SONY.

ICX039BNA

1/2 inch CCD Image Sensor for PAL Color Camera

Description

The ICX039BNA is an interline transfer CCD solidstate image sensor suitable for PAL 1/2 inch color video cameras. High resolution and high sensitivity are achieved through the adoption of Ye, Cy, Mg and G complementary color mosaic filters and HAD (Hole-Accumulation Diode) sensors.

.This chip features a field integration read out system, an electronic shutter with variable charge-storage time and 20 pin Cer-DIP Package.

Features

- High resolution, high sensitivity (+6dB compare with ICX039AN) and low dark current
- Consecutive various speed shutter 1/50s. (Typ.), 1/120s. to 1/10000s.
- Low smear
- High antiblooming
- Ye, Cy, Mg, G on chip type complementary color mosaic filter.
- Horizontal register 5V drive
- Horizontal register final stage 5V drive
- Reset gate 5V drive

Device Structure

Optical size

- 1/2 inch format
- Number of effective pixels
- 752 (H) × 582 (V) Approx. 440k pixels Number of total pixels 795 (H) \times 596 (V) Approx. 470k pixels
- Interline transfer CCD image sensor
- Chip size 7.95mm (H) × 6.45mm (V)
- Unit cell size 8.6 μ m (H) \times 8.3 μ m (V)
- Optical black Horizontal (H) direction Front 3 pixels Rear 40 pixels Vertical (V) direction Front 12 pixels Rear 2 pixels Number of dummy bits Horizontal 22

Vertical

Silicon

- Substrate material

Optical black position (Top View)

Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.

1 (even field only)

Absolute Maximum Ratings

	ltem	Ratings	Unit	Remarks
Substrate voltage S	SUB-GND	-0.3 to +55	V	
Supply voltage	VDD, VRD, VOUT, VSS-GND	-0.3 to +18	V	
	VDD, VRD, VOUT, VSS-SUB	-55 to +10	V	<u> </u>
Clock input voltage	Vφ1, Vφ2, Vφ3, Vφ4–GND	15 to +20	Ý	
	V¢1, V¢2, V¢3, V¢4–SUB	to +10	V	
Voltage difference	between vertical clock input pins	to+15	V	* (Max.)
Voltage difference	between horizontal clock input pins	to+17	V	, <u>, , , , , , , , , , , , , , , , </u>
Hφ1, Hφ2–Vφ4		-17 to +17	V	
LH¢1, RG, Vgg-GN	D	-10 to +15	V	-{
LHø1, RG, VGG-SU	В	55 to +10	V	
VL-SUB		-65 to +0.3	V	
Beside GND, SUB-	VL	-0.3 to +30	V	
Storage temperatur	e	-30 to +80	°C	
Operating temperat	ure	-10 to +60	 °C	

+27V (Max.) when clock width<10 µs, duty factor<0.1%.

— 2 —

Bias Conditions

Item	Symbol	Min.	Тур.	Max.	Unit	Remarks
Output amplifier drain voltage	Vdd	14.55	15.0	15.45	V	
Reset drain voltage	VRD	14.55	15.0	15.45	V	VRD=VDD
Output amplifier gate voltage	Vgg	1.75	2.0	2.25	V	
Output amplifier source	Vss	Ground th	rough 390	Ω resistor		± 5%
Substrate voltage adjustment range	Vsub	9.0		18.5	V	*2
Fluctuation range after substrate voltage adjustment	∆ Vsub	-3		+3	%	
Reset gate clock voltage adjustment range	VRGL	1.0		4.0	v	*2*6
Fluctuation range after reset gate clock voltage adjustment	∆ Vrgl	-3		+3	%	··
Protective transistor bias	VL		*3	<u> </u>		

DC characteristics

ltem	Symbol	Min.	Тур.	Max.	Unit	Remarks
Output amplifier drain current	loo		5		mA	
Input current	lin1			1	μA	*4
Input current	lin2			10	μA	*5

*2. Substrate voltage (Vsue) • reset gate clock voltage (VRGL) setting value display. Setting values of substrate voltage and reset gate clock voltage are displayed at the back of the device

through a code address. Adjust substrate voltage (Vsub) and reset gate clock voltage (VRGL) to the displayed voltage. Fluctuation range after adjustment is \pm 3%.

Vsub code address-1 digit display VRGL code address-1 digit display

Vsue address code

Code addresses and actual numerical values correspond to each other as follows.

VRGL addre	SS C	ode	•	1 2	3	4	5	6	7											
Numerical	value	9	1	0 1.	5 2.0	2.5	3.0	3.5	4.0											
Vsu s address code	E	f	G	h	J	к	L	m	N	P	٩	R	s	т	υ	v	w	X	Y	z
Numerical value	9.0	9.5	10.0	10.5	11.0	11.5	12.0	12.5	13.0	13.5	14.0	14.5	15.0	15.5	16.0	16.5	17.0	17.5	18.0	18.5

<Example> "5L" → VRGL=3.0V Vsub=12.0V

*3. VL setting is the VvL voltage of the vertical transfer clock waveform.

— 3 —

- *4. 1. Current to each pin when 18V is applied to Vop, Vour, Vss and SUB pins, while pins that are not tested are grounded.
 - 2. Current to each pins when 20V is applied sequentially to V ϕ 1, V ϕ 2, V ϕ 3, V ϕ 4, H ϕ 1 and H ϕ 2, while pins that are not tested are grounded. However, 20V is applied to SUB.
 - 3. Current to each pins when 15V is applied sequentially to pins RG, LHφ1 and Vcc, while pins that are not tested are grounded. However, 15V is applied to SUB.
 - 4. Current to VL pin when it is grounded, while 30V is applied to all pins except pins that are not tested. However, GND and SUB pins are kept open.
- * 5. Current to SUB pin when 55V is applied to SUB pin, while pins that are not tested are grounded.

Clock Voltage Conditions

ltem	Symbol	Min.	Тур.	Max.	Unit	Waveform diagram	Remarks
Read out clock voltage	νντ	14.55	15.0	15.45	v	1	
	VVH1, VVH2	-0.05	0	0.05	V	2	Vvн=(Vvн1+Vvн2)/2
	Vvh3, Vvh4	-0.2	0	0.05	V	2	
	VVL1, VVL2, VVL3, VVL4	-9.6	-9.0	-8.5	v	2	Vvl=(Vvl3+Vvl4)/2
	νφν	8.3	9.0	9.65	v	2	V¢v=VvHn-VvLn (n=1 to 4)
Vertical transfer clock voltage	Vvh1–Vvh2			0.1	V	2	
voltage	Vvнз–Vvн	-0.25		0.1	V	2	· · · · · · · · · · · · · · · · · · ·
	VvH₄–Vvn	-0.25		0.1	V	2	
	Vvнн			0.5	V	2	High level coupling
	VVHL			0.5	V	2	High level coupling
	VVLH			0.5	V	2	Low level coupling
	VVLL		_	0.5	V	2	Low level coupling
Horizontal transfer	Vфlн	4.75	5.0	5.25	V	3	
clock voltage	VHL	-0.05	0	0.05	V	3	· · · · · · · · · · · · · · · · · · ·
Horizontal final stage	Vфlн	4.75	5.0	5.25	V	4	·····
transfer clock voltage	Vehe	-0.05	0	0.05	V	4	
Reset gate clock	Vþrg	4.5	5.0	5.5	V	5	*6
voltage	VRGLH-VRGLL			0.8	V	5	Low level coupling
Substrate clock voltage	Vфsuв	23.0	24.0	25.0	v	6	

- 4 --

ICX039BNA

SONY

*6. No adjustment of reset gate clock voltage is necessary when reset gate clock is driven as indicated below. In this case, reset gate clock voltage set point displayed on back of image sensor has no meaning.

ltem	Symbol	Min.	Тур.	Max.	Unit	Waveform diagram	Remarks
Reset gate clock	VRGL	-0.2	0	0.2	V	5	
voltage	V¢rg	8.5	9.0	9.5	V	5	

Clock Equivalent Circuit Constant

Item	Symbol	Min.	Тур.	Max.	Unit	Remarks
Capacitance between vertical transfer clock	Cφνι, Cφν3	· · · · · ·	1800		pF	
and GND	Сфv2, Сфv4		2200		pF	
Capacitance between vertical transfer	Сфv12, Сфv34	1	450	· · · · · · · · · · · · · · · · · · ·	рF	
clocks	Сфv23, Сфv41		270		ρF	
Capacitance between horizontal transfer clock and GND	Сфн1, Сфн2		62		pF	
Capacitance between horizontal transfer clocks	Сфнн		47		рF	
Capacitance between horizontal final stage transfer clock and GND	Сфін		8		pF	<u> </u>
Capacitance between reset gate clock and GND	Сфяд		8		pF	
Capacitance between substrate clock and GND	Сфѕив		400		pF	
Vertical transfer clock serial resistor	R1, R2, R3, R4		68		Ω	
Vertical transfer clock ground resistor	Rgnd		15		Ω	· · · · · · · · · · · · · · · · · · ·

Horizontal transfer clock equivalent circuit

--- 5 ---

ICX039BNA

•

Drive Clock Waveform Conditions

(1) Read out clock waveform

(2) Vertical transfer clock waveform

- 6 -

(3) Horizontal transfer clock waveform diagram

(4) Horizontal final stage transfer clock waveform diagram

(5) Reset gate clock waveform diagram

VRGLH is the maximum value and VRGLL the minimum value of the coupling waveform in the period from Point A in the diagram above to RG rise.

VRGL is the mean value for VRGLH and VRGLL.

VRGL=(VRGLH+VRGLL) / 2

VRGH is the minimum value for twh period.

V¢rg=Vrgh--Vrgl

•;

(6) Substrate clock waveform

Clock switching characteristics

ltem	Symbol		twh			twl			tr			tf			Demonstra
itein	Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Typ.	Max.	Min.	Тур.	Max.	Unit	Remarks
Read out clock	VT	2.3	2.5						0.5			0.5		μs	During read out
Vertical transfer clock	Vφ1, Vφ2, Vφ3, Vφ4										0.015		0.25	μs	*7
Horizontal transfer clock	Нф		20			20			15	19	*8	15	19	ns	During imaging
Horizontal final stage clock	LH¢		20			20			15	19	*8	15	19	ns	During imaging
Horizontal transfer/horizontal final stage clock	Ηφι, LΗφ		5.38						0.01			0.01		μs	During parallel serial
Horizontal transfer clock	Нф2					5.38			0.01			0.01		μs	conversion.
Reset gate clock	фяg	11	13			51			3			3		ns	
Substrate clock	фѕив	1.5	1.8							0.5			0.5	μs	During charge drain,

*7. When vertical transfer clock driver CXD1250 is in use.

*8. tf ≧ tr–2 ns

Item	Symbol		two		1.1	Demester
	Symbol	Min.	Тур.	Max.	Unit	Remarks
Horizontal transfer clock	Нφ	16	20		ns	*9
Horizontal transfer/horizontal final stage clock	Ηφ2, LHφ	16	20		ns	* 10

* 9. "two" is the overlap period of horizontal transfer clocks $H\phi_1$ and $H\phi_2$'s twh and twl.

*10. "two" is the overlap period of horizontal transfer clock Hφ2's twl and horizontal final stage transfer clock LHφ's twh'.

- 8 -

ICX039BNA

Operating Characteristics

Operating Characteris	<u> </u>				r		(Ta=25°C
ltem	Symbol	Min.	<u>-Ту</u> р.	Max,	Unit	Test method	Remarks
Sensitivity	S	320	420		mV	1	
Saturation signal	Ysat	540			mV	2	Ta=60 ℃
Smear	Sm		0.009	0.015	%	3	
Video signal shading	SHy			20	%	4	Zone 0, I
	City			25	%	4	Zone 0 to II'
Uniformity between signal	∆ Sr			10	%	5	
channels	∆ Sb			10	%	5	
Dark signal	Ydt			2	mV	6	Ta=60 °C
Dark signal shading	∆ Ydt			1	mV	7	 Ta=60 ℃
Flicker Y	Fy			2	%	8	
Flicker R-Y	Fcr	····		5	%	8	<u> </u>
Flicker B-Y	Fcb			5	%	8	
Horizontal stripes R	Lcr	··· · · · · · · · · · · · · · · · · ·		3	%	9	
Horizontal stripes G	Lcg			3	%	9	
Horizontal stripes B	Lcb			3	%	9	
Horizontal stripes W	Lcw			3	%	9	
Lag	Lag			0.5	%	10	

Zone chart of Video signal shading

Note) Adjust AMP amplifier so that total gains between O and O and between O and O equal 1.

ŗ

- 9 ---

Image Sensor Characteristics Test Method

Test conditions

- ① Through the following tests the substrate voltage and reset gate clock voltage are set to the value displayed on the device, while the device drive conditions are at the typical value of the bias and clock voltage conditions.
- ② Through the following tests defects are excluded, and unless otherwise specified, the optical black level (Hence forth referred to as OB) is set as the reference for the signal output which is taken as the Y signal output or the chroma signal output of the testing system.
- © Color coding of CFA (Color Filter Array) & Composition of luminance (Y) and chrominance (C) signals

CFA of this image sensor is shown in the Figure. This complementary CFA is used with a "field integration mode", where all of the photosites are read out during each video field. Signals from two vertically adjacent photosites, such as line A1 or A2 for field A, are summed when the image charge is transferred into the vertical storage columns.

The read out line pairing is shifted down one line for field B. The sensor output signals through the horizontal register (H reg.) at line A1 are [G+Cy], [Mg+Ye], [G+Cy], [Mg+Ye].

Color Coding Diagram

These signals are processed in order to compose Y and C signals. By adding the two adjacent signals at line A1, Y signal is formed as follows:

 $Y = {(G+Cy)+(Mg+Ye)} \times 1/2$

= 1/2 {2B+3G+2R}

C signal is composed by subtracting the two adjacent signals at line A1.

 $R - Y = \{(Mg+Ye) - (G+Cy)\}$

= {2R–G}

Next, the signals through H reg. at line A2 are

[Mg+Cy], [G+Ye], [Mg+Cy], [G+Ye]

Similarly, Y and C signals are composed at line A2.

Y= {(G+Ye)+(Mg+Cy)} × 1/2

= 1/2 {2B+3G+2R}

 $-(B-Y) = \{(G+Ye)-(Mg+Cy)\}$

Accordingly, Y signal is balanced in relation to the scanning lines, and C signal takes the form of R-Y and -(B-Y) on alternate lines.

It is the same for B field.

- 10 -

© Definition of standard imaging conditions

- ① Standard imaging condition I: (As imaging device) Use a pattern box (luminance 706 cd/m², color temperature 3200K Halogen source) as a subject. (Pattern for evaluation is not applicable.) Use a testing standard lens with CM500S (t=1.0mm) as IR cut filter and image at F5.6. At this time, light intensity to sensor receiving surface is defined as standard sensitivity testing light intensity.
- ② Standard imaging condition II: Image a light source (color temperature of 3200K) which uniformity of brightness is within 2% at all angles. Use a testing standard lens with CM500S (t=1.0mm) as IR cut filter. The light intensity is adjusted to the value indicated in each testing item by lens diaphragm.
- 1. Sensitivity

Set to standard image condition I. After selecting the electronic shutter mode at a 1/250s. shutter speed, measure the Y signal (Ys) at the center of the screen and substitute in the following formula.

$$S=Y_S \times \frac{250}{50}$$
 (mV)

2. Saturation signal

Set to standard imaging condition II. Adjust light intensity to 10 times that of Y signal output average value (YA=200mV), then test Y signal minimum value.

3. Smear

Set to standard imaging condition II. Adjust light intensity to 500 times that of Y signal output average value (YA=200mV). Stop read out clock. When the charge drain executed by the electronic shutter at the respective H blankings takes place, test the maximum value YSm of Y signal output.

$$Sm = \frac{YSm}{Y_A} \times \frac{1}{500} \times \frac{1}{10} \times 100 (\%) (1/10V)$$

4. Video signal shading

Set to standard imaging condition II. Adjust light intensity to Y signal output average value (YA=200mV) with lens diaphragm at F5.6 to F8. Then test maximum (Ymax) and minimum (Ymin) values of Y signal.

SHy= (Ymax - Ymin) $/Y_A \times 100$ (%)

5. Video signal between channels uniformity

Set to standard imaging condition II. Adjust light intensity to Y signal output average value (YA=200mV). Then test maximum (Crmax, Cbmax) and minimum (Crmin, Cbmin) values of chroma signals from R-Y and B-Y channels.

 Δ Sr = |(Crmax–Crmin) /Y_A| × 100 (%) Δ Sb= |(Cbmax–Cbmin) /Y_A| × 100 (%)

6. Dark signal

Test Y signal output average value Ydt when the device ambient temperature is at 60 °C and light is obstructed with horizontal idle transfer level as reference.

- 11 -

ICX039BNA

SONY

7. Dark signal shading

Following 6, test maximum (Ydmax) and minimum (Ydmin) values of dark signal output.

 Δ Ydt=Ydmax-Ydmin (mV)

8. Flicker

① Fy

Set to standard imaging condition II. Adjust light intensity to Y signal output average value (Y_A=200mV). Then test the Y signal difference (Δ Yf) between even field and odd field.

 $Fy=(\Delta Yf/Y_A) \times 100$ (%)

2 Fcr, Fcb

Set to standard imaging condition II. Adjust light intensity to Y signal output average value (Y_A=200mV). Then insert R or B filter, and test the C signal difference (Δ Cr, Δ Cb) between even field and odd field and the C signal output average value (CAr, CAb).

Fci= (Δ Ci/CAi) × 100 (%) (i=r, b)

9. Lateral stripe

Set to standard imaging condition II. Adjust light intensity to Y signal output average value (Y_A=200mV). Then insert R, G and B filters respectively, and test the signal difference (Δ Ylw, Δ Yir, Δ Ylg, Δ Ylb) between Y signal lines of the same field.

Lci= (Δ Yli/YA) \times 100 (%) (i=w, r, g, b)

10. Residual image

Adjust Y signal output value (Ys) by strobe light to 200mV. Then light a stroboscopic tube with the following timing and test the residual image (Ylag).

Lag = (Ylag/Ys) \times 100 (%)

ICX039BNA

Drive Circuit

- 13 --

Spectral Sensitivity Characteristics

(Excluding light source characteristics, including lens characteristics)

Using read out clock timing chart

Unit : µs

- 14 -

Drive Timing Chart (Vertical sync)

- 15 -

SONY

ICX039BNA

NY		 ICX039BNA
	THE STATE ST	
	HI/LHI TOTOOODDAWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW	

Notes on Handling

1) Static charge prevention

CCD image sensors are easily damaged by static discharge. Before handling be sure to take the following protective measures.

a) Either handle bare handed or use non chargeable gloves, clothes or material. Also use conductive shoes.

b) When handling directly use an earth band.

- c) Install a conductive mat on the floor or working table to prevent the generation of static electricity.
- d) lonized air is recommended for discharge when handling CCD image sensor.
- e) For the shipment of mounted substrates use boxes treated for the prevention of static charges.

2) Soldering

- a) Make sure the package temperature does not exceed 80°C.
- b) Solder dipping in a mounting furnace causes damage to the glass and other defects. Use a grounded 30W soldering iron and solder each pin in less than 2 seconds. For repairs and remount, cool sufficiently.
- c) To dismount an imaging device do not use a solder suction equipment. When using an electric desoldering tool use a thermal controller of the zero cross On/Off type and connect to ground.
- 3) Dust and dirt protection

Image sensors are packed and delivered by taking care of protecting its glass plates from harmful dust and dirt. Clean glass plates with the following operation as required, and use them.

- a) Operate in clean environments (around class 1000 will be appropriate).
- b) Do not either touch glass plates by hand or have any object come in contact with glass surfaces. Should dirt stick to a glass surface blow it off with an air blow. (For dirt stuck through static electricity ionized air is recommended.)
- c) Clean with a cotton bud and ethyl alcohol if the glass surface is grease stained. Be careful no to scratch the glass.
- d) Keep in case to protect from dust and dirt. To prevent dew condensation, preheat or precool when moving to a room with great temperature differences.
- e) When a protective tape is applied before shipping, just before use remove the tape applied for electrostatic protection. Do not reuse the tape.
- 4) Do not expose to strong light (sun rays) for long periods, color filters are discolored. For continuous using under cruel condition exceeding the normal using condition, consult our company.
- 5) Exposure to high temperature or humidity will affect the characteristics. Accordingly avoid storage or usage in such conditions.
- 6) CCD image sensors are precise optical equipment that should not be subject to too much mechanical shocks.

20pin DIP (600	 人は有効操作エリアの中心 大平方向の基準はパッケージ編画日(2箇所指定) 重直方向の基準はパッケージ編画日(2箇所指定) 重直方向の基準はパッケージ編画日(2箇所指定) 高さ方向の基準はパッケージ編画日(2箇所指定) 高さ方向の基準はいッケージ編画日(2箇所指定) 本平方向基準回日、業直方向基準画日(21415) ホマンク国をはいったの1550mの回転換度士1 上、ソ方向に対する有効提供画の回転換度士1 上、V方向に対する有効提供画の回転換度士1 上、V方向に対する有効提供画の回転換度士1 上、V方向に対する有効提供画の回転換度士1 上、V方向に対する有効提供画の回転換度士1 上、V方向に対する有効提供画のの目前換定士1 上、V方向に対する有効提供画のの目前指示 上、V方向に対する有効提供画のの目前 上、V方向に対する有効提供画ののの目にの1500m 正面の切り文を及び穴は取り付けの必須には使用出来ません 上のの切り文を及び穴は取り付けの基準には使用出来ません 1、************************************	1. Conversion of the concentre wingle area, rectarve to D and D is for the first $D = (0, 0, 1, 55) \pm 0.15$ for $D = 0$. 5. The rotation angle of the effective image area relative to H and V is $\pm 1^{\circ}$. 6. The heideling the mode $D = 0$ for $D = 0$.		•
		Cer-DIP TIN PLATING	42ALLOY	2.6g
	PACKAGE STRUCTURE	PACKAGE MATERIAL LEAD TREATMENT	LEAD MATERIAL	PACKAGE WEIGHT
	- 18			

ICX039BNA

• :

SONY

Unit: mm

Package Outline