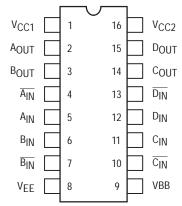
Quad Line Receiver

The MC10115 is a quad differential amplifier designed for use in sensing differential signals over long lines. The base bias supply (V_{BB}) is made available at pin 9 to make the device useful as a Schmitt trigger, or in other applications where a stable reference voltage is necessary.


Active current sources provide the MC10115 with excellent common mode noise rejection. If any amplifier in a package is not used, one input of that amplifier must be connected to V_{BB} (pin 9) to prevent upsetting the current source bias network.

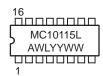
- $P_D = 110 \text{ mW typ/pkg (No Load)}$
- $t_{pd} = 2.0 \text{ ns typ}$
- t_r , $t_f = 2.0$ ns typ (20%–80%)

LOGIC DIAGRAM 4 5 2 7 6 3 10 11 14 13 12 V_{BB*} V_{CC1} = PIN 1 V_{CC2} = PIN 16 V_{EE} = PIN 8

 * VBB to be used to supply bias to the MC10115 only and bypassed (when used) with 0.01 μ F to 0.1 μ F capacitor to ground (0 V). VBB can source < 1.0 mA. When the input pin with the bubble goes positive, the output goes negative.

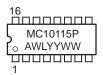
DIP PIN ASSIGNMENT

Pin assignment is for Dual–in–Line Package.
For PLCC pin assignment, see the Pin Conversion Tables on page 18 of the ON Semiconductor MECL Data Book (DL122/D).


ON Semiconductor

http://onsemi.com

MARKING DIAGRAMS



CDIP-16 L SUFFIX CASE 620

PDIP-16 P SUFFIX CASE 648

PLCC-20 FN SUFFIX CASE 775

A = Assembly Location

WL = Wafer Lot YY = Year WW = Work Week

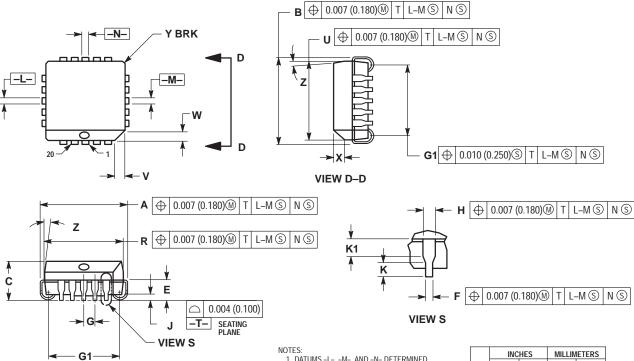
ORDERING INFORMATION

Device	Package	Shipping
MC10115L	CDIP-16	25 Units / Rail
MC10115P	PDIP-16	25 Units / Rail
MC10115FN	PLCC-20	46 Units / Rail

ELECTRICAL CHARACTERISTICS

				Test Limits							
			Pin Under Test	−30°C		+25°C			+85°C		1 1
Characteristic		Symbol		Min	Max	Min	Тур	Max	Min	Max	Unit
Power Supply D	rain Current	ΙE	8		29			26		29	mAdc
Input Current		l _{inH}	4		150			95		95	μAdc
		ІСВО	4		1.5			1.0		1.0	μAdc
Output Voltage	Logic 1	Vон	2	-1.060	-0.890	-0.960		-0.810	-0.890	-0.700	Vdc
Output Voltage	Logic 0	VOL	2	-1.890	-1.675	-1.850		-1.650	-1.825	-1.615	Vdc
Threshold Volta	ge Logic 1	Vона	2	-1.080		-0.980			-0.910		Vdc
Threshold Volta	ge Logic 0	VOLA	2		-1.655			-1.630		-1.595	Vdc
Reference Volta	ige	V _{BB}	9	1.420	1.280	-1.350		-1.230	1.295	-1.150	Vdc
Switching Times	s (50Ω Load)										ns
Propagation De	lay	t ₄₋₂₊ t ₄₊₂₋	2 2	1.0 1.0	3.1 3.1	1.0 1.0		2.9 2.9	1.0 1.0	3.3 3.3	
Rise Time	(20 to 80%)	t ₂₊	2	1.1	3.6	1.1		3.3	1.1	3.7	
Fall Time	(20 to 80%)	t ₂ _	2	1.1	3.6	1.1		3.3	1.1	3.7	

ELECTRICAL CHARACTERISTICS (continued)

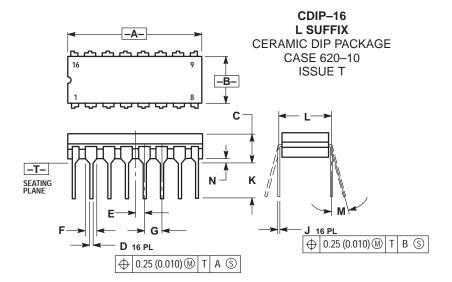

		TEST VOLTAGE VALUES (Volts)								
	V _{IHmax}	V _{ILmin}	V _{IHAmin}	V _{ILAmax}	V _{BB}	٧ _{EE}				
−30°C				-0.890	-1.890	-1.205	-1.500	From	-5.2	
	+25°C				-1.850	-1.105	-1.475	Pin	-5.2	
+85°C				-0.700	-1.825	-1.035	-1.440	9	− 5.2	
			Pin	TE	ST VOLTAGI	E APPLIED	TO PINS LIS	STED BELC	w	
Characteri	Characteristic Symbol Test			V _{IHmax}	V _{ILmin}	V _{IHAmin}	V _{ILAmax}	V _{BB}	VEE	(VCC) Gnd
Power Supply Drain	Current	ΙΕ	8		4,7,10,13			5,6,11,12	8	1, 16
Input Current		linH	4	4	7,10,13			5,6,11,12	8	1, 16
		ICBO	4		7,10,13			5,6,11,12	8,4	1, 16
Output Voltage	Logic 1	VOH	2	7,10,13	4			5,6,11,12	8	1, 16
Output Voltage	Logic 0	VOL	2	4	7,10,13			5,6,11,12	8	1, 16
Threshold Voltage	Logic 1	VOHA	2		7,10,13		4	5,6,11,12	8	1, 16
Threshold Voltage	Logic 0	VOLA	2		7,10,13	4		5,6,11,12	8	1, 16
Reference Voltage		V_{BB}	9					5,6,11,12	8	1, 16
Switching Times	(50 Ω Load)			Pu	lse In	Pulse	e Out		–3.2 V	+2.0 V
Propagation Delay		t ₄₋₂₊ t ₄₊₂₋	2 2		4 4	1	2	5,6,11,12 5,6,11,12	8 8	1, 16 1, 16
Rise Time	(20 to 80%)	t ₂₊	2	4		2		5,6,11,12	8	1, 16
Fall Time	(20 to 80%)	t ₂ _	2		4	2	2	5,6,11,12	8	1, 16

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to –2.0 volts. Test procedures are shown for only one gate. The other gates are tested in the same manner.

PACKAGE DIMENSIONS

PLCC-20 **FN SUFFIX**

PLASTIC PLCC PACKAGE CASE 775-02 ISSUE C

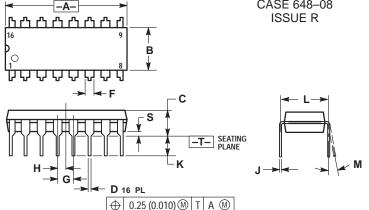


⊕ 0.010 (0.250)⑤ T L-M ⑤ N ⑤

- DATUMS -L-, -M-, AND -N- DETERMINED
 WHERE TOP OF LEAD SHOULDER EXITS PLASTIC WILLY LOVE LEAD STOUDER EXTENSIVE SOLUTION TO BE MEASURED AT DATUM -T-, SEATING PLANE.

 3. DIMENSIONS R AND U DO NOT INCLUDE MOLD
- FLASH. ALLOWABLE MOLD FLASH IS 0.010 (0.250) PER SIDE.
 4. DIMENSIONING AND TOLERANCING PER ANSI
- Y14.5M, 1982. 5. CONTROLLING DIMENSION: INCH.
- 6. THE PACKAGE TOP MAY BE SMALLER THAN THE PACKAGE BOTTOM BY UP TO 0.012 (0.300). DIMENSIONS R AND U ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY EXCLUSIVE OF MOLD FLASH, TIE BAR BURRS, GATE BURRS AND INTERLEAD FLASH, BUT INCLUDING ANY MISMATCH BETWEEN THE TOP AND BOTTOM OF THE PLASTIC BODY.
- DIMENSION H DOES NOT INCLUDE DAMBAR PROTRUSION OR INTRUSION. THE DAMBAR PROTRUSION(S) SHALL NOT CAUSE THE H DIMENSION TO BE GREATER THAN 0.037 (0.940). THE DAMBAR INTRUSION(S) SHALL NOT CAUSE THE H DIMENSION TO BE SMALLER THAN 0.025 (0.635).

	INC	HES	MILLIN	IETERS				
DIM	MIN	MAX	MIN	MAX				
Α	0.385	0.395	9.78	10.03				
В	0.385	0.395	9.78	10.03				
С	0.165	0.180	4.20	4.57				
Ε	0.090	0.110	2.29	2.79				
F	0.013	0.019	0.33	0.48				
G	0.050	BSC	1.27	BSC				
Н	0.026	0.032	0.66	0.81				
J	0.020		0.51					
K	0.025		0.64					
R	0.350	0.356	8.89	9.04				
U	0.350	0.356	8.89	9.04				
٧	0.042	0.048	1.07	1.21				
W	0.042	0.048	1.07	1.21				
Χ	0.042	0.056	1.07	1.42				
Υ		0.020		0.50				
Z	2°	10 °	2 °	10 °				
G1	0.310	0.330	7.88	8.38				
K1	0.040		1.02					



NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- CONTROLLING DIMENSION: INCH.
 DIMENSION L TO CENTER OF LEAD WHEN
- FORMED PARALLEL.
 DIMENSION F MAY NARROW TO 0.76 (0.030) WHERE THE LEAD ENTERS THE CERAMIC

		INC	HES	MILLIMETERS		
DIN	VI	MIN	MAX	MIN	MAX	
Α		0.750	0.785	19.05	19.93	
В		0.240	0.295	6.10	7.49	
С			0.200		5.08	
D		0.015	0.020	0.39	0.50	
E		0.050	BSC	1.27 BSC		
F		0.055	0.065	1.40	1.65	
G		0.100	BSC	2.54 BSC		
Н		0.008	0.015	0.21	0.38	
K		0.125	0.170	3.18	4.31	
L		0.300 BSC		7.62	BSC	
M		0 °	15°	0 °	15°	
N		0.020	0.040	0.51	1.01	

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI
- Y14.5M, 1982. CONTROLLING DIMENSION: INCH.
- DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.
- DIMENSION B DOES NOT INCLUDE MOLD FLASH.
- ROUNDED CORNERS OPTIONAL

	INC	HES	MILLIMETERS		
DIM	MIN MAX		MIN	MAX	
Α	0.740	0.770	18.80	19.55	
В	0.250	0.270	6.35	6.85	
С	0.145	0.175	3.69	4.44	
D	0.015	0.021	0.39	0.53	
F	0.040	0.70	1.02	1.77	
G	0.100	BSC	2.54 BSC		
Н	0.050	BSC	1.27 BSC		
J	0.008	0.015	0.21	0.38	
K	0.110	0.130	2.80	3.30	
L	0.295	0.305	7.50	7.74	
M	0°	10°	0 °	10 °	
S	0.020	0.040	0.51	1.01	

ON Semiconductor and War are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

North America Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163. Denver. Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

Email: ONlit@hibbertco.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor - European Support

German Phone: (+1) 303-308-7140 (M-F 2:30pm to 5:00pm Munich Time)

Email: ONlit-german@hibbertco.com

Phone: (+1) 303-308-7141 (M-F 2:30pm to 5:00pm Toulouse Time)

Email: ONlit-french@hibbertco.com

Phone: (+1) 303-308-7142 (M-F 1:30pm to 5:00pm UK Time)

Email: ONlit@hibbertco.com

ASIA/PACIFIC: LDC for ON Semiconductor - Asia Support

303-675-2121 (Tue-Fri 9:00am to 1:00pm, Hong Kong Time) Phone: Toll Free from Hong Kong 800-4422-3781

Email: ONlit-asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center 4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan 141-8549

Phone: 81-3-5740-2745 Email: r14525@onsemi.com

Fax Response Line: 303-675-2167

800-344-3810 Toll Free USA/Canada

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local

Sales Representative.