SONY

LCX007BK

3.4cm (1.35-inch) Color LCD Panel

Description

The LCX007AK is a 3.4cm diagonal active matrix TFT-LCD panel addressed by polycrystalline silicon super thin film transistors with built-in peripheral driving circuit, and it provides a full-color representation is possible.

This panel provides a wide aspect ratio of 16:9, such as those represented in HD. The built-in sideblack function also allows an aspect ratio of 4:3 in the NTSC/PAL mode.

This panel has a polysilicon TFT high-speed scanner and built-in function to display images up/down and/or right/left inverse. The built-in 5V interface circuit leads to lower voltage of timing system and control signals.

Features

- The number of active dots: 512,880 (1.35-inch; 3.4cm in diagonal)
- Horizontal resolution: 400 TV lines
- High optical transmittance: 4.0% (typ.)
- High contrast ratio with normally white mode: 190 (typ.)
- Built-in H and V drivers (built-in input level conversion circuit, 5V driving possible)
- NTSC/NTSC-WIDE/HD (band: 20MHz) mode selectable (PAL/PAL-WIDE mode also available through conversion of scanned dot numbers by an external IC)
- Up/down and/or right/left inverse display function
- Side-black function
- 16:9 and 4:3 aspect-ratio switching function
- Full-color display

Element Structure

Dots

16:9 display: 1068.5 (H) × 480 (V) = 512,880 4:3 display: 799.5 (H) × 480 (V) = 383,760

• Built-in peripheral driver using polycrystalline silicon super thin film transistors.

Applications

Liquid crystal projectors, etc.

Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.

Block Diagram

Absolute Maximum Ratings (Vss = 0V)

 H driver supply voltage 	HVdd	-1.0 to +20	V
 V driver supply voltage 	VVdd	-1.0 to +20	V
 Common pad voltage 	СОМ	-1.0 to +17	V
 H shift register input pin voltage 	HST, HCK1, HCK2	-1.0 to +17	V
	RGT, WID		
 V shift register input pin voltage 	VST, VCK, PCG	-1.0 to +17	V
	CLR, ENB, DWN		
 Video signal input pin voltage 	SIG1, SIG2, SIG3, SID	-1.0 to +15	V
 Operating temperature 	Topr	-10 to +70	°C
 Storage temperature 	Tstg	-30 to +85	°C

Operating Conditions (Vss = 0V)

• Supply voltage

HVdd	$15.7^{+0.3}_{-0.4}$	V
VVdd	$15.7^{+0.3}_{-0.4}$	V

• Input pulse voltage (Vp-p of all input pins except video signal and side black signal input pins) Vin 5.0 ± 0.5 V

Pin Description

Pin No.	Symbol	Description	Pin No.	Symbol	Description
1	SID	Side black signal for 4:3 display	11	HCK2	Clock pulse for H shift register drive
2	SIG1 (G)	Video signal (G) to panel	12	CLR	Improvement pulse (1) for uniformity
3	SIG2 (R)	Video signal (R) to panel	13	ENB	Enable pulse for gate selection
4	SIG3 (B)	Video signal (B) to panel	14	VCK	Clock pulse for V shift register drive
5	HVdd	Power supply for H driver	15	PCG	Improvement pulse (2) for uniformity
6	WID	Aspect-ratio switching (H: 16:9, L: 4:3)	16	VST	Start pulse for V shift register drive
7	RGT	Drive direction pulse for H shift register (H: normal, L: reverse)	17	DWN	Drive direction pulse for V shift register (H: normal, L: reverse)
8	HST	Start pulse for H shift register drive	18	VVdd	Power supply for V driver
9	Vss	GND (H, V drivers)	19	СОМ	Common voltage of panel
10	HCK1	Clock pulse for H shift register drive	20	TEST	Test; Open

Input Equivalent Circuit

To prevent static charges, protective diodes are provided for each pin except the power supply. In addition, protective resistors are added to all pins except video signal input. All pins are connected to Vss with a high resistance of $1M\Omega$ (typ.). The equivalent circuit of each input pin is shown below: (The resistor value: typ.)

Input Signals

1. Input signal voltage conditions

I. Input signal voltage conditions (Vss = 0)							
Item		Symbol	Min.	Тур.	Max.	Unit	
H driver input voltage	(Low)	VHIL	-0.5	0.0	0.3	V	
WID, RGT, HST, HCK1, HCK2	(High)	VHIH	4.5	5.0	5.5	V	
V driver input voltage	(Low)	VVIL	-0.5	0.0	0.3	V	
CLR, ENB, VCK, PCG, VST, DWN	(High)	VVIH	4.5	5.0	5.5	V	
Video signal center voltage		VVC	6.5	7.0	7.2	V	
Video signal input range*1		Vsig	VVC – 4.5	_	VVC + 4.5	V	
Common voltage of panel*2		Vcom	VVC – 0.5	VVC - 0.4	VVC - 0.3	V	

*1 Video input signal shall be symmetrical to VVC.

 *2 Common voltage of the panel shall be adjusted to VVC – 0.4V.

Level Conversion Circuit

The LCX007BK has a built-in level conversion circuit in the clock input unit on the panel. The input signal level increases to HVpd or VVpd. The Vcc of external ICs are applicable to 5 \pm 0.5V.

2. Clock timing conditions

(Ta = 25°C) (fHCKn = 7.5MHz, fVCK = 15.7kHz)

	Item	Symbol	Min.	Тур.	Max.	Unit
	Hst rise time	trHst	—	—	30	
нѕт	Hst fall time	tfHst	_	—	30	
	Hst data set-up time	tdHst	20	67	100	1
	Hst data hold time	thHst	-40	0	40	1
	Hckn ^{*3} rise time	trHckn	_	—	30	
нск	Hckn*3 fall time	tfHckn	_	—	30	
	Hck1 fall to Hck2 rise time	to1Hck	-15	0	15	
	Hck1 rise to Hck2 fall time	to2Hck	-15	0	15	– ns
	Clr rise time	trClr		—	100	
CLR	Clr fall time	tfClr		—	100	
	Clr pulse width	twClr	3000	3100	3200	
	Vck rise/fall to CIr fall time	tdClr	-50	0	50	
	Vst rise time	trVst		—	100	
VST	Vst fall time	tfVst		—	100	
V31	Vst data set-up time	tdVst	-25	15	25	– µs
	Vst data hold time	thVst	5	15	25	_ μο
VCK	Vck rise time	trVck	—	—	100	
VCR	Vck fall time	tfVck	—	—	100	
	Enb rise time	trEnb	—	—	100	
ENB	Enb fall time	tfEnb	—	—	100	
END	Vck rise/fall to Enb rise time	tdEnb	350	400	450	
	Enb pulse width	twEnb	3450	3500	3550	ns
	Pcg rise time	trPcg		—	20]
PCG	Pcg fall time	tfPcg		—	20]
	Pcg fall to Vck rise/fall time	toVck	650	700	750	
	Pcg pulse width	twPcg	1150	1200	1250]

*3 Hckn means Hck1 and Hck2.

<Horizontal Shift Register Driving Waveform>

	Item	Symbol	Waveform	Conditions
	Hst rise time	trHst	Hst 10%	O Hckn ^{*3} duty cycle 50%
	Hst fall time	tfHst	trHst tfHst	to1Hck = 0ns to2Hck = 0ns
HST	Hst data set-up time	tdHst	*4 Hst	O Hckn ^{*3} duty cycle 50%
Hst data hold time	thHst	Hck1 50% 50%	to1Hck = 0ns to2Hck = 0ns	
	Hckn ^{*3} rise time	trHckn	90% *3 Hckn 90% 10% 90% 10%	O Hckn ^{*3} duty cycle 50%
	Hckn ^{*3} fall time	tfHckn	→ → → → → → → → → →	to1Hck = 0ns to2Hck = 0ns
НСК	Hck1 fall to Hck2 rise time	to1Hck	*4 50% Hck1	
	Hck1 rise to Hck2 fall time	to2Hck	Hck2 to2Hck to1Hck	
	Clr rise time	trClr	Clr 90% 90% 10%	O Hckn ^{*3} duty cycle 50%
	Clr fall time	tfClr		to1Hck = 0ns to2Hck = 0ns
CLR	Clr pulse width	twClr	Vck	
	Vck rise/fall to Clr fall time	tdClr	Clr 50% 50% tdClr	

<Vertical Shift Register Driving Waveform>

	Item	Symbol	Waveform	Conditions
	Vst rise time	trVst	90% 90%	
	Vst fall time	tfVst	Vst 10% trVst tfVst	
VST	Vst data set-up time	tdVst	*4 Vst 50% 50% 50%	
	Vst data hold time	thVst	Vck	
VCK	Vck rise time	trVck	90% Vck 10% 10%	
	Vck fall time	tfVck	trVckn tfVckn	
	Enb rise time	trEnb	90% 10% 10% 90%	
	Enb fall time	tfEnb	Enb tfEn trEn	
ENB	Vck rise/fall to Enb rise time	tdEnb	Vck	
	Enb pulse width	twEnb	Enb 50% twEnb tdEnb *4	
	Pcg rise time	trPcg		
	Pcg fall time	tfPcg	Vck	
PCG	Pcg fall to Vck rise/fall time	toVck	Pcg 50%	
	Pcg pulse width	twPcg	twPcg toVck ∗4	

*4 Definitions: The right-pointing arrow (↔) means +.

The left-pointing arrow (\checkmark) means –.

The black dot at an arrow (•) indicates the start of measurement.

Electrical Characteristics (Ta = 25°C, HVDD = 15.7V, VVDD = 15.7V)

1. Horizontal drivers

Item		Symbol	Min.	Тур.	Max.	Unit	Condition
Input pin capacitance	HCKn	CHckn	_	7	10	pF	
	HST	CHst		7	10	pF	
Input pin current	HCK1		-500	-120	_	μA	HCK1 = GND
	HCK2		-1000	-450	_	μA	HCK2 = GND
	HST		-500	-160		μA	HST = GND
WID	, RGT		-150	-30		μA	WID, RGT = GND
Video signal input pin cap	acitance	Csig		250		pF	
Current consumption		IH	—	7.5	10	mA	HCKn: HCK1, HCK2 (7.5MHz)

2. Vertical drivers

ltem	Symbol	Min.	Тур.	Max.	Unit	Condition
Input pin capacitance VCK	CVck		7	10	pF	
VST	CVst		7	10	pF	
Input pin current VCK		-1000	-160		μA	VCK = GND
PCG, VST, EN, CLR, DWN		-150	-30		μA	PCG, VST, EN, CLR, DWN = GND
Current consumption	IV	_	1.5	4	mA	VCK: (15.7kHz)

3. Total power consumption of the panel

Item	Symbol	Min.	Тур.	Max.	Unit
Total power consumption of the panel (NTSC)	PWR	_	150	250	mW

4. Pin input resistance

Item	Symbol	Min.	Тур.	Max.	Unit
Pin-Vss input resistance	Rpin	0.4	1		MΩ

5. Side signal input pin capacitance

Item	Symbol	Min.	Тур.	Max.	Unit
Side signal input pin capacitance	CSIDon	8	10	12	nF

Electro-optical Characteristics

(Ta = 25°C, NTSC mode)

ltem			Symbol	Measurement method	Min.	Тур.	Max.	Unit
Contrast ratio		25°C	CR25	· 1	60	190	—	_
		60°C	CR60		100	190	_	
Optical transmittance			Т	2	3.3	4.0	_	%
	R	Х	Rx	3	0.560	0.622	0.670	CIE standards
		Y	Ry		0.300	0.347	0.390	
Chromaticity	G	Х	Gx		0.275	0.302	0.347	
Chromaticity		Y	Gy		0.541	0.601	0.650	
	В	Х	Bx		0.120	0.144	0.187	
		Y	Ву		0.040	0.087	0.122	
	V90	25°C	V90-25	4	1.4	1.7	2.0	V
		60°C	V90-60		1.2	1.5	1.8	
V-Т	V50	25°C	V50-25		1.8	2.1	2.4	
characteristics		60°C	V50-60		1.6	1.9	2.2	
	V10	25°C	V10-25		2.4	2.7	3.0	
		60°C	V10-60		2.2	2.5	2.8	
Half tone color re	production	R vs. G	V50RG	E	_	-0.10	-0.25	v
range	-		V50BG	5		0.15	0.50	v
	ON time	0°C	ton0	6	_	50	100	ms
Response time		25°C	ton25			15	40	
	OFF time	0°C	toff0			52	150	
		25°C	toff25			16	60	
Flicker		60°C	F	7		-50	-30	dB
Image retention time 25		25°C	YT60	8		_	5	S

1. Contrast Ratio

Contrast Ratio (CR) is given by the following formula (1).

$$CR = \frac{L (White)}{L (Black)} \dots (1)$$

L (White): Surface luminance of the TFT-LCD panel at the input signal amplitude $V_{AC} = 0.5V$.

L (Black): Surface luminance of the panel at $V_{AC} = 4.5V$.

Both luminosities are measured by System I.

2. Optical Transmittance

Optical Transmittance (T) is given by the following formula (2).

 $T = \frac{L \text{ (White)}}{\text{Luminance of Back Light}} \times 100 \text{ [\%]} \dots \text{ (2)}$

L (White) is the same expression as defined in the 'Contrast Ratio' section.

3. Chromaticity

Chromaticity of the panels are measured by System I. Raster modes of each color are defined by the representations at the input signal amplitude conditions shown in the table below. System I uses Chromaticity of x and y on the CIE standards here.

\searrow		Signal amplitudes (VAc) supplied to each input				
		R input	G input	B input		
Raster	R	0.5	4.5	4.5		
	G	4.5	0.5	4.5		
	B 4.5		4.5	0.5		

(Unit: V)

4. V-T Characteristics

V-T characteristics, the relationship between signal amplitude and the transmittance of the panels, are measured by System II. V_{90} , V_{50} and V_{10} correspond to the each voltage which defines 90%, 50% and 10% of transmittance respectively.

VAC - Signal amplitude [V]

5. Half Tone Color Reproduction Range

Half tone color reproduction range of the LCD panels is characterized by the defferences between the V-T characteristics of R, G and B. The differences of these V-T characteristics are measured by System II. System II defines signal voltages of each R, G, B raster modes which corresponds to 50% of transmittance, V_{50R}, V_{50G} and V_{50B} respectively. V_{50RG} and V_{50BG}, the voltage differences between V_{50R} and V_{50BG}, the voltage simply given by the following formula (3) and (4) respectively.

V50RG = V50R-V50G ... (3) V50BG = V50B-V50G ... (4)

6. Response Time

Response time 'ton' and 'toff' are defined by the formula (5) and (6) respectively.

ton = t1 - tON ... (5)toff = t2 - tOFF ... (6)

- t1: time which gives 10% transmittance of the panel.
- t2: time which gives 90% transmittance of the panel.

The relationships between t1, t2, tON and tOFF are shown in the right figure.

Input signal voltage (waveform applied to the measured pixels)

7. Flicker

Flicker (F) is given by the formula (7). DC and AC (NTSC: 30Hz, rms, PAL: 25Hz, rms) components of the panel output signal for gray raster^{*} mode are measured by a DC voltmeter and a spectrum analyzer in System II.

$$F [dB] = 20 \log \left\{ \frac{AC \text{ component}}{DC \text{ component}} \right\} ... (7)$$
* Each input signal condition for gray raster mode is given by
$$Vsig = 7.0 \pm V_{50} [V]$$
where: V₅₀ is the signal amplitude which gives 50% of

transmittance in V-T characteristics.

8. Image Retention Time

Image Retention time is given by following procedures.

Apply the monoscope signal to the LCD panel for 60 minutes and then change this signal to the gray scale of Vsig = $7.0 \pm Vac$ (Vac: 3 to 4V). Hold Vac that maximizes image retention judging by sight. Measure the time till the residual image becomes indistinct.

(shown in the right figure) Vcom = 6.6V

Vsig waveform

Optical transmittance of LCD panel (Typical value)

Measurement method: Measurement system II

Viewing angle characteristics (Typical value)

1. Dot Arrangement (1) (16:9 display)

The dots are arranged in a delta pattern. The shaded area is used for the dark border around the display. The R corresponds to SIG2, G to SIG1, and B to SIG3, respectively

The dots are arranged in a delta pattern. The shaded area is used for the dark border around the display. The R corresponds to SIG2, G to SIG1, and B to SIG3, respectively.

2. LCD Panel Operations

[Description of basic operations]

The basic operations of the LCD panel are shown below based on the wide-display mode.

- A vertical driver, which consists of vertical shift registers, enable-gates and buffers, applies a selected pulse to every 480 gate lines sequentially in every horizontal scanning period.
- A horizontal driver, which consists of horizontal shift registers, gates and CMOS sample-and-hold circuits, applies selected pulses to every 1068.5 signal electrodes sequentially in a single horizontal scanning period.
- Vertical and horizontal shift registers address one pixel, and then turn on Thin Film Transistors (TFTs; two TFTs) to apply a video signal to the dot. The same procedures lead to the entire 480 × 1068.5 dots to display a picture in a single vertical scanning period.
- The LCD pixel dots are arranged in a delta pattern, where the dots connected to the identical signal line are positioned with 1.5-dot offset against those of the adjacent horizontal line. Horizontal Start Pulse (HST) is generated with 1.5-bit offset between the horizontal lines to regulate the above offset. HCK and sample-hold (S/H) pulses follow the same 1.5-bit offset scheme.
- The CLR pin is provided to eliminate the shading effect caused by the coupling of selected pulses. While maintaining the CLR at High level, the VV_{DD} potential drops to approximately 9.5V. This pin shall be grounded when not in use.
- The video signal shall be input with polarity-inverted system in every horizontal cycle.
- Timing diagrams of the vertical and the horizontal display cycle are shown below:
- (1) Vertical display cycle

VD	
VST	
VCK	
	← Vertical display cycle 480H
(2) Horiz	zontal display cycle (16:9)
BLK	
HST	
HCK1	
HCK2	357 Horizontal display cycle
(3) Horiz	zontal display cycle (4:3)
BLK	
HST	
HCK1	
HCK2	Horizontal display cycle

[Description of operating mode]

The LCD panel has the following functions to easily apply to various uses, as well as various broadcasting systems.

- Right/left inverse mode
- Up/down inverse mode
- 4:3 display mode with side-black display

These modes are controlled by three signals (RGT, DWN, and WID). The setting mode is shown below:

WID	RGT	Mode
н	Н	16:9 right scan
н	L	16:9 left scan
L	Н	4:3 right scan
L	L	4:3 left scan

H Dow	n scan	
L Up s	Up scan	

The direction of the right/left and/or up/down mean when Pin 1 marking is located at right side with the pin block upside.

• The analog signal (SID) to display side-black shall be input by 1H inversion synchronized with the signal.

3. 3-dot Simultaneous Sampling

Horizontal driver samples SIG1, SIG2 and SIG3 signal simultaneously, which requires the phase matching between SIG1, SIG2, and SIG3 signals to prevent horizontal resolution from deteriorating. Thus phase matching between each signal is required using an external signal delaying circuit before applying video signal to the LCD panel.

The block diagram of the delaying procedure using sample-and-hold method is as follows.

The LCX007 has the right/left inverse function. The following phase relationship diagram indicates the phase setting for the right scan (RGT = High level). For the left scan (RGT = Low level), the phase setting shall be inverted between SIG2 and SIG3 signals.

<Phase relationship of delaying sample-and-hold pulses> (right scan)

Example of Color Filter Spectrum (Reference)

Wavelength [nm]

Display System Block Diagram

An example of display system is shown below.

Reliability test conditions

Items	Test conditions	Time	Criterion	
High temperature operation	Ta = 70°C HVpd = 15.7V VVpd = 15.7V	250h	Panel appearance and performance	
High temperature storage	Ta = 85°C	250h		
High temperature & high humidity storage	Ta = 40°C 95% RH	250h	after those tests must conform with the	
Temperature cycle	Ta = -30 to +85°C	10cy	standards.	
Vibration	X, Y, Z, 1.5mm 10 to 55Hz (1min. reciprocation)	20min. for each direction		

Important

(1) Anti-reflection coating

Use anti-reflection coating when using a phase-shifting plate on a light egress side of the LCD to align a polarization axis with those of a polarization screen or a prism.

(2) Direction of incident light

Allow incident light to hit upon an opposite side of a mark-indicated surface.

(3) Polarizer

This LCD is attached with a polarizer on a light egress side. A suitable heat-dissipation method shall be incorporated to suppress optical degradation of a polarizer.

- (4) Light source
 - Use visible light (wavelength λ = 400 to 780nm) as a light source. Do not use a light source containing infrared or ultraviolet components.
 - Suppress leakage light (reflection light) into a backside of a panel to sufficiently weak level or shut it out completely.

Notes on Handling

(1) Static charge prevention

Be sure to take following protective measures. TFT-LCD panels are easily damaged by static charge.

- a) Use non-chargeable gloves, or simply use bare hands.
- b) Use an earth-band when handling.
- c) Do not touch any electrodes of a panel.
- d) Wear non-chargeable clothes and conductive shoes.
- e) Install conductive mat on the working floor and working table.
- f) Keep panels away from any charged materials.
- g) Use ionized air to discharge the panels.
- (2) Protection from dust and dirt
 - a) Handle in clean environment.
 - b) When delivered, a surface of a panel (Polarizer) is covered by a protective sheet. Peel off the protective sheet carefully not to damage the panel.
 - c) Do not touch the surface of a panel. The surface is easily scratched. When cleaning, use a clean-room wiper with isopropyl alcohol. Be careful not to leave stain on the surface.
 - d) Use ionized air to blow off dust at a panel.
- (3) Other handling precautions
 - a) Do not twist or bend the flexible PC board especially at the connecting region because the board is easily deformed.
 - b) Do not drop a panel.
 - c) Do not twist or bend a panel or a panel frame.
 - d) Keep a panel away from heat source.
 - e) Do not dampen a panel with water or other solvents.
 - f) Avoid to store or to use a panel in a high temperature or in a high humidity, which may result in panel damages.
 - g) Minimum bent radius rating for flexible substrate is 1mm.
 - h) Panel screw torque should not exceed 3kg · cm.

Package Outline Unit: mm

The rotation angle of the active area relative to H and V is $\pm 1^{\circ}$.

