

CXA2055P

Preamplifier for High Resolution Computer Display

Description

The CXA2055P is a bipolar IC developed for high resolution computer displays.

Features

- Built-in wide band amplifier (130 MHz/–3 dB typ.@4 Vp-p)
- Input dynamic range : 1.0 Vp-p (typ.)
- R, G and B in a single package
- I²C bus control
 - Contrast control
 - Subcontrast control
 - Brightness control
 - OSD contrast control
 - Power save function
 - Input clamp pulse polarity selection Output composite sync polarity selection 5-channel, 8-bit D/A Blanking level control
- Built-in sync separator (G channel only)
- Built-in blanking mixing function
- Built-in OSD mixing function
- Built-in ABL function
- Video interval detection function

Applications

High resolution computer displays

Structure

Bipolar silicon monolithic IC

Absolute Maximum Ratings (Ta=25 °C)

	U (,	
 Supply voltage 	Vcc	14	V
 Operating temperature 	re		
	Topr	-20 to +75	°C
Storage temperature	Tstg	-65 to +150	°C
 Allowable power diss 	ipation		
	PD	1794	mW
(when mounted on a	a 11.5 cm $ imes$	12.0 cm subs	strate)

Operating Conditions

Recommended supply voltage

Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.

—2—

Pin Description

Pin No.	Symbol	Pin voltage	Equivalent circuit	Description
1	SDA		Vcc2 50µA 4k 7.5k 7.5k 7.5k 10k 10k 10k 10k 15k	I ² C bus address and data input.
2	SCL		Vcc2 50µA 2 4k 10k 10k 10k 15k GND	I ² C bus clock signal input.
3	COFF-R		Vcc2	D/A converter outputs.
4	COFF-G	_		The variable range is 1 to 4 V. Use as cut-off control voltages is recommended.
5	COFF-B		↓ 5 100 GND	
6	RIN			R, G and B inputs. When clamped, the input
8	GIN	_		voltage black level is approximately 3.2 V.
10	BIN		50μA SND 50μA SND 50μA SND SN	Connect 0.1 μ F or more in series as a clamp capacitor.
7	Vcc2	5 V		5 V power supply.

Pin No.	Symbol	Pin voltage	Equivalent circuit	Description
9	SYNC CON		Vcc2 9 10k 50µА 50µА 4 50µА 50µА 1k	Sync signal separation circuit block during sync-on-video signal input. Connect a sample- and-hold capacitor.
11	CLP		Vcc1 22µA 30k 11 4 5 30k 1.3V GND	Clamp pulse input. The polarity can be switched via the I ² C bus. The threshold level is approximately 1.3 V.
12	OSDR		Vcc1	
13	OSDG			R, G and B OSD pulse inputs. The threshold level is approximately 1 V.
14	OSDB		GND GND	
15	YS		Vcc1 15 124 15 124 1.25V GND	OSD-BLK pulse input. The threshold level is approximately 1.7 V.
16	BLK		Vcc1 49k 124 100µA 1.5V GND	BLK pulse input. The threshold level is approximately 1.5 V.

—4—

Pin No.	Symbol	Pin voltage	Equivalent circuit	Description
17	GND-B			
21	GND-G	0 V		R, G and B independent GND.
24	GND-R			
18	B-OUT		Vcc1	
22	G-OUT	—		R, G and B outputs.
25	R-OUT		GND	
19	B-S/H			
23	G-S/H	_		Connection for external sample- and-hold capacitor (0.1 µF).
26	R-S/H		225µA 2.5V (26) GND	
21	Vcc1	12 V		12 V power supply.
27	DA /CSYNC /ABL		Vcc2 5k \$ 100 4k 0 100 4k 0 1V 4k 0 1V 7.4k 0 GND	General-purpose D/A converter output. Composite sync output. TTL drive is possible. VL=0.5 V or less, VH=4.0 V or more RGB output amplitude gain compensation input. (common for all three channels) Function switching is performed via the I ² C bus.
28	VDET /COF-RGB		Vcc2	Video signal detection output. VL=0.5 V or less, VH=4.0 V or more General-purpose D/A converter output. The variable range is 1 to 4 V. Function switching is performed via the I ² C bus.

—5—

Electrical Characteristics Measurement Circuit

Electrical Characteristics Measurement Circuit (For AC Measurement)

Electrical Characteristics

Ta=25 °C Vcc1=12 V Vcc2=5 V

No.	Measurement item	Symbol	Measurement contents	Min.	Тур.	Max.	Unit
	Current	Icc1 (12 V)	S1 : GND, S2 : OFF Input signal : none	_	82	115	mA
1	consumption	Icc2 (5 V)			40	55	mA
2	Frequency response	f 130 MHz	Input continuous 1 MHz and 130 MHz sine waves at 0.7 Vp-p. Measure the output amplitude gain difference at this time. Gain difference [dB] =20log $\left(\frac{VOUT \ 130M}{VOUT \ 1M}\right)$ RGB input signal (RGB input pins)		-3.0		dB
3	Contrast control	CONTMAX	S1 : Pulse, S2 : OFF Measure the output signal amplitude VOUT when a 0.7 Vp-p video signal is input. Calculate the contrast gain from this VOUT. CONTMAX [dB] =20log $\left(\frac{VOUT}{0.7}\right)$ RGB input signal	16.0	16.5		dB
4	Subcontrast gain	SUBgain	S1 : Pulse, S2 : OFF Measure the variable width of the output signal amplitude Vout when a 0.7 Vp-p video signal is input. Gain difference [dB]= CONTMAX [dB] –20log (VoutSUBmin 0.7 RGB output signal Either with or without sync-on-green (sync signal)	10.5	13.5		dB

No.	Measurement item	Symbol	Measurement contents	Min.	Тур.	Max.	Unit
5	Brightness	BRTmax Srightness S1 : Pulse, S2 : OFF CLP pulse width: 350 ns Measure the black level of the RGB output signal		3.4	3.7		V
	control	BRTmin	Black level Either with or without sync-on-green (sync signal)	_	0.5	0.7	•
6	Input dynamic range	Drang	S1 : Pulse, S2 : OFF Measure the level at which the output gain can be secured when the input video signal level is varied.	0.9	1	1.2	Vp-p
7	Minimum clamp pulse width	CLPmin	S1 : Pulse, S2 : OFF Measure the clamp pulse width over which the black level of the output signal VOUT does not change.	200			nsec
8	OSD control range	OSDcont	S1 : Pulse, S2 : OFF Measure the variable width of the output signal VouT when a 0.7 Vp-p video signal is input. Gain difference [dB] =20log (OSDmax OSD interval RGB output signal OSDmax OSD interval OSDmin	4.0	5.0		dB
9	BLK control	BLKmax	S1 : Pulse, S2 : OFF Measure the BLK level of the output signal when a 5.0 Vp-p BLK signal is input	1.7	1.9		V
9 BLK CONTO		BLKmin	VBLK GND		0.1	0.4	v

(I²C BUS Logic System)

No.	Item	Symbol	Min.	Тур.	Max.	Unit
1	High level input voltage	Vін	3.0	_	5.0	V
2	Low level input voltage	Vı∟	0		1.5	V
3	Low level output voltage SDA, during current inflow of 3 mA	Vol	0		0.4	V
4	Maximum clock frequency	fscL	0	_	100	kHz
5	Minimum waiting time for data change	t BUF	4.7	_	_	μs
6	Minimum waiting time for data transfer start	thd ; STA	4.0		_	μs
7	Low level clock pulse width	t∟ow	4.7		_	μs
8	High level clock pulse width	tніgн	4.0	_	—	μs
9	Minimum waiting time for start preparation	ts∪;sta	4.7		_	μs
10	Minimum data hold time	thd ; dat	5		_	μs
11	Minimum data preparation time	tsu ; dat	250	_	—	ns
12	Rise time	tR	_	_	1000	ns
13	Fall time	t⊧		_	300	ns
14	Minimum waiting time for stop preparation	tsu ; sto	4.0		_	μs

I²C BUS Control Signal

1. Application

The CXA2055P is a preamplifier for computer displays, and combines three R, G and B channels into a single package. All controls such as the contrast and black level for each channel are performed via I²C bus control.

1) I²C bus

Two wires (SDA, SCL) provide control over start, stop, data transfer, synchronization and collision avoidance. The IC outputs are either open collector or open drain, forming a bus line in the wired OR format. The bus signal configuration is as follows.

Data is transmitted by MSB-first. One data unit consists of 8 bits, to which the acknowledge signal, which indicates that the data has been accepted by the slave, is attached at the end. Normally, the slave *1 IC receives data at the rising edge of SCL and the master *2 IC changes data at the falling edge of SCL. The actual data format is as follows.

		Oluv	e addrese	boomigure			-	
BIT8	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	
	Slave address							

Slave address configuration

The slave address is an address unique to each IC, and is assigned according to the IC functions. The upper 7 of the 8 bits are the unique address and the final bit is the R/W bit. The R/W bit indicates read *3 when 1 and write *4 when 0. 40H is allotted as the slave address for the CXA2055P. (This is write only and there is no read mode.)

The subaddress is the assigned address within the IC, and is used for the various IC adjustments. The subaddress is sent just once following the slave address, and is automatically incremented thereafter until a stop condition is sent.

*1 Slave : An IC that is placed under the control of the master.

In a normal system, all devices excluding the central microcomputer are slaves.

- *2 Master : A central microcomputer or other controlling IC.
- *3 Read : Mode where data is read from master to slave.
- *4 Write : Mode where data is written from master to slave.

- 2) Register map
 - Slave address : 40H
 - "*" indicates undefined.
 - Values inside parentheses () are the initial setting values (during power-on reset) (undetermined when not indicated)

Slave address configuration

BIT8	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1
0	1	0	0	0	0	0	R/W

SUB ADDRESS	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0		
00н		CONTRAST								
01н				SUB CON	ITRAST R					
02н				SUB CON	ITRAST G					
03н				SUB CON	ITRAST B					
04н	*	*		OSD	GAIN		BRT M	DDE (2)		
05н				BRIGHTNE	ESS R (DA)					
06н				BRIGHT	NESS G					
07н		BRIGHTNESS B								
08н				CUT O	FF RGB					
09н				CUT (OFF R					
0Ан				CUT (DFF G					
0Вн				CUT (OFF B					
0Сн	BLK (0)	*			BLANKING	LEVEL (0)				
	MODE									
0Dн	BRT	SYNC	VDET	VDET POWER		CLP (0)	VDET			
	SW (0)	POL (0)	MODE (0)	SAVE (0)	*					
ОЕн	*	*	*	*	D/A	PINSW2	PINSW1	PINSW0		
UEH	75	-1- -		* *		(0)	(0)	(0)		

3) Description of registe	rs	(Numbers inside parentheses () indicate the number of bits.)
CONTRAST (8)	:	Adjusts the R, G and B-OUT (Pins 25, 22 and 18) output amplitude gain commonly for all three channels.
SUB CONTRAST (8)	:	Adjusts the R, G and B-OUT (Pins 25, 22 and 18) output amplitude gain independently for each channel.
OSD GAIN (4)	:	Adjusts the OSD R, G and B (Pins 12, 13 and 14) OSD interval output signal gain commonly for all three channels.
BRTMODE (2)	:	 This register changes the output dynamic range. The 2H setting is recommended. OH : Output dynamic range 0.5 V to 4.5 V 1H : Output dynamic range 0.5 V to 5.5 V 2H : Output dynamic range 1.0 V to 6.5 V (recommended) 3H : Output dynamic range 2.0 V to 7.5 V
BRIGHTNESS (8)	:	Controls the output black level potential. (Three-channel independent and common control can be selected by BRTSW. During three-channel common mode, control is performed by the G channel.)
CUT OFF (8)	:	This is a general-purpose DAC. Use as a cut-off control is recommended.
BLK MODE (1)	:	Switches the blanking level mode 0H : BLK LEVEL=fixed 1H : BLK LEVEL=variable
BLANKING LEVEL (6)	:	Sets the blanking level when BLK MODE is set to 1H.
BRTSW (1)	:	Switches the brightness control between three-channel independent and three-channel common control. When using three-channel common mode, the BRIGHTNESS G channel is valid. 0H : Three-channel independent mode 1H : Three-channel common mode
SYNC POL (1)	:	Switches the sync separator output polarity during sync-on-green input. 0H : Positive polarity 1H : Negative polarity
VDET MODE (1)	:	Switches the video signal detection mode. 0H : B channel only is detected 1H : Signal obtained by adding R, G and B signals is detected
POWER SAVE (1)	:	Power save mode selector switch. 0H : Power save not performed 1H : Power save performed

CLP (1)	:	Selects the input clamp pulse p 0H : Positive polarity input 1H : Negative polarity input	polarity.
VDET LEVEL (2)	:	changes as follows. (An input pulse width of as narr When VDET MOD=0H 0H : 300 mV or more 1H : Undetectable 2H : Undetectable 3H : Undetectable	for video interval detection. The threshold level row as 10 ns can be detected.) When VDET MOD=1H 0H : Undetectable 1H : Undetectable 2H : 300 mV or more 3H : 600 mV or more hen VDET MOD=1H is the total of the three
D/A TEST (1)	:	DA TEST switch for IC measur	ement. Set to 0H.

PINSW : Switches the Pins 27 and 28 functions. (**" indicates don't care.)

PINSW			Pin 28 output	Pin 27 output
2	1	0		
0	0	0	DA (COFF_RGB)	C-SYNC
1	0	0	DA (COFF_RGB)	ABL (CONTRAST)
0	1	0	VDET	C-SYNC
1	1	0	VDET	ABL (CONTRAST)
*	0	1	DA (COFF_RGB)	DA (BRIGHTNESS)
*	1	1	VDET	DA (BRIGHTNESS)

Note) When the Pin 27 output is set to DA (BRIGHTNESS), BRIGHTNESS is forcibly set to the three-channel common mode.

2. Blanking addition function

The output is blanked while the BLK pin (Pin 16) is high level. The BLK pin threshold level is approximately 1.5 V.

3. OSD addition function and OSD contrast control

OSD can be added to the video signal while the OSD-R, G and B pins (Pins 12, 13 and 14) are high level. OSD blanking is added when any of these three channels is high level.

OSD blanking is also added to all three channels while the YS pin (Pin 15) is high level. See the following logic.

4. CONTRAST function

The CONTRAST function performs gain control for the R, G and B-OUT output amplitudes.

5. ABL function

ABL control can be performed by Pin 27 by setting PINSW. The variable range is approximately 13.7 dB.

See the characteristics diagrams hereafter for the control characteristics.

I/O Signal Example

Application Circuit

Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same.

Notes on Board Pattern and Layout

- 1. When not using the OSD, YS or BLK pins, connect these pins to GND.
- 2. Care should be taken for the following items regarding the output signals from R, G and BOUT.
 - 1) Connect these signal lines so that they are high impedance to external circuits.
 - 2) Do not allow current to flow into the IC side.
 - 3) Arrange the signal lines so that the distance to the power amplifier is as short as possible.
- 3. The Vcc1 and Vcc2 decoupling capacitors should consist of ceramic capacitors and electrolytic capacitors connected in parallel, and should be connected as close to the IC as possible.
- 4. The R, G and BIN clamp capacitors should be located as close to the IC as possible.
- 5. The sample-and-hold capacitors connected to the R, G and B-S/H pins should be connected as close to the IC as possible.
- 6. The output signals from COFF-R, G and B should be arranged so that capacitance of 20 pF or more is not applied to the pins or the pattern.

mVp-p Subcontrast Control=FFH Output amplitude Subcontrast Control=7FH Subcontrast Control=00H 128 160 192 224 BUS DATA

Contrast control characteristics, subcontrast control characteristics

Input amplitude 700mVp-p

mVp-p Output amplitude V Control voltage

ABL characteristics

—19—

Package Outline Unit : mm

28PIN DIP (PLASTIC)

Two kinds of package surface: 1.All mat surface type. 2.Center part is mirror surface.

SONY CODE	DIP-28P-03
EIAJ CODE	DIP028-P-0600
JEDEC CODE	

PACKAGE STRUCTURE

PACKAGE MATERIAL	EPOXY RESIN
LEAD TREATMENT	SOLDER PLATING
LEAD MATERIAL	COPPER ALLOY
PACKAGE MASS	4.2g