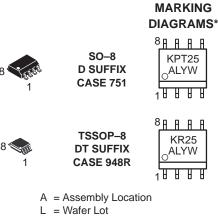

Differential LVECL/ECL to LVTTL Translator

The MC100EPT25 is a Differential LVECL/ECL to LVTTL translator. This device requires +3.3V, -3.3V to -5.2V, and ground. The small outline 8–lead SOIC package and the single gate of the EPT25 make it ideal for applications which require the translation of a clock or data signal.

The VBB output allows the EPT25 to also be used in a single–ended input mode. In this mode the VBB output is tied to the D input for a non–inverting buffer or the D input for an inverting buffer. If used, the VBB pin should be bypassed to ground via a 0.01mF capacitator.

- 1.1ns Typical Propagation Delay
- 275MHz Fmax (Clock bit stream, not pseudo-random)
- Differential LVECL/ECL inputs
- Small Outline SOIC Package
- 24mA TTL outputs
- Flow Through Pinouts
- Internal Input Resistors: Pulldown on D, Pulldown and Pullup on D
- Q Output will default LOW with inputs open or at GND
- ESD Protection: >4000V HBM, >200V MM
- VBB Output
- New Differential Input Common Mode Range
- Moisture Sensitivity Level 1, Indefinite Time Out of Drypack. For Additional Information, See Application Note AND8003/D
- Flammability Rating: UL–94 code V–0 @ 1/8", Oxygen Index 28 to 34
- Transistor Count = 111 devices



ON Semiconductor

http://onsemi.com

Y = Year

```
W = Work Week
```

*For additional information, see Application Note AND8002/D

PIN DESCRIPTION							
PIN FUNCTION							
Q	LVTTL Output						
D, D	Differential LVECL Input Pair						
VCC	Positive Supply						
V _{BB}	Output Reference Voltage						
GND	Ground						
VEE	Negative Supply						

ORDERING INFORMATION

Device	Package	Shipping						
MC100EPT25D	SO–8	98 Units / Rail						
MC100EPT25DR2	SO–8	2500 / Reel						
MC100EPT25DT	TSSOP-8	98 Units / Rail						
MC100EPT25DTR2	TSSOP-8	2500 / Reel						

MAXIMUM RATINGS*

Symbol	Parameter		Value	Unit
VCC	Power Supply (Referenced to GND, $V_{EE} = -3.3V$	0 to 3.8	VDC	
VEE	Power Supply (Referenced to GND, $V_{CC} = +3.3$)	/)	-6.0 to 0	VDC
VI	Input Voltage (VI not more positive than GND)		0 to 3.8	VDC
l _{out}	Output Current	Continuous Surge	50 100	mA
I _{BB}	VBB Sink/Source Current†		± 0.5	mA
Т _А	Operating Temperature Range		-40 to +85	°C
T _{stg}	Storage Temperature		-65 to +150	°C
θJA	Thermal Resistance (Junction-to-Ambient)	Still Air 500lfpm	190 130	°C/W
θJC	Thermal Resistance (Junction-to-Case)		41 to 44 $\pm5\%$	°C/W
T _{sol}	Solder Temperature (<2 to 3 Seconds: 245°C des	ired)	265	°C

* Maximum Ratings are those values beyond which damage to the device may occur.

† Use for inputs of same package only.

DC CHARACTERISTICS, ECL/LVECL (V_{CC} = +3.3V; V_{EE} = -5.5V to -3.0V, GND = 0V)

			–40°C 25°C								
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
IEE	Power Supply Current (Note 1.)	8.0	16	25	8.0	16	25	8.0	16	25	mA
VIH	Input HIGH Voltage Single Ended (Note 4.)	-1165		-880	-1165		-880	-1165		-880	mV
VIL	Input LOW Voltage Single Ended (Note 4.)	-1810		-1625	-1810		-1625	-1810		-1625	mV
V _{BB}	Output Voltage Reference	-1550	-1450	-1350	-1550	-1450	-1350	-1550	-1450	-1350	mV
VIHCMR	Input HIGH Voltage Common Mode Range (Note 3.)	VEE	+2.0	0.0	VEE	+2.0	0.0	VEE	+2.0	0.0	V
ΙΗ	Input HIGH Current			150			150			150	μΑ
ΙIL	Input LOW Current D D	0.5 -150			0.5 -150			0.5 -150			μA

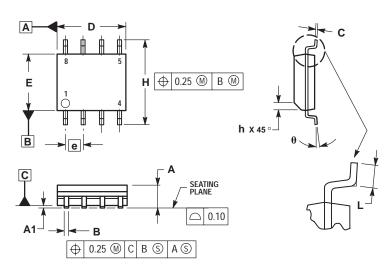
NOTE: 100EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The NOTE: 100EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established to include the DC specifications shown in the above table after thermal equilibrium has been established to circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500lfpm is maintained.
(V_{CC} = +3.3V, GND = 0V, V_{EE} = -3.3V), all other pins floating.
All loading with 500 ohms to GND, C_L = 20pF.
V_{IHCMR} min varies 1:1 with V_{EE}, max varies 1:1 with V_{CC}.
Input and output parameters vary 1:1 with V_{CC}.

TTL OUTPUT DC CHARACTERISTICS (V_{CC} = $3.3V \pm 0.3V$; GND = 0V; V_{EE} = $-3.3V \pm 0.3V$; T_A = $-40^{\circ}C$ to $85^{\circ}C$)

Symbol	Characteristic	Min	Тур	Max	Unit
ІССН	Power Supply Current (Outputs set to HIGH)	6.0	10	14	mA
ICCL	Power Supply Current (Outputs set to LOW)	7.0	12	17	mA
Vон	Output HIGH Voltage (I _{OH} = -3.0mA) (Note 5.)	2.2			V
VOL	Output LOW Voltage (I _{OL} = 24mA) (Note 5.)			0.5	V
IOS	Output Short Circuit Current	-130		-60	mA

NOTE: 100EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500lfpm is maintained. 5. All loading with 500 ohms to GND, CL = 20pF.

AC CHARACTERISTICS (V_{CC} = $3.3V \pm 0.3V$; GND = 0V)

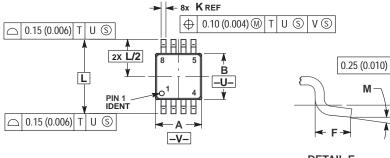

			–40°C 25°C		85°C						
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
f _{max}	Maximum Toggle Frequency	275			275			275			MHz
^t PLH, ^t PHL	Propagation Delay to Output Differential	800	1200	1800	800	1100	1600	800	1100	1600	ns
t _{SK+} + t _{SK-} - t _{SKPP}	Output–to–Output Skew++ Output–to–Output Skew– – Part–to–Part Skew (Note 6.)		60 25 500			60 25 500			60 25 500		ps
^t JITTER	Cycle-to-Cycle Jitter		TBD			TBD			TBD		ps
V _{PP}	Input Voltage Swing (Differential) (Note 7.)	100	800	1200	100	800	1200	100	800	1200	mV
t _r t _f	Output Rise/Fall Times Q, Q (0.8V – 2.0V)	450 900	600 1160	750 1400	450 900	600 1100	750 1400	450 900	600 1100	750 1400	ps

6. Skews are measured between outputs under identical conditions.

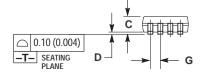
7. 200mV input guarantees full logic swing at the output.

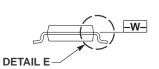
PACKAGE DIMENSIONS

SO-8 **D SUFFIX** PLASTIC SOIC PACKAGE CASE 751-06 ISSUE T


NOTES:

NOTES:
 DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 DIMENSIONS ARE IN MILLIMETER.
 DIMENSION D AND E DO NOT INCLUDE MOLD PROTRUSION.
 MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
 DIMENSION B DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 TOTAL IN EXCESS OF THE B DIMENSION AT MAXIMUM MATERIAL CONDITION.


	MILLIMETERS						
DIM	MIN	MAX					
Α	1.35	1.75					
A1	0.10	0.25					
В	0.35	0.49					
С	0.19	0.25					
D	4.80	5.00					
Ε	3.80	4.00					
е	1.27	BSC					
Н	5.80	6.20					
h	0.25	0.50					
L	0.40	1.25					
θ	0 °	7 °					


PACKAGE DIMENSIONS

TSSOP-8 DT SUFFIX PLASTIC TSSOP PACKAGE CASE 948R-02 **ISSUE A**

NOTES:				

- DIES:
 DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
 DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0006) DED RUBC

- FLASH OR GATE BURRS SHALL NOT EXCEED
 0.15 (0.006) PER SIDE.
 4. DIMENSION B DOES NOT INCLUDE
 INTERLEAD FLASH OR PROTRUSION.
 INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
 5. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
 6. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

	MILLIN	IETERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	2.90	3.10	0.114	0.122	
В	2.90	3.10	0.114	0.122	
С	0.80	1.10	0.031	0.043	
D	0.05	0.15	0.002	0.006	
F	0.40	0.70	0.016	0.028	
G	0.65	BSC	0.026	BSC	
K	0.25	0.40	0.010	0.016	
L	4.90	BSC	0.193 BSC		
M	0°	6 °	0°	6°	

Notes

Notes

ON Semiconductor and without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

NORTH AMERICA Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: ONIt@hibbertco.com Fax Response Line: 303–675–2167 or 800–344–3810 Toll Free USA/Canada

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor – European Support German Phone: (+1) 303–308–7140 (Mon–Fri 2:30pm to 7:00pm CET)

Email: ONlit-german@hibbertco.com French Phone: (+1) 303–308–7141 (Mon–Fri 2:00pm to 7:00pm CET)

Email: ONlit-french@hibbertco.com

English Phone: (+1) 303–308–7142 (Mon–Fri 12:00pm to 5:00pm GMT) Email: ONlit@hibbertco.com

EUROPEAN TOLL-FREE ACCESS*: 00-800-4422-3781 *Available from Germany, France, Italy, England, Ireland

CENTRAL/SOUTH AMERICA:

Spanish Phone: 303–308–7143 (Mon–Fri 8:00am to 5:00pm MST) Email: ONlit–spanish@hibbertco.com

ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time) Toll Free from Hong Kong & Singapore: 001–800–4422–3781 Email: ONlit–asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031 Phone: 81–3–5740–2745 Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.