Product Preview +2/4, +4/5/6 Clock Generation Chip

The MC100EP39 is a low skew $\div 2/4$, $\div 4/5/6$ clock generation chip designed explicitly for low skew clock generation applications. The internal dividers are synchronous to each other, therefore, the common output edges are all precisely aligned. The device can be driven by either a differential or single–ended LVECL or, if positive power supplies are used, LVPECL input signal. In addition, by using the V_{BB} output, a sinusoidal source can be AC coupled into the device (see Interfacing section of the ECLinPSTM Data Book DL140/D). If a single–ended input is to be used, the V_{BB} output should be connected to the CLK input and bypassed to ground via a 0.01 μ F capacitor. The V_{BB} output is designed to act as the switching reference for the input of the EP39 under single–ended input conditions, as a result, this pin can only source/sink up to 0.5mA of current.

The common enable $(\overline{\text{EN}})$ is synchronous so that the internal dividers will only be enabled/disabled when the internal clock is already in the LOW state. This avoids any chance of generating a runt clock pulse on the internal clock when the device is enabled/disabled as can happen with an asynchronous control. An internal runt pulse could lead to losing synchronization between the internal divider stages. The internal enable flip–flop is clocked on the falling edge of the input clock, therefore, all associated specification limits are referenced to the negative edge of the clock input.

Upon startup, the internal flip–flops will attain a random state; therefore, for systems which utilize multiple EP39s, the master reset (MR) input must be asserted to ensure synchronization. For systems which only use one EP39, the MR pin need not be exercised as the internal divider design ensures synchronization between the \div 2/4 and the \div 4/5/6 outputs of a single device.

- 50ps Output-to-Output Skew
- Synchronous Enable/Disable
- Master Reset for Synchronization
- 75kΩ Internal Input Pulldown Resistors
- >2000V ESD Protection
- Low Voltage VEE Range of -3.0 to -3.8V; -5V Tolerant

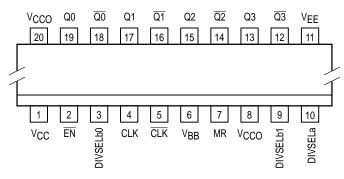


Figure 1. 20-Lead SOIC (Top View)

This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

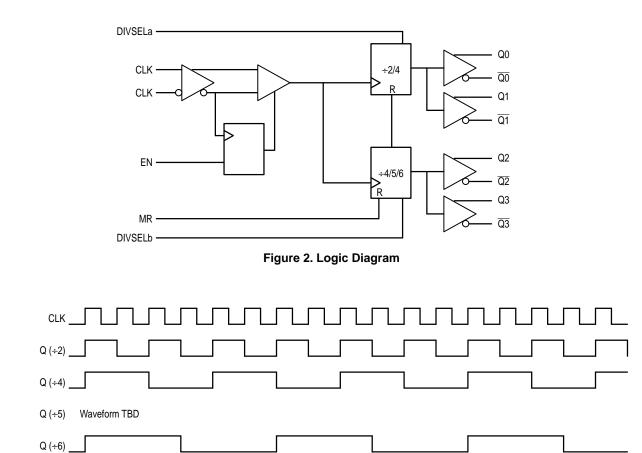
DW SUFFIX 20–LEAD PLASTIC WIDE SOIC PACKAGE CASE 751D–05

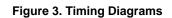
MC100EP39

PIN NAMES

PIN	FUNCTION
CLK	Diff Clock Inputs
EN	Sync Enable
MR	Master Reset
VBB	Reference Output
Q0, Q1	Diff ÷2/4 Outputs
Q2,Q3	Diff ÷4/5/6 Outputs
DIVSEL	Frequency Select Input

FUNCTION TABLES


CLK	EN	MR	FUNCTION				
Z	L	LLT	Divide				
ZZ	H		Hold Q0:3				
X	X		Reset Q0:3				


Z = Low-to-High Transition ZZ = High-to-Low Transition

DIVSELa	Q0:1 OUTPUTS										
0	Divide by 2										
1	Divide by 4										
DIVSELb0	DIVSELb1	Q2:3 OUTPUTS									
0	0	Divide by 4									
1	0	Divide by 6									
0	1	Divide by 5									
1	1	Divide by 5									

6/98

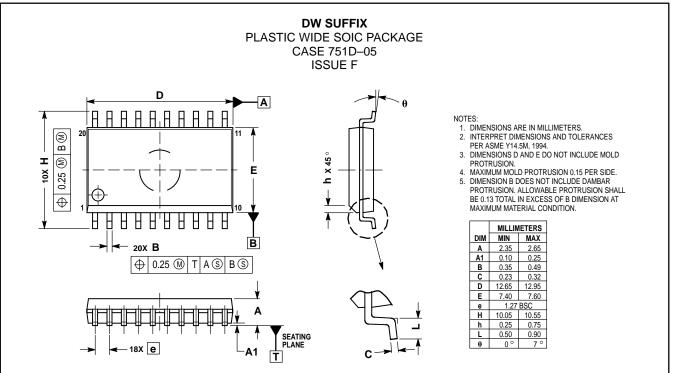
DC CHARACTERISTICS (V_{EE} = -3.8V to -3.0; V_{CC} = GND)

		-40°C			0°C			25°C			85°C			
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
IEE	Power Supply Current		50			50			50			54		mA
V _{BB}	Output Reference Voltage		Note 1.			Note 1.			Note 1.			Note 1.		V
Чн	Input High Current			150			150			150			150	μΑ

1. $V_{BB} = V_{CC} - 1.425 \pm 75 \text{mV}$

DC CHARACTERISTICS (V_{EE} = -5V; V_{CC} = V_{CCO} = GND; T_A = 0°C to + 85°C)

Symbol	Characteristic	Min	Тур	Max	Unit	Conditions			
VOH	Output HIGH Voltage		V_{CC} – 1.03 ±75mV		mV	V _{IN} = V _{IH} (max)			
VOL	Output LOW Voltage		$V_{CC} - 1.82 \pm 75 mV$		mV	or VIL(min)	Loading with		
VOHA	Output HIGH Voltage				mV	V _{IN} = V _{IH} (min)	50Ω to – 2.0V		
VOLA	Output LOW Voltage				mV	or VIL(max)			
VIH	Input HIGH Voltage		1022.5		mV	Guaranteed HIGH Signal for All Inpu			
VIL	Input LOW Voltage		1642.5		mV	Guaranteed LOW Signal for All Inputs			
١ _{IL}	Input LOW Current	0.5			μΑ	V _{IN} = V _{IL} (min)			


AC CHARACTERISTICS ($V_{EE} = -3.8V$ to -3.0; $V_{CC} = GND$)

			–40°C		0°C		25°C			85°C				
Symbol	Characteristic	Min	Тур	Мах	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
fMAX	Maximum Toggle Frequency		1500			1500			1500			1500		MHz
^t PLH ^t PHL	$\begin{array}{ll} \mbox{Propagation Delay} & \mbox{CLK} \rightarrow \mbox{Q} \mbox{(D)} \\ \mbox{to Output} & \mbox{CLK} \rightarrow \mbox{Q} \mbox{(S.f} \\ & \mbox{MR} \rightarrow \end{array}$.)	860 860 750			880 880 750			900 900 760			950 950 780		ps
^t SKEW	Within–Device Skew $Q_0 - C$ (Note 2.)	3		50			50			50			50	ps
	Part-to-Part $Q_0 - Q_3$ (D	ff)		200			200			200			200	
^t S	$\begin{array}{cc} \text{Setup Time} & \overline{\text{EN}} \rightarrow \overline{\text{CI}} \\ & \text{DIVSEL} \rightarrow \text{CI} \end{array}$		300 450			300 450			300 450			300 450		ps
^t H	Hold Time $\overline{CLK} \rightarrow \overline{E}$ $CLK \rightarrow Div_S$		150 200			150 200			150 200			150 200		ps
V _{PP}	Minimum Input Swing (Note 3.) Cl	к	300			300			300			300		mV
VCMR	Common Mode Range (Note 4.) Vpp < 500n	V –2.0 V –1.8		-0.4 -0.4	-2.1 -1.9		-0.4 -0.4	-2.1 -1.9		-0.4 -0.4	-2.1 -1.9		-0.4 -0.4	V
^t RR	Reset Recovery Time			100			100			100			100	ps
^t PW	Minimum Pulse Width Cl	K R	600 800			600 800			600 800			600 800		ps
t _r , t _f	Output Rise/Fall Times Q (20% – 809	6)	415			415			415			415		ps

2. Skew is measured between outputs under identical transitions.

Minimum input swing for which AC parameters are guaranteed. The device will function reliably with differential inputs down to 100mV.
 The CMR range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between Vppmin and 1V. The lower end of the CMR range varies 1:1 with V_{EE}. The numbers in the spec table assume a nominal V_{EE} = -3.3V. Note for PECL operation, the V_{CMR}(min) will be fixed at 3.3V - |V_{CMR}(min)|.

OUTLINE DIMENSIONS

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and the such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and the such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and the application Emp

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 1–303–675–2140 or 1–800–441–2447

Customer Focus Center: 1-800-521-6274

 Mfax™: RMFAX0@email.sps.mot.com
 - TOUCHTONE 1–602–244–6609

 Motorola Fax Back System
 - US & Canada ONLY 1–800–774–1848

 - http://sps.motorola.com/mfax/

 \Diamond

HOME PAGE: http://motorola.com/sps/

Mfax is a trademark of Motorola, Inc.

JAPAN: Nippon Motorola Ltd.; SPD, Strategic Planning Office, 141, 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan. 81–3–5487–8488

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298