All Band TV Tuner IC (VHF-CATV-UHF)

Description

The CXA1695L is a single chip TV tuner IC which performs as an oscillator, mixer for VHF/CATV and UHF bands. An IF amplifier is also provided.

This IC achieves a large reduction of external parts in addition to miniaturizing the tuner and increasing manufacturing productivity, reliability and design efficiency.

This IC is pin-compatible with the CXA1594L with improvement in noise figure and oscillation stability.

Features

- On-chip oscillator and mixer for UHF band
- Low noise figure
- Reduced spurious interference
- Superior cross modulation
- Stable oscillation characteristics
- Ultra small package ensures tuner miniaturization

Applications

- CTV tuner
- CATV UP-DOWN converter

Structure

Bipolar silicon monolithic IC

Absolute Maximum Ratings (Ta=25 °C)

- Supply voltage Vcc 11 V
- Storage temperature Tstg -55 to +150 °C
- Allowable power dissipation

PD 930 mW (when mounted on board)

Operating Conditions

Supply voltage
 Operating temperature
 Topr
 Topr
 20 to +75
 C

Block Diagram and Pin Configuration

Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.

Pin Description and Equivalent Circuit

		uivalent Circuit	
Symbol	Typical pin voltage (V)	Equivalent circuit	Description
IF OUT	Under VHF operation 4.4 Under UHF operation 4.4	Vcc 8 555	IF output.
VHF IN 1	3.2	2 4 \$3k \$3k	VHF input. Normally a decoupling capacitor is connected at pin 2 to GND and pin 4 is used for
VHF IN 2	3.2		input.
MIX OUT 1	7.5 7.2	8 Vcc	Mixer output and IF amplifier input.
MIX OUT 2	7.5	5 5k W	
GND	0		GND
SW	3V or more 0.4V or less	8 Vcc	UHF/VHF switch pin. Connect 9V source through about a 10kΩ resister for VHF reception; 0V or leave open for UHF.
	VHF IN 1 WHF IN 2 MIX OUT 1	Symbol Voltage (V) IF OUT Under VHF operation 4.4	Voltage (V) IF OUT Under VHF operation 4.4 VHF IN 1 3.2 3.3 VHF IN 2 3.2 3.3 WHF IN 2 3.2 MIX OUT 1 7.5 MIX OUT 2 7.5 MIX OUT 2 7.5 Sw 3V or more 0.4V or less 7

Pin No.	Symbol	Typical pin voltage (V)	Equivalent circuit	Description
8	Vcc	9.0		Power supply
9	V OSC B	3.5	Vcc 8	VHF oscillator.
		3.7	\$800 \$ 9	
11	V OSC C	6.7	25p = +	
		9.0	777 777	
10	UHF IN 1	3.3		UHF input. The balanced input to Pins 10 and 12, or a decoupling
		3.1	10 12 3k 3k	capacitor is connected at Pin 12 to GND and Pin 10 is used for input.
12	UHF IN 2	3.3		
		3.1	777 777	
13	GND	0		GND
14	U OSC C	9.0		UHF oscillator.
		6.5	Vcc 8	
15	U OSC B2	3.6	\$800 \$ 14 16 15	
		3.4	$ \begin{array}{c c} \hline & & \\ \hline $	
16	U OSC B1	3.6	\downarrow \uparrow	
		3.4	7/17 7/17	

Electrical Characteristics

See Electrical Characteristics Test Circuit (Ta=25°C, Vcc=9V)

Item	Symbol	Measurement conditions	Min.	Тур.	Max.	Unit
Circuit current	IccV	VHF operation, no signal		45.0	58.0	mA
Ollouit ourroll	IccU	UHF operation, no signal		45.0	58.0	mA
Conversion gain	1 7 9		17.5	20.5	23.5	dB
*1	CG2	VHF operation, fr=360 MHz, input level -40 dBm	18.0	21.0	24.0	dB
	CG3	UHF operation, frr=360 MHz, input level –40 dBm	23.0	26.0	29.0	dB
	CG4	UHF operation, frr=800 MHz, input level –40 dBm	24.0	27.0	30.0	dB
Noise figure	NF1	VHF operation, fre=55 MHz		9.5	12.5	dB
*1*2	NF2	VHF operation, fre=360 MHz		10.0	13.0	dB
	NF3	UHF operation, frr=360 MHz		6.0	10.0	dB
	NF4	UHF operation, frr=800 MHz		7.0	11.0	dB
1% cross	CM1	VHF operation, fp=55 MHz	95.0	99.0		dΒμ
modulation		fun=±12 MHz				
*1*3	CM2	VHF operation, fc=360 MHz	93.0	97.0		dΒμ
		fun=±12 MHz				
	CM3	UHF operation, fo=360 MHz	86.0	90.0		dΒμ
		fun=±12 MHz				
	CM4	UHF operation, fo=800 MHz	86.0	90.0		dΒμ
Max. output		fun=±12 MHz				
power	Pomax	50Ωload	+8.0	+12.0		dBm
	(sat)					
	∆fsw1	VHF operation, fosc=100 MHz			±300	kHz
Switch ON drift		Frequency drift from 3 s to 3 min. after switch ON				
	∆fsw2	VHF operation, fosc=405 MHz			±400	kHz
		Frequency drift from 3 s to 3 min. after switch ON				
	∆fsw2	UHF operation, fosc=405 MHz			±600	kHz
		Frequency drift from 3 s to 3 min. after switch ON				
	∆fsw4	UHF operation, fosc=845 MHz			±700	kHz
		Frequency drift from 3 s to 3 min. after switch ON				
	∆fst1	VHF operation, fosc=100 MHz			±200	kHz
+B supply		Frequency shift when Vcc +9 V changes ±5 %				
voltage drift	∆fst2	VHF operation, fosc=405 MHz			±300	kHz
		Frequency shift when Vcc +9 V changes ±5 %				
	∆fst3	UHF operation, fosc=405 MHz			±400	kHz
		Frequency shift when Vcc +9 V changes ±5 %				
	∆fst4	UHF operation, fosc=845 MHz			±400	kHz
		Frequency shift when Vcc +9 V changes ±5 %				

^{*1)} Measured value for untuned inputs. Unbalanced input for VHF; balanced input for UHF.

^{*2)} Noise figure is uncorrected for image.

^{*3)} Desired signal (fD) input level is -34 dBm. Undesired signal (fD) is 100 kHz at 40 %AM. The measurement value is undesired signal level, it measured with spectrum analyzer at S/I=46 dB.

Description of Operation (See Electrical Characteristics Test Circuit)

(1) VHF oscillator circuit

The differential oscillator circuit with Pin 11 output and Pin 9 input.

Connect an LC resonance circuit comprising a varicap diode to Pin 11 through a coupling capacitor. The positive feedback from the resonance circuit is applied to Pin 9 through a feedback capacitor to execute oscillation. Note that if a parasitic capacitance across Pins 9 and 11 is too large, it may cause undesired oscillation.

(2) VHF mixer circuit

This is a double-balanced mixer having small leakage of local oscillation signal. The RF signal input terminal are Pins 2 and 4. In normal use, the signal is input to one pin while the other pin is connected to GND by decoupling capacitor. The RF signal is converted to IF with the signal supplied from oscillator. The converted RF is sent to the IF amplifier and output to Pins 3 and 5 simultaneously.

(3) UHF oscillator circuit

This is the differential oscillator same circuit as the VHF oscillator. In Electrical Characteristics Test Circuit, oscillation is executed as a Colpitts oscillator using one side transistor of the differential amplifier.

(4) UHF mixer circuit

This is the double-balanced mixer same circuit as the VHF mixer. The RF signal input terminal are to Pins 10 and 12. These are used balanced differential input from pre-stage double tune circuit, or an unbalanced input to Pin 10 with the capacitor connected at Pin 12 to GND. Balanced input achieves better NF rather than unbalanced input.

Otherwise, the conditions and usage are the same as for the VHF mixer.

(5) IF amplifier circuit

The mixer output signal is amplified by the IF amplifier and output to Pin 1. The output impedance is approximately 75Ω .

(6) UHF/VHF switching circuit

UHF / VHF modes are switched by the DC voltage at Pin 7. UHF operation is for open or 0V; VHF operation, for 3V or more.

Normally, for internal protection UHF/VHF switch is performed by 9V or open through about $10k\Omega$ resistor.

Notes on Usage

Care should be taken in placing external parts because high frequencies are present. Adjust accordingly to prevent heat problems with special care for Pins 6 and 13 (GND) whose heat dissipation accumulate.

Example of Representative Characteristics

VHF Input Impedance

IF Output Impedance

Package Outline Unit: mm

16PIN SZIP (PLASTIC) 225mil

PACKAGE STRUCTURE

SONY CODE	SZIP-16P-01
EIAJ CODE	SZIP016-P-0225-A
JEDEC CODE	

PACKAGE MATERIAL	EPOXY RESIN
LEAD TREATMENT	SOLDER PLATING
LEAD MATERIAL	COPPER ALLOY
PACKAGE WEIGHT	0.3g