL Common Clock Inputs						
R0-3	ECL Asynchronous Reset						
SET	ECL Asynchronous Set						
Q0-3, Q0-3	ECL Data Outputs						
VCC	Positive Supply						
V _{EE}	Negative, 0 Supply						

Figure 1. 32-Lead TQFP Pinout (Top View)

All V_{CCO} pins are internally tied together on the die, but it is highly recommended that all pins be externally connected to evenly distribute power.

MAXIMUM RATINGS*

Symbol	Parameter		Value	Unit
VEE	Power Supply (V _{CC} = 0V)		-6.0 to 0	VDC
VCC	Power Supply (VEE = 0V)		6.0 to 0	VDC
VI	Input Voltage (V _{CC} = 0V, V _I not more negative than V _{EE})		-6.0 to 0	VDC
VI	Input Voltage (VEE = 0V, VI not more positive than VCC)		6.0 to 0	VDC
l _{out}	Output Current Continu	ous irge	50 100	mA
TA	Operating Temperature Range		-40 to +85	°C
T _{stg}	Storage Temperature		-65 to +150	°C
θЈА	Thermal Resistance (Junction–to–Ambient) Stil 500l	l Air fpm	80 55	°C/W
θJC	Thermal Resistance (Junction-to-Case)		12 to 17	°C/W
T _{sol}	Solder Temperature (<2 to 3 Seconds: 245°C desired)		265	°C

^{*} Maximum Ratings are those values beyond which damage to the device may occur.

[†] Use for inputs of same package only.

DC CHARACTERISTICS, ECL/LVECL ($V_{CC} = 0V$; $V_{EE} = -5.5V$ to -3.0V) (Note 3.)

		-40°C			25°C			85°C			
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
IEE	Power Supply Current (Note 1.)					90					mA
VOH	Output HIGH Voltage (Note 2.)	-1135	-1060	-885	-1070	-945	-820	-1010	-885	-760	mV
VOL	Output LOW Voltage (Note 2.)	-1935	-1810	-1685	-1870	-1745	-1620	-1810	-1685	-1560	mV
VIH	Input HIGH Voltage Single Ended	-1210		-885	-1145		-820	-1085		-760	mV
VIL	Input LOW Voltage Single Ended	-1935		-1610	-1870		-1545	-1810		-1485	mV
ΊΗ	Input HIGH Current			150			150			150	μΑ
I _{IL}	Input LOW Current	0.5			0.5			0.5			μΑ

NOTE: 10EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500lfpm is maintained.

- V_{CC} = 0V, V_{EE} = V_{EEmin} to V_{EEmax}, all other pins floating.
 All loading with 50 ohms to V_{CC}-2.0 volts.
 Input and output parameters vary 1:1 with V_{CC}.

DC CHARACTERISTICS, LVPECL ($V_{CC} = 3.3V \pm 0.3V$, $V_{EE} = 0V$) (Note 6.)

		-40°C			25°C			85°C			
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
IEE	Power Supply Current (Note 4.)					90					mA
Vон	Output HIGH Voltage (Note 5.)	2165	2240	2415	2230	2355	2480	2290	2415	2540	mV
VOL	Output LOW Voltage (Note 5.)	1365	1490	1615	1430	1555	1680	1490	1615	1740	mV
VIH	Input HIGH Voltage Single Ended	2090		2415	2155		2480	2215		2540	mV
V _{IL}	Input LOW Voltage Single Ended	1365		1690	1430		1755	1490		1815	mV
lН	Input HIGH Current			150			150			150	μΑ
I _I L	Input LOW Current	0.5			0.5			0.5			μΑ

NOTE: 10EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500lfpm is maintained.

- 4. VCC = 3.3V, VEE = 0V, all other pins floating.
- 5. All loading with 50 ohms to V_{CC} -2.0 volts.
- 6. Input and output parameters vary 1:1 with VCC.

DC CHARACTERISTICS, PECL ($V_{CC} = 5.0V \pm 0.5V$, $V_{EE} = 0V$) (Note 9.)

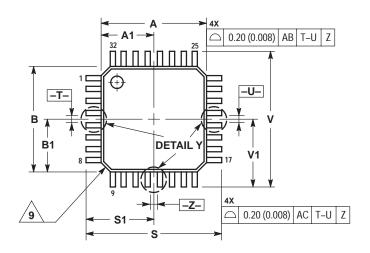
		-40°C			25°C			85°C			
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
IEE	Power Supply Current (Note 7.)					90					mA
VOH	Output HIGH Voltage (Note 8.)	3865	3940	4115	3930	4055	4180	3990	4115	4240	mV
VOL	Output LOW Voltage (Note 8.)	3065	3190	3315	3130	3255	3380	3190	3315	3440	mV
VIH	Input HIGH Voltage Single Ended	3790		4115	3855		4180	3915		4240	mV
V _{IL}	Input LOW Voltage Single Ended	3065		3390	3130		3455	3190		3515	mV
lН	Input HIGH Current			150			150			150	μΑ
I _{IL}	Input LOW Current	0.5			0.5			0.5			μΑ

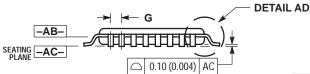
NOTE: 10EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500lfpm is maintained.

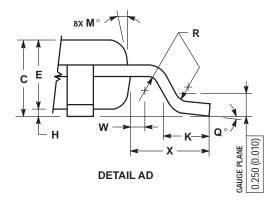
- 7. $V_{CC} = 5.0V$, $V_{EE} = 0V$, all other pins floating. 8. All loading with 50 ohms to V_{CC} -2.0 volts.
- 9. Input and output parameters vary 1:1 with VCC.

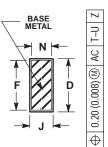
AC CHARACTERISTICS ($V_{CC} = 0V$; $V_{EE} = -3.0V$ to -5.5V) or ($V_{CC} = 3.0V$ to 5.5V; $V_{EE} = 0V$)

			-40°C 25°C		85°C						
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
f _{max}	Maximum Toggle Frequency (Note 10.)					3.0					GHz
^t PLH [,] ^t PHL	Propagation Delay to C0–3 Output Differential CC R0–3 SET					450 450 400 400					ps
^t RR	Set/Reset Recovery					150					ps
ts tH	Setup Time Hold Time					50 50					ps
tSKEW	Duty Cycle Skew (Note 11.) Skew Part–to–Part					15 TBD					ps
tpW	Minimum Pulse Width CLK, SET, RESET		TBD			400			TBD		ps
^t JITTER	Cycle-to-Cycle Jitter		TBD			TBD			TBD		ps
t _r t _f	Output Rise/Fall Times (20% – 80%) Q, Q					150					ps

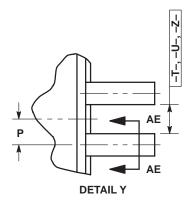

^{10.}F_{max} guaranteed for functionality only. V_{OL} and V_{OH} levels are guaranteed at DC only.


11. Skew is measured between outputs under identical transitions. Duty cycle skew is defined only for differential operation when the delays are measured from the cross point of the inputs to the cross point of the outputs.


PACKAGE DIMENSIONS


TQFP FA SUFFIX

32-LEAD PLASTIC PACKAGE CASE 873A-02 ISSUE A



SECTION AE-AE

NOTES:

- 11. DIMENSIONING AND TOLERANCING PER ANSI
 Y14.5M, 1982.
 2. CONTROLLING DIMENSION: MILLIMETER.
 3. DATUM PLANE -AB- IS LOCATED AT BOTTOM
 OF LEAD AND IS COINCIDENT WITH THE LEAD
 WHERE THE LEAD EXITS THE PLASTIC BODY AT
 THE BOTTOM OF THE PARTING LINE.
 4. DATUMS -T., -U., AND -Z. TO BE
 DETERMINED AT DATUM PLANE -AB-.
 5. DIMENSIONS S AND Y TO RE DETERMINED AT
 5. DIMENSIONS S AND Y TO RE DETERMINED AT

- DE TERMINED AT DATUM PLANE -AB-.
 5. DIMENSIONS S AND V TO BE DETERMINED AT
 SEATING PLANE -AC-.
 6. DIMENSIONS A AND B DO NOT INCLUDE
 MOLD PROTRUSION. ALLOWABLE PROTRUSION
 IS 0.250 (0.010) PER SIDE. DIMENSIONS A AND B
- DO INCLUDE MOLD MISMATCH AND ARE
 DETERMINED AT DATUM PLANE -AB-.
 TO DIMENSION D DOES NOT INCLUDE DAMBAR
 PROTRUSION. DAMBAR PROTRUSION SHALL NOT CAUSE THE D DIMENSION TO EXCEED 0.520 (0.020).
- u.520 (J.020).

 8. MINIMUM SOLDER PLATE THICKNESS SHALL BE 0.0076 (0.0003).

 9. EXACT SHAPE OF EACH CORNER MAY VARY FROM DEPICTION.

	MILLIN	METERS	INC	HES			
DIM	MIN	MAX	MIN	MAX			
Α	7.000	BSC	0.276	BSC			
A1	3.500	BSC	0.138	BSC			
В	7.000	BSC	0.276	BSC			
B1	3.500	BSC	0.138	BSC			
С	1.400	1.600	0.055	0.063			
D	0.300	0.450	0.012	0.018			
Е	1.350	1.450	0.053	0.057			
F	0.300	0.400	0.012	0.016			
G	0.800	BSC	0.031 BSC				
Н	0.050	0.150	0.002	0.006			
J	0.090	0.200	0.004	0.008			
K	0.500	0.700	0.020	0.028			
M	12°	REF	12° REF				
N	0.090	0.160	0.004	0.006			
P	0.400		0.016 BSC				
Q	1°	5°	1°	5°			
R	0.150	0.250	0.006	0.010			
S	9.000	BSC	0.354	BSC			
S1	4.500	BSC	0.177 BSC				
V	9.000	BSC	0.354 BSC				
V1	4.500	BSC	0.177 BSC				
W	0.200	REF	0.008 REF				
Х	1.000	REF	0.039	REF			

Notes

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

NORTH AMERICA Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax**: 303–675–2176 or 800–344–3867 Toll Free USA/Canada

Email: ONlit@hibbertco.com

Fax Response Line: 303-675-2167 or 800-344-3810 Toll Free USA/Canada

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor - European Support

German Phone: (+1) 303–308–7140 (M–F 1:00pm to 5:00pm Munich Time)

Email: ONlit-german@hibbertco.com

French Phone: (+1) 303–308–7141 (M–F 1:00pm to 5:00pm Toulouse Time)

Email: ONlit-french@hibbertco.com

English Phone: (+1) 303–308–7142 (M–F 12:00pm to 5:00pm UK Time)

Email: ONlit@hibbertco.com

EUROPEAN TOLL-FREE ACCESS*: 00-800-4422-3781

*Available from Germany, France, Italy, England, Ireland

CENTRAL/SOUTH AMERICA:

Spanish Phone: 303-308-7143 (Mon-Fri 8:00am to 5:00pm MST)

Email: ONlit-spanish@hibbertco.com

ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support

Phone: 303-675-2121 (Tue-Fri 9:00am to 1:00pm, Hong Kong Time)

Toll Free from Hong Kong & Singapore: 001–800–4422–3781

Email: ONlit-asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–8549

Phone: 81–3–5740–2745 **Email**: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.