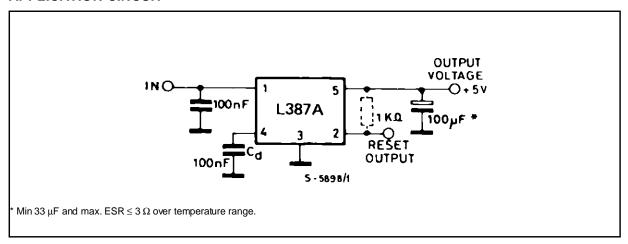


VERY LOW DROP 5V REGULATOR WITH RESET

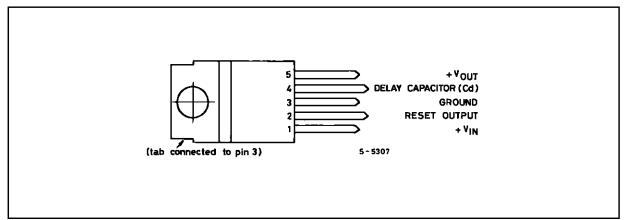
- PRECISE OUTPUT VOLTAGE (5 V ± 4 %)
- VERY LOW DROPOUT VOLTAGE
- OUTPUT CURRENT IN EXCESS OF 500mA
- POWER-ON, POWER-OFF INFORMATION (RESET FUNCTION)
- HIGH NOISE IMMUNITY ON RESET DELAY CAPACITOR

The L387A is a very low drop voltage regulator in a Pentawatt® package specially designed to provide stabilized 5V supplies in consumer and industrial applications. Thanks to its very low input/output voltage drop this device is very useful in battery powered equipment, reducing consumption and prolonging battery life. A reset output makes the L387A particularly suitable for microprocessor systems. This output provides a reset signal when power is applied (after an external programmable delay) and goes low when

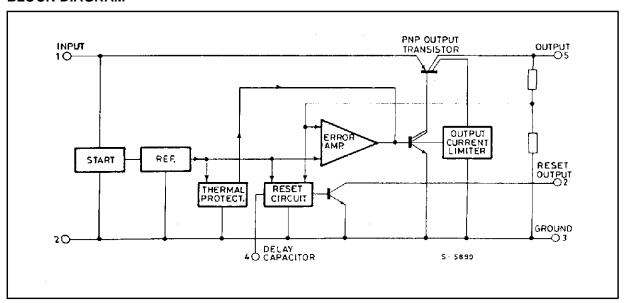


power is removed, inhibiting the microprocessor. An hysteresis on reset delay capacitor raises the immunity to the ground noise.

ABSOLUTE MAXIMUM RATINGS


Symbol	Parameter	Value	Unit
Vi	D.C. Input Voltage	35	V
T _j , T _{stg}	Junction and Storage Temperature Range	-55 to 150	°C

APPLICATION CIRCUIT



October 1991 1/6

PIN CONNECTION (Top views)

BLOCK DIAGRAM

THERMAL DATA

R _{th j-case}	Thermal Resistance Junction-case	Max	4	°C/W	
------------------------	----------------------------------	-----	---	------	--

ELECTRICAL CHARACTERISTICS (refer to the test circuit, V_i = 14.4 V, T_j = 25 °C, C_o = 100 μF ; unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$I_0 = 5 \text{ mA to } 500 \text{ mA} T_j = 25 \text{ °C}$	4.80	5.00	5.20	V
		– 40 ≤ T _j ≤ 125 °C	4.75	5.00	5.25	V
Vı	Operating Input Voltage	(*), Over Full T Range (- 40 to 125 °C) (see note **)			26	V
ΔV_{o}	Line Regulation	$V_i = 6 \text{ V to } 26 \text{ V}$ $I_o = 5 \text{ mA}$		5	50	mV
ΔV_{o}	Load Regulation	$I_0 = 5 \text{ mA to } 500 \text{ mA}$		15	60	mV
$V_{I} - V_{o}$	Dropout Voltage	$V_O = V_{O NOM} - 100 \text{ mV}$ $I_O = 350 \text{ mA}$ $I_O = 500 \text{ mA}$		0.40 0.60	0.65 0.8	V V
Iq	Quiescent Current	$\begin{array}{c} I_{o} = 0 \text{ mA} \\ I_{o} = 150 \text{ mA} \\ I_{o} = 350 \text{ mA} \\ I_{o} = 500 \text{ mA} \\ \end{array}$ $V_{i} = 6.2 \text{ V} \hspace{1cm} I_{o} = 500 \text{ mA} \\ \end{array}$		5 20 60 100	15 35 100 160	mA mA mA mA
$\frac{\Delta V_o}{\Delta T}$	Temperature Output Voltage Drift			- 0.5		mV/°C
SVR	Supply Voltage Rejection	$\begin{array}{lll} I_{o} = 350 \text{ mA} & & f = 120 \text{ Hz} \\ C_{o} = 100 \ \mu\text{F} & & V_{i} = 12 \ \text{V} \pm 5 \ \text{V}_{pp} \end{array}$			60	
I _{SC}	Output Short Circuit Current			1.2	1.6	Α
VR	Reset Output Voltage	$\begin{array}{lll} I_R = 3 \text{ mA} & 1 < V_0 < 4.70 \text{ V} \\ I_R = 16 \text{ mA} & 1.5 < V_0 < 4.75 \text{ V} \\ \text{Over Full T } (-40 \ ^{\circ}\text{C} \leq T_j \leq 125 \ ^{\circ}\text{C}) \end{array}$			0.5 0.8	V V
I _R	Reset Output Leakage Current	V_0 in Regulation $V_R = 5V$ Over Full T Range			50	μΑ
t _d	Delay Time for Reset Output	Cd = 100 nF Over Full T Range		25		ms
VRT (off)		V₀ @ Reset out H to L Transition, Over Full T Range	4.75	V _o - 0.15		V
I _{C4}	Charging Current (current generator)	V ₄ = 3 V	10	20	30	μΑ
V _{RT (on)}	Power on VoThreshold	V_0 @ Reset out L to H Transition , Over Full T Range		V _{RT (off)} + 0.05 V	V _o – 0.04 V	V
V ₄	Comparator Threshold	V ₄ @ Reset out H to L Transition	3.2		3.9	V
	(pin 4)	V ₄ @ Reset out L to H Transition	3.7		4.3	V
V _H	Hysteresis Voltage	Over Full T Range		450		mV

 ^(*) For a DC voltage 26 < Vi < 37 V the device is not operating.
(**) Design limits are guaranteed (but not 100 % production tested) over the indicated temperature and supply voltage ranges. These limits are not used to calculate outgoing quality levels.

Figure 1 : Dropout Voltage vs. Output Current.

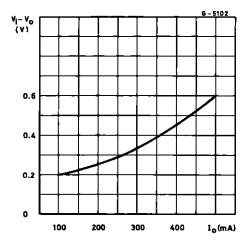


Figure 3: Output Voltage vs. Temperature.

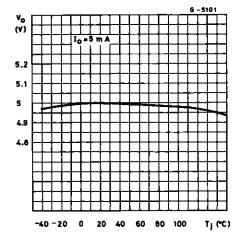
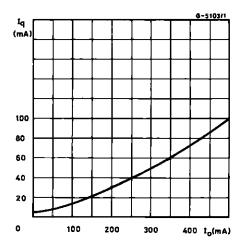
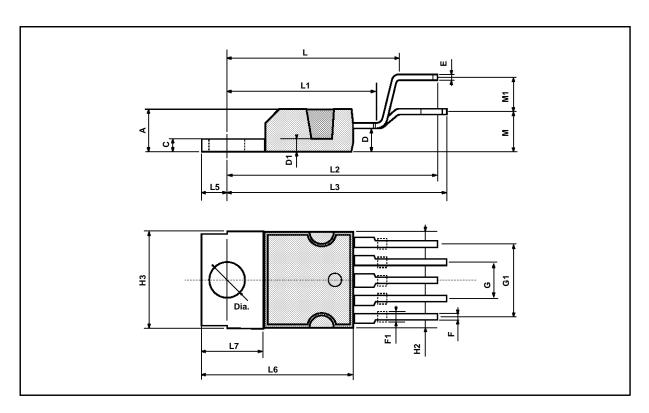




Figure 2 : Quiescent Current vs. Output Current.

PENTAWATT PACKAGE MECHANICAL DATA

DIM.	mm			inch			
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
Α			4.8			0.189	
С			1.37			0.054	
D	2.4		2.8	0.094		0.110	
D1	1.2		1.35	0.047		0.053	
Е	0.35		0.55	0.014		0.022	
F	0.8		1.05	0.031		0.041	
F1	1		1.4	0.039		0.055	
G		3.4		0.126	0.134	0.142	
G1		6.8		0.260	0.268	0.276	
H2			10.4			0.409	
H3	10.05		10.4	0.396		0.409	
L		17.85			0.703		
L1		15.75			0.620		
L2		21.4			0.843		
L3		22.5			0.886		
L5	2.6		3	0.102		0.118	
L6	15.1		15.8	0.594		0.622	
L7	6		6.6	0.236		0.260	
М		4.5			0.177		
M1		4			0.157		
Dia	3.65		3.85	0.144		0.152	

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.

PENTAWATT® is registered trademarks of SGS-THOMSON Microelectronics © 1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thaliand - United Kingdom - U.S.A.

