CXG1006N

High-Frequency SPDT Antenna Switch

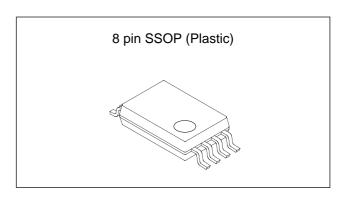
 $V_{CTL}(H) = 4.0V$

Description

The CXG1006N is a high power antenna switch MMIC. This IC is designed using the Sony's GaAs J-FET process and operates at a single positive power supply.

Features

- Single positive power supply operation
- Low insertion loss 0.5dB (Typ.) at 2.0GHz
- High isolation 27dB (Typ.) at 2.0GHz
- High power switching


P1dB (Typ.) 32dBm at 2.0GHz VcTL (H) = 2.0V 34dBm at 2.0GHz

Application

Antenna switch for digital cellular telephones

Structure

GaAs J-FET MMIC

Absolute Maximum Ratings (Ta = 25°C)

 Control voltage 	Vctl	7	V
• Operating temperature	Topr	-35 to +85	°C
Storage temperature	Tstg	-65 to +150	°C

Operating Condition

Control voltage 0/4 V

Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.

Electrical Characteristics

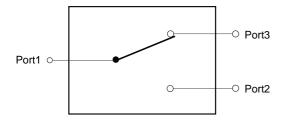
VCTL (L) = 0V, VCTL (H) = 4V, PIN = 30dBm, RRF = $75k\Omega$

 $(Ta = 25^{\circ}C)$

Item	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Insertion Loss	IL1	f = 1.0GHz		0.3	0.6	dB
Isolation	ISO1	T = 1.0GHZ	35	40		dB
Insertion Loss	IL1.5	f 4.50U-		0.4	0.7	dB
Isolation	ISO1.5	f = 1.5GHz	29	32		dB
Insertion Loss	IL2			0.5	0.8	dB
Isolation	ISO2	f = 2.0GHz	24	27		dB
VSWR	VSWR				1.5	
Switching Time	TSW			100		ns

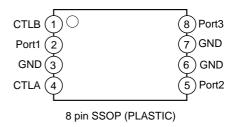
VCTL(L) = 0V, f = 2GHz

 $(Ta = 25^{\circ}C)$


Item	Symbol	Test Condition	Min.	Тур.	Max.	Unit
1dB Compression Point	P1dB (3)	Vсть (H) = 3V	30	32		dBm
1dB Compression Point	P1dB (4)	VCTL (H) = 4V	32	34		dBm

Vctl (L) = 0V, Rrf = $75k\Omega$

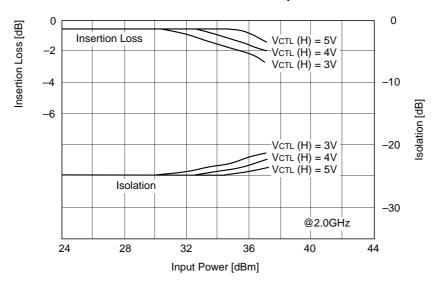
 $(Ta = 25^{\circ}C)$

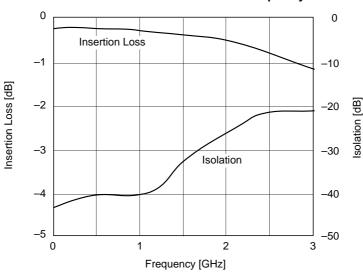

Item	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Control Current	Ість (1)	Vctl (H) = 3V		100	170	μA
Control Current	ICTL (2)	Vctl (H) = 4V		150	220	μA
Control Current	Ість (3)	Vctl (H) = 5V		200	270	μA

Block Diagram

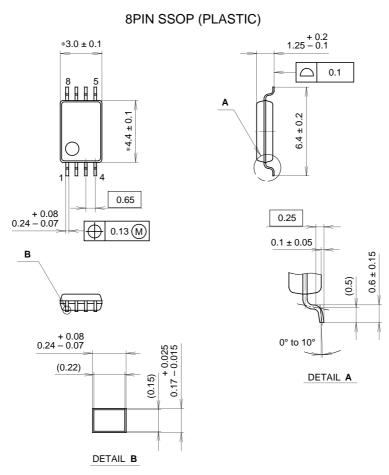
Vctla	Vстlв	
High	Low	Port1-Port2 ON Port1-Port3 OFF
Low	High	Port1-Port2 OFF Port1-Port3 ON

Package Outline/Pin Configulation


Recommended Circuit


^{*} RRF is used to stabilize the electrical characteristics at high power signal input

Example of Representive Characteristics (Ta = 25°C)


Insertion Loss and Isolation vs. Input Power

Insertion Loss and Isolation vs. Frequency

Package Outline Unit: mm

NOTE: Dimension "*" does not include mold protrusion.

SONY CODE	SSOP-8P-L01
EIAJ CODE	SSOP008-P-0044
JEDEC CODE	

PACKAGE STRUCTURE

PACKAGE MATERIAL	EPOXY RESIN
LEAD TREATMENT	SOLDER / PALLADIUM PLATING
LEAD MATERIAL	COPPER ALLOY
PACKAGE WEIGHT	0.04g